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However, it is somewhat ironic that these more engi-
neering approaches were found later to be just the con-
tinuous-time versions of the original Wold-Kolmogorov
technique, which had been developed in a purely math-
ematical context.

The results in [t ]- [Z ] were all obtained for stationary
processes with infinite or semi-infinite observation in-
tervals. The paper of Zadeh and Ragazzini [8J was the
first significant attempt to extend the theory. Over the
last two decades, various extensions and generalizations
have been obtained and many of these have been docu-
mented in textbooks, as for example, those of Doob

[O],  Laning and Batt in [ to] ,  Pugachev [ t t ] ,  Lee [ tz] ,
Yaglom [ tg] ,  Whit t le [3] ,  Deutsch l t+] ,  L iebel t  l ts ] ,
Balakrishnan [tO], Bryson and Ho [tZ], and others.

In recent years, applications in orbital mechanics and
spacecraft tracking have spurred interest in recursive
estimation for nonstationary processes over frnite-time
intervals. Such algorithms 'were used by Gauss in his
numerical calculations of the orbit of the asteroid Ceres,
but the modern interest in them is due to Swerling [ta]
and especially Kalman [tg], [zo], and Bucy lztl, lzzl.
The great interest in recursive algorithms because of
their obvious computational advantages has stimulated
a great number of papers on them, providing alternate
forms and derivations showing their relationship to
more classical parameter estimation techniques (see, for
example, the discussions and references in Deutsch [t+]
and Liebelt [tS]). Nevettheless, it seems to us that the
original derivations of Kalman [tO] and Kalman and
Bucy [ZZ] sti l l  provide the most insight.

In order to obtain recursive solutions, Kalman and
Bucy had to confine themselves to a special class of pro-
cesses, viz., those that could be generated. by passing
white noise through a (possibly time-variant) "lumped"

linear dynamical system, i.e., a system composed of a
frnite number of (possibly time-variant) R, L, C ele-
ments. (Such processes are sometimes called projections
of wide-sense Markov processes, but we shall in thb rest
of this paper call them "lumpedtt processes.) They also
assumed complete knowledge of this sytsem, thus side-
stepping the difficult problem of spectral factoripâtion
that had been a stumbling block to the extension of
Wiener's classic solution (for semi-infinite obsery',ptions
on a stationary process) to more general situatio4s. In
his first paper in 1959, Kalman [tO] treated discrete-
time processes and obtained a recursive solution by a
technique that was essentially the same as Kolmo-
gorov's. In a later paper [ZOJ, he extended these results
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I. INrnooucrroN

N THE EARLY 1940's, Kolmogorov [t ] and
Wiener [Z ] first discussed problems of linear least-
squares estimation for stochastic processes, but by

entirely different methods. Kolmogorov [t ] studied
only discrete-time problems and he solved them by
using a simple representation of such processes that was
suggested in a 1938 doctoral dissertation by Wold [3].
This representation, which is obtained by a recursive
orthonormalization procedure, is known as the Wold
decomposition. lffre original papers of Kolmogorov
and Wold are quite readable, but a more accessible and
very readable reference is the monograph by Whittle

[  ]  (especial ly sec.  3.7). ]
On the other hand, Wiener [Z ] took an almost com-

pletely nonprobabilistic approach. He mainly studied
continuous-time problems and reduced them to the
problem of solving a certain integral equation, the so-
called Wiener-Hopf equation, that Wiener and Hopf
had solved in 1931 [S] UV using some of Wiener's re-
sults on harmonic analysis. Though Wiener undertook
this work in response to an engineering problem (the
design of antiaircraft fire-control systems), his solution
was beyond the reach of his engineering colleagues, and
his yellow-bound report soon came to be labeled the
"Yellow Peril."

In 1950, Bode and Shannon [O] published a different
derivation of Wiener's results that was, quite success-
fully, intended to make them more accessible to engi-
neers. This paper was based on ideas in a classifled
1944 report by Blackman, Bode, and Shannon [7]. fne
same approach \Mas independently discovered by
Zadeh (cf. footnote 3 in Zadeh and Ragazzini [8]).
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to the continuous-time case by the use of a particular
l imiting technique. This technique, though useful, is
somewhat tedious to carry out rigorously. A careful
discussion has been given by Wonham [ZSJ. ln ïZZ],
Kalman and Bucy attacked the continuour-li-" prou-
lem directly. However, they did not use the wold-
Kolmogorov approach because the direct continuous-

li-g analog of Kalman's discrete-time procedure in
[to] was hard to see. They therefore returned to the
wiener-Hopf integral equation and showed that (under
certain assumptions on the signal and noise processes)
the solution to this equation could be expressed in terms
of the solution to a nonlinear Riccati differential equa-
tion. It is also worth noting that siegert lzal had carried
out essentially the same steps in a different (but math-
ematically isomorphic) problem.

The chief purpose of Part I is to give a derivation of
the Kalman-Bucy results by the wold-Kolmogorov
method, which, for reasons that will be clear later, we
shall call the innovations method. Not only does this
close a gap in the preceding circle of ideas, but the in-
sight it provides into the proof has arso suggested some
new results. These include some slight generalizations
in the types of processes for which recursive estimation
formulas can be obtained, and a very simple and general
solution of the so-called smoothing (or interpolation or
noncausal filtering) problem. The smoothing problem
is one that has been somewhat difficult to solve by the
original techniques of Kalman and Bucy, and the solu-
tions that have been obtained are in a somewhat com-
plicated form (see the discussions in part II[25]t;. our
technique also enables a completery parallel method of
attack for the discrete- and continuous-time problems.
A new approach to linear estimation with additive
colored (nonwhite) noise also foilows from the present
ideas (Geesey and Kailath [26]).

More strikingly, the innovations technique can also
be extended to a large class of nonrinear least-squares
problems, viz,, those where the observation process is
the sum of a non-Gaussian process and additive white
Gaussian noise (cf. Kailath and Frost lzll and Frost
[zg]1. The ideas of the present paper have also yielded
some general results on the detection of general non-
Gaussian signals in additive Gaussian noise (Kailath
[zg], discrimination between two general Gaussian
processes (Kailath and Geesey [ro]), and also in certain
modeling problems (Kailath and Geesey [Sf ];.

Finally, we should say a word about the revel of rigor
in the present work. It is difficult to work directly with
white noise in a completely satisfactory and rigorous
manner-one has usually, especially in the nonlinear
case' to work with the integrated white noise. However,
in our opinion, the key ideas can always be presented,
quite simply, in the white-noise formulation. Then, after
some familiarity with the appropriate mathematics has
been gained, one can translate the white-noise formula-
tion into the more rigorous (stochastic differential)

I This issue, page 655.

framework. We shall do this in later papers. The more
informal presentation here will, we hope, bring the basic
ideas to a wider audiencc.

II. Tnn lNnovarroNs Appnoecrr ro LrNBen
Lnesr-SqUARES EsrruarroN

The innovations approach is first to convert the ob-
served process to a white-noise process, to be called the
innovations process, by means of. a causal and, causally
inuertible linear transformation. The point is that the
estimation problem is very easy to solve with white-
noise observations. The solution to this simplified prob-
lem can then be reexpressed in terms of the original ob-
servations by means of the inverse of the original
ttwhitening" filter.

This program, used by Bode and Shannon [O] for the
stationary process problem with semi-infinite observa-
tion time, will now be carried out when the observations
are made over a finite-time interval on a continuous-
time (possibly nonstationary) stochastic process. Sev-
eral initial sets of assumptions and several correspond-
ing classes of problems, of varying degrees of generality,
can be formulated. For simplicity, however, we shall
deal largely with the following additive white-noise
problem.

The given observation is a record of the form

y(t) : z(t) | v(t), t e la, b) (1)

where ,

v(') : a sample function of zero-mean white noise
with covariance function2

ilt7(s) : R(,)ô(t - s), R(r) > o,
z(') : a sample function of a zero-mean '(signal"

process that has finite variance

tr lz(t)z'(r)l ( *, te la,b)

lo, bl: a finite intervals on the real line.

We also assume that the ('futurett noise v(.) is uncorre-
lated from the (past" signal z(.), i.e.,

v ( t ) z ' ( s ) : 9 ,  a 1 s < t < b .

647

(2)

We shall be interested in the linear least-squares esti-
mate of a related process x(l). Let

*(tl ù : a linear function of all the data {y(r),

a(s(ô| that minimizes the mean-square (3)

error trlz(t) - â(tl olllz(t> - â(t I a)l'.

The corresponding instantaneous estimation error will
be written

z(t lb) :  z(t) -  2(t lo7, zçt l  r)  :  z(t) -  âQlt).  (4)

2 Bars will be used to denote expectations.
a The case of an infinite interval requires certain additional as-

sumptions on the signal process such as stationarity, observability
of models generating it, etc. Some more specifrc comments on this
point will be made later [after (35)].



wlren b: t, the estimate is usually called the f,ltered es-
timate, when b>t it is usually called the smootheil es-
timate, and when b <t it is called the pred.icted estimate.

The major tools for the calculation of these estimates
will be the following two theorems

Theorem [-The Projection Theorem: The best esti-
mate 2(tlb) is unique and satisfies the conditions

z ( t l b )  a z ( t )  -  2 Q l ù  a y ( ' ) ,  a  1 s  1 b  ( s )

where

u Lv means that ùt ,  :0.  (6)

In words, the instantaneous error is uncorrelated with
the observations.

Proof : This theorem, which was used bv Kolmo-
gorov [t ], is by now fairly well known to engineers and
is used in several of the textbooks cited earlier. A brief
discussion of the relevant geometric picture is given in
Appendix I .

Theorem Z-The " Innnatiôns, Theorern: The process
v( . )  de f ined by

v ( t )  :  y ( t )  -  â Q l t )  :  z ( t l t )  *  v ( t ) ,  a  1 t  . . - b ,  ( 7 )

and to be called the l j innovation process" of y(.), is a
white-noi,se process with the same caaariance as v(.), i.e.,

; ( 4 lG t : lD71D,  a1 t ,  s (0 .  ( 8 )

Furthermore, y( . )  and v(.)  can be obtained from the
other by causal (nonanticipative) linear operations.
Therefore,  y( . )  and r( . )  are (equivalentt  ( i .e. ,  they
contain the same statistical information) as far as
linear operations are concerned.

Proof : The proof will be deferred to Appendix II;
however, a few remarks on the theorem and its signifi-
cance are appropriate here.

Remark I : The . qpantity r(t) =y(t) - 2(4 t) :y(t)
-ydp) may be regarded as defining the ,,new in-
formation" brought by the current observation y(l),
being given all the past obsèrvations y(l), and the old
information deduced therefrom. Therefore, the name('innovation process of y(.),, came into being. This term
was first used for:such processês by Wiener and has
since gained wide currency. (A significant generariza-
tion, due to Frost [ZS] and to Kailath lZgl, of this
theorem is that when the white noise v(.) is also Gaus-
sian, but the signal z(.) is non-Gaussian, the innovation
process v(') is not only white with the same covariance
as v(.), but it is also Gaussian. Applications of this sur-
pr is ing resul t  are given in fzT]- [zgL. l

Remark 2: The fact that v(.) is white has been noted
before in the special case of lumped signal processes. In
this case, the result was probably first noticed by several
people (cf. [zS], lSZl-[S+J, and unpublished notes of
the author and others). However, all their arguments
rely, to varying. degrees, on the explicit Kalman-Bucy
formulas for 2(tl l). Here we first obtain the result more
generally [and with less computation, since we rely
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only on the projection properties of telù], and then
use it to obtain the Kalman-Bucy formulas. we note
also that the equivalence of y(.) and v(.) does not
seem to have been explicitly pointed out before, even
though, assuming knowledge of the Kalman-Bucy
formulas, a proof is immediate (cf. Appendix II-D).

Remark 3.. One reason the fact that v(.) is white (for
lumped processes) *ay have been known for a long
time is that in the discrete-time solution of Kalman
[tg], v(.) is shown to be white (in discrete rime) wirh,
however, a different covariance from that of the original
noise. The exact formula will be given later (39).

III. SoruB AppucArroNs

W" turn now to some applications of these two theo-
rems. First, we present a new derivation of the Kalman-
Bucy formulas for filtering of lumped signal processes in
white noise. This derivation shows clearly the step at
which restriction to such processes is essential to get a
recursive solution, and this insight easily yields several
(slight) generalizations of the Kalman-Bucy results,
including_some recent ones due to Kwakernaak [gS],
î"tP [so], Balakrishnan and Lions [sZ] and CÀang
[SSJ. The same techniques apply to discrele-time prob-
lems as well. Our new method of proof yields, very sim-
ply,_a g_eneral formula for the smoothed estimate (part
ll) [20] and also, more importantly, can be generalized
to the nonlinear case (Parr III) lZZl.

A. The Kalman-Bucy Formulas for Recursiae Fittering
and, Pred,,iction

The Kalman-Bucy results are for lumped processes;
however, we shall not begin with this assumption, but
shall try to see how far we can go without any special
assumptions.

We are given {y(r)  :z(s)*v(s) ,  a1r<r}  and wish
to calculate the linear least-squares estimate :t(tl fi of. a
related random variable x(l).

The first step is to obtain the innovations, which. bv
Theorem 2, are given by

v(r) : y(t) - 2(t/t), 
-n(,FO 

: R(,)ô(r - s). (9)

Because the innovations n( ") are equivalent to the
original observations y(.), we can express *(l l l) as

where the l inear fi l ter g(1, .) is to be chosen so that
[again using the equivalence of  y( . )  and "( . ) ]

x ( t )  - * ( t l t )  I v ( s ) ,  a ( s ( t .  ( 1 1 )

Putt ing together (9)-(11),  we obtain

*(t l  t) : 
I "é0, 

s)v(s)ds

f ,
x(r)v(s) : I e(r, ")@p@a"

a ' a

: C ( t , s ) R ( r ) ,  a 1 s 1 t .

(10)

(r2)

(13)

It is the last step that justif ies the use of the innovation
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That is, with the further assumption

u(l)y'(s) = 0,

we shall have

i0 I O : F(t)*(tl a + K(t)v(t),

where we have defined
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s ( l  ( 2 2 )

v(r) : y(t) - 2(tl t) (2s)

process v(.). In (10)-(12), we could equally well have
used the original observations y(.), but now (12), in-
stead of being trivial, becomes the Wiener-Hopf inte-
gral equation, which cannot be solved by inspection.
Returning to (13), we can now write

t:(tl t) : f 
';65R-r(s)v(s)ds. 

(14)
. r a

This is the general formula for the linear least-squares
estimate of x(l) from a white-noise process. (We may
point out, in anticipation, that the nonlinear (nl) least-
squares estimate is given by the remarkably similar
formula

*"1(l lr): f 
' f f iR-1(s)v(s)ds 

(1s)
. r a

where
-+-
* ( r )n ' ( t ) :  E [x ( t )v ' ( t ) l v ( ' ) ,a  1 r  (  s ] .  (16)

This result wil l be derived in Part III lzl l.
So far we have made no special assumptions on x(l).

Kalman and Bucy [22] ass,t*"d that x(l) satisfies the
differential equation

*(r) : F(l)x(t) * u(t), t) a, x(a) : *o (17)

where u(.) is white noise with intensity matrix O(.)
and uncorrelated with the observation white noise v(.),
i .e . ,

tGtrlt : O(,)ô(r - s), u@S) = o (18)n

and the initial value xo is a zero-mean random variable
with variance Po and uncorrelated with u(.), i.e.,

xo : o, 
-iil - Po, Zffi/ : o, a 1 s 1b. (19)

To exploit this structure of x(r), we can differentiate the
general estimate formula (14) to obtain

A block diagram for (23) is shown in Fig. 1(a) where
the box yielding 2!lt) wil l have a detailed structure
similar to that f.or *ft1 l) if we assume that the z(t) obey
a differential relation similar to (17) for x(l). We can be
somewËat more explicit about e(tlt) fand about the
I(11) of (24)l if we assume some specific functional rela-
t ionship between z(.)  and (past)5 x( . ) .The simplest  is ,
of course, the linear relationship, used by Kalman and
Bucy lzzl,

z(t) -- Hft)x(t)

which immediately yields (by linearity)

âQl t) : H(t)î<(tl t). (26)

This is very useful because now [the innovations v(l)
can be obtained directly from *(tlt) and /(r)] the
estimate ;<ttl t) can be realized by the feed,back structure
of Fig.  1 (b).

The (gain) function I((l) can also be written in a
simpler form under the assumption (25):

K(t) : *GFTDT'(I)
: x(r)['r'(l I ùH'(t) * v'(r)]n-t14

K(t) L x(t) v'� (t)R-l (r). (21)

(2s)

: x(t)t '( l)R-1(t)v(t)

t -  f  td 
: r l  

(20)
* 

LJ , dtx(l)v'(s)R-l(s)v(s)d _.,
: *G)-ilOR-r(r)v(r)

r  f t _
* 

L",, J "*{t1n' 
(s)R-1(s)v(s)ds 

(zD

f t_ -l

+ 
J " 

u(t)v'(s)R-1(s)v(s)dsl.

: [*(rl O + *(tl )]*:'(tl t)H'(t)R-'(r) + o
: o + iftr tlrt O6H Q) R-'(t)
: P(t, t)H'(t)R-t(t), say

where

P(t, t):the covariance function of the error in the
estimate at time l.

It is easy to derive a differential equation for P(t, t) by
first noting from (17) and (23) that x(ll l) ôbeys the
differential equation

it(tl t) : [r(r) - K(t)H(,)]i(,1 D
- K(t)v(t) * u(t), x@l Q : xa. Q9)

Now applying a standard formula (Appendix I-B) we
can show that P(t, l) satisfies the (nonlinear) matrix
Riccati equation

P(t, t) : F(t)P(t, t)

+ o(0,

: lf z(.) depended on future x('), we could not satisfy the condi-
tion (22).

o Note that (28) is true for general x('), not only those with the
differential representation (1 7).

(27)

(28)u

i ( t l  t)

Now the second term in (2I) is equal to F(t)*.(tlt)

[cf. (1a)], and thus but for the last term, (21) would be
a differential equation for *(tlt).

However, this last term will be zero il we assume that
the white noise u(.) that generates the signal process
x(.) is uncorrelated with the past observations y(.)

[and therefore with the equivalent observations v(')].

r The assumption rl(Dl6=0 can be relaxed to r-OF1il:C(r)ô
(l-s); cf. (31) ànd (32).

+ P(t, t)F'(t) - K(r)R(t)K'(t) 
(30)

P(a, a) : Po,
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I f  x ( . )  i s
(17)- (1e) ,
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a lumped process described by the model
then it is easy to see that

* ( t +  a l 0 :  ! I ' ( l * A ,  t ) * ( t l ù

o)
Fis. l: (a) .Filtered estimate of x(t) from a related Drocess v(z) -

7?).*v!r), gSrSt. (b) The Kalman-Bucy filiei; n'otait'âf il,âa-
back of û(tlt) can be used to obtain y(t) when z(t):/'Iqg1*rrr.

We now have obtained in formulas (23), (26), (2g), and
(30) the basic Kalman-Bucy formulas [for the problem
defrned bV (1), (25), and (17)-(19)]. Our derivation is
more direct than that of the original and reveals clearly
the roles of the various assumptions in the Kalman-
Bucy model. In Part III, we shall see the role that the
corresponding assumptions play in the nonlinear prob-
lem. our present proof also indicates some points at
which the above arguments can be generalized. How-
ever' before doing this let us make a few supplementary
remarks.

Correlated, u(.) and v(.): We can, without violating
the basic constrain t (2) that {[@ : g, s ) t, gen-
eralize the uncorrelatedness condition in (1g) to

u(t)v'(s) : C(t)6(t - s).

where !Ir(r, s) is the fundamental
matrix of the differential equation
x(.) ,  i .e. ,  v( t ,  s)  is  the solut ion of

d
=!P(1, s) : F(t)!Ir'(r, s),
dt

(or state-transition)
(17) of the process

![(s, s) : -I. (35)

The Steady-State Equation. In the preceding discus-
sion, we have restricted the interval (a, l) to be finite.
When the var ious matr ices F(.) ,  H(.) ,  O(.) ,  and
R(.), are time invariant, it is of interest to study the
limiting behavior of the filter as the initial point o tends
to - -. By a careful examination of the Riccati equa-
tion (30), Kalman and Bucy lZZl have shown rhat
when the model (17), (25) satisfies certain assumptions
(stability, controllability, and observability, etc.), we
can obtain a well-defined limiting solution by setting
P:0 in (30) and using the non-negatives soluti,on of the
resulting algebraic equations in the filter formulas (23)
and (27). When the process r(.) has a rational spectral
density, the above conditions are always met and the
Kalman-Bucy solution reduces to the classical solution
of Wiener._(The explicit equivalence has been shown by
Leake [sq].l

B. The Discrete-Time Problem

For discrete-time observations we will have similar
results, with one rather trivial modification: the innova-
tion process in the discrete-time case will have a differ-
ent variance from that of the observation noise. Thus,
let

v ( k ) : z ( k ) + v ( k ) ;
i @ : s ,

h  : 0 ,  t r  2 ,

1@V6: R(É)ô*,

(34)

' (36)

(s7)

(40)

(31)

with {r(k)l a rero-mean finite-variance signal process.
The innovation process will be defined by

v(Ë)  A y(k)  -  z (k lk  -  1)
This will require minor changes in the above deriva- where
tions,? which we shall leave for the reader's amusement. .,, | ,
\'try'e shall only point out that fin;ily-;h;;;ry ;;;;;; 

t(hl h - 1) : the linear least-squares estimate or

the filter formulas [(x), (26), (2s), (30)J will be that a(É) given {y(0, o < t 3 n - t1l. 
(38)

the gain function of (28) must be replaced by Then it is easy to calculate (cf. Appendix II) that
K(t) : leQ, l'n'(ù + c0)ln-r14. G2)

The Pred.iction Problem.. Suppose we are to
,c(t+A), A>0, given observations v(.) up to
by the innovations technique, \Me readily find

ïE : o, ;@W : lp"(k) * R(Ë)lô, (3e)
estimate where
t' Then' P,(k): covariance matrix of the error in the

es t imate  â (k l k  -  1 )
, f ,_-

*(t + al,) : | ;CTTFTtR-,(s)v(s)ds. (33)
, r d

7 Notably that tn (21) and (27) the terms that are zero will nowbe (r/2)C(t)R-'(r). rttè r'/z àriè.'r'à- tàri"s 7.î;(r-ïâi:t/2.-

: fz(k) - z(kl n - Dllz(D - 2(kl Ë -ltl.
Therefore, the innovation process is still (discrete-time)

E 'I'here 
are several solutions that are not non-negative definite.

f  
t t  

)o t
t o

ESTIMATOR
O F

z  ( f  )

E S T I M A T O R  O F

/ 1 r o '
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white, but with a different variance. The estimation
solution no\4r proceeds essentially as in the continuous-
time case; we shall rapidly outline the steps for a pro-
cess z(. )  of  the form

z(k) : H(k)x(k)'

x(k * 1) : o(Ë * r, k)x(k) + u(k), (41)
A@76 : e(k)6*t, WA : c(k)6u.

By the projection theorem, and assuming [p,(.)
+R(.)]-t exists,e \Me readily obtain the expression
(42) f .or *(k+tlA) in terms of the v(l) ,  tSÈ, which we
can rearrange as

* ( k + r l t )
k

: I;(r + lF(Dlp,(l) * R(r)l-1v(D

*1,
: 

?????;6 
+ N(Dlp"(r') * n0)l-lr'0)

+ '(Ë + l)"1D lP,(P) + R(Ë)l-rv(Ë)
: a(k + r, k)*(kl k - 1) + K(k)v(k), say

where we have defined

K(k) A.(F +1"1D lp,&) * n1t;l-r
Now we note that

;e7(k)
: [o (Ë * r, k) x(k)* u (Ë) ] l*,' (k I k - r) H' (k) * v, (k)l

(46)

(47)
: a(k * r, k)x(k)î<'(kl n - DH'(k) + c(Ë)
: a(k + r, k)P(k)H'(k) + C(k)

where

P(k) a*(kl  k -  r)* ,(k l  n -  l .
Therefore, using

p,(k)  Ar i (k ln -  Dz ' (k ln -  D:  H(k)p(k)H,(k)  (4e)

we can write K(k) as

K(k) : o(Ë + r, k)leçn1n,çn) + c(ell
-lnçaSeçk)H'(k)* n1t;1-,. 

(so)

Finally, with patience, \Me can derive a recursion rela-
tion for P(Ë) which we quote without proof :

P(k + t) :a(k + r, k)A(k)a'(k + L, k) + 8(k),
A(k) : p(k) - K(k)lp"G) + R(k)lK,(k). 

(s1)

Equations (aa) and (51) define the discrete-time Kal-
man filter, first derived in a slightly less direct way (but
sti l l  using the innovations) in Kalman [tq]. Our
method here is exactly parallel to the one \Me used in the
continuous-time case.
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C. Some Generalizations

The crucial step in our derivation of the Kalman-
Bucy formulas was the use of the assumptions

*(t) : F(t)x(t) * u(t), ffi@ = 0

to write

f t _  f t _

| :t(t)v'(s)v(s)ds : F(t) | x(t)t '(s)v(s)ds
. r a  . r a

: F(D*(r I r).
However, suppose we had

*(t) : F(t)x(t - 1) * u(t), u@($ = 0. (s2)

Then we shall have

f  t  
-  

f  t -

| ,t(0"'(s)v(s)ds : F(D | *(t - 1)v'(s)v(s)ds
. r s  r t o  ( 5 3 )

: F ( t ) * ( t - r 1 0 .

Kwakernaak [SS ] *ar apparently the first to point out
this result. More generally, suppose

* ( r )  :  sox( ' )  +  u14,
y ( t )  : 3 c o x ( ' )  *  v ( l ) ,  u @ 7 @  = g  

( 5 4 )

where $ o x(.) and tC o x(.) denote some linear opera-
t ion on the (past"  values {*(r) ,  o(s<l}  of  the s ignal
process. Then

f t - -  f  t -

| :t( l)v'(s)v(s)ds : $ o | *(.)v'(s)v(s)ds
J o  J o  

"  
( 5 5 )

: s o * ( ' l r )

and the obvious analogs of the Kalman-Bucy formulas
(23)-(30) are again easily obtained (of course, suitable
attention has to be paid to the proper topologies, etc.).
Some problems of this type have been noted by Bala-
krishnan and Lions [SO]'and Falb [SS1 who use essen-
tially an operator-theoretic analog of the Kalman-Bucy
derivation. They given some specific examples with $
being a partial differential operator. For a different
illustration, we note that 3€ may be a random sampling
operation, a case that was recently studied in a less di-
rect manner by Chang [gZl. General representations of
the form (39) often arise in describing stochastic pro-
cess by evolution equations in abstract spaces and, in
fact, some nonlinear processes may be made linear by
such representations. We shall not explore this point
further in the present elementary paper.

However, it may be of some value to point out that if
x(.) obeys a nonlinear equation

*(D : f(x(s), s S l, t) * u(D (56)

then the (linear) estimate *(ll l) obeys the equation

i ( t l t > : ( " ( - J , ' - l * V @ l @ n ( t ) ( s z )

(42)

(43)

(44)

(4s)

(48)

g If not, ]ve use the Moore-Penrose pseudo.inverse, but we shall f!"-('), l) given

not pursue this refrnement here. tially discussed

where rGlrGD is the besr linear esrimare of
yG), aSr (t. Such a problem was par-
by Chans [3s].



Finally, we should make a brief comment about
problems in which the additive observation noise is
nonwhite. One solution is to apply a transformation
that will whiten this noise and then use the Kalman-
Bucy formulas. This method has been used bv Brvson
and Johansen [+o]. However, a more po*erfui -"ihod
is to whiten the whole observation process, the sum of
the signal and the nonwhite noise; in other words, to
obtain the innovations directly. This method is dis-
cussed in Geesey and Kailath l2O]. It may be noted that
the case of colored (finite-variance) noise plus white
noise can be immediately treated by an obvious ex-
tension of Theorem 2-the observations can be whitened
by subtracting out the estimates of the signal and the
colored noise.

IV. Coxcl,uorNc RBuARKs

The main point of the innovations approach to sta-
tistical problems is that once we understand the basic

u(t)v(t)dt or u(t)v(t)p(t)dt, where p(t) > 0. (5S)

Thus, the linear least-squares approximation to an
unknown function u(.) in terms of a given function u( .)
is  obtained by project ing u(.)  on o(.)  wi th the given
inner product (58). For our applications, we need to
work with Hilbert spaces of random variables, these
being values of a stochastic process z(t), for different
time instants tela, bf, or l inear combinations of such
random variables. Now random variables are also
functions not of l, but of a probability sample-space
variable, say ol€O. The inner product is (very heuris-
tically) [au(c,)a(a)p(t'ùdc't where f (a) da is a probability,
or, as it is usually written, uzt. As long as we remember
that <,r, the probability variable, should replace time,
all our intuitive notions of Hilbert function spaces
(which are essentially generalizations oI n-dimensional
Euclidean space) carry over to random variables. The
orthogonality relations of the projection theorem have
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a geometric setting in this space of random variables.
In this context, there is often some initial confusion be-
cause the variable I is also present in the discussion
of stochastic processes. However, it is essential to
remember that in the Hilbert space of random vari-
ables, the elements are not functions of time but functions
of co; the variable I serves only to index some of the
elements of the Hilbert space.

B. Coaariance Relations for Lumped, Processes

Let a random process x(t) be obtained as the solution
of the differential equation

x ( t ) : F ( t ) x ( t ) * u ( t ) ,

wheie (the zero means are
convenience)

x ( a ) : x " ,  t l a  ( 5 9 )

assumed for notational

ilçt1 : s, uQtrlt : g(t)6(t - s),
i o , i @  : 0 ,  t )  a .

probabilistic structure of the processes involved, many mr
results can be obtained quite àirectly without r;r";;; 

' lhen 
we can write

often more sophisticated (and analytical rather than
probabilistic) tools like Wiener-Hopf techniques,
Karhunen-Loève expansions, function space integrals,
etc. In this paper we have illustrated this point for a where tr(/, s) is the state-transition matrix defined as
class of nonstationary filtering problems.

In [ZS ]- [St ] applications are given for linear smooth-
ing problems, nonlinear filtering and smoothing, co-
variance f.actorization, and detection problems.

the (unique) solution of the equation

d!r(r, s)
: F(l)!Ir(/, s), ![(o, a) : I, a 1 s I t. (60;to

AppnNolx I

A. The Project'ion Theorem

Formal proofs of the projection theorem are given in
many textbooks. Here we shall make a few informal re-
marks that may aid in the understanding and applica-
tion of the result. The projection theorem is probably
quite familiar for l inear (Hilbert) spaces of t ime function
with inner product

By direct computation, we obtain 1(l)=0 and

x(t) :v(r, @)x( a) + f 
'*Q,s)u(s)ds

J d

dt

R,(t, t) A [x(t) - t(t)][*(l) - *(t)l '
: v(t, a)Rlxr'(t, a)'

+ f 
'*Q,s)@(s)w'( 

t, s)d.s.
. J a

Differentiating both sides of (61) with respect
using (60), we obtain

dR'(t't) 
: F(r)R, (t, t) + R,(t, t)F'(t) + gQ),

dt

t )  a  
62 )

Rn(a, a) : Ro.

Furthermore, it follows by direct computation that

R"(t,s) A;GFO

(61)

to I and

I,ï,

(r, s)x(s) * I "bo, 
o)G(o)u( o)d,o]r'g): [ * (63)

(64)

: \P(1, s)R"(s, s) + 0 for I ) s
: R,(t,l)v'(s, t) for s ) I

where the last equation follows from the symmetry
property R,(t, s):R,'(s, l). Equation (62), when ap-
plied to (29), yields the Riccati equation (30), as some

10 When F(.) is time invariant,iP(t,s):4Rr"), !)s.
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simple algebra will show. Equations (63) and (64) will
be used for the smoothing problem in Part II. The
above formulas are all well known.

AprBNorx II

TnB INNoveuoN PRocEss

I1  y ( ' )  :  z ( ' )  + r1 ' ) ,  where  a( . )  i s  a  second-order  p ro-
cess and u(.) is white noise, we shall prove that the
innovation process

v(t) : y(t) - a(tl f i , - co 1 a 1 t < b ( æ

is white with the same covariance as u(.), and that it
is obtained from y(.) bV a causal inaertible linear op-
eration. The first property follows easily by direct
computation [and had been known for lumped process
z(.)1. The second property is more interesting and wil l
be discussed first. (For simplicity, only the scalar case
will be treated.)

A. The Relationship Betarcen y(.) and, v(.)

Let gr(t, s) denote the optimum causal filter that op-
erates on {y(s) ,  s( l }  to give e(t l t ) ,  i .e. ,

â Q l gr(t, s)y(s)ds : gry, say (6s)

kernelwhere g, denotes the integral operator with
gr(1,  s) .11

To make (65) well defrned we need to assume that
(cf .  Doob [9] ,  sec.  9.2)

for every t e @, b). (66)

(If g(t, .) had delta functions in ir, e(4ù would have
infinite variance.) From our assumption that tzz(t)dt
( æ, it can be shown that
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t inuity of the covariance function of z(.) l . In this case,
it can easily be shown that the kernel gr(t, s) is con-
tinuous in I and s (and, in this case, the arguments to
estqblish (69) are even simpler (Riesz and Nagy l+Zl,
seè. 65).

B. The Process v(.) is White

We shall establish by direct calculation that

t@dt : (Dî6 where v(t) : y(t) - a(tl t).

First consider I ) s. Then

: u(t)o(s) * z(tl Dyt'l

v(t)v(s) : fz(tl o +
:t,(l)r6) +

u(r) l [z(sl ' )  * r( ' ) l

,(,)z('l ') (70)

, ) :  
Ï "

f t o

I g'r(t, s)ds ( oo
. l o

: a(t)o(s)
(71)

ï "' I "' 
;,Q, s)dtits ( æ, (67)

(68)

a fact that will be useful presently. If we use -f for the
identity operator [the integral operator with kernel
ô(r-s)], then we can write, symbolically,

v : y - 8 - t - f i u t : ( I - g ù y .

The problem, then, is to show that (f -gr) is a causally
invertible operator. The causality of g, does the trick
here because g, is then what is called a Volterra kernel
and it can be proved (see, e.g., Smithies [+tJ, p.34)
that when gu has a square-integrable kernel, then
(1-9r)-t exists and is given by the Neumann (geo-
metric) series

(1 - gr)-' : 1 * g, + gr'* grt * . . . (69)

where gu'y:9u9u!, and ss on. The causality is obvious
from (69).

In many applications, the signal process z(.) is con-
tinuous in the mean [which is equivalent to the con-

fr -A1an,asid9, we note that 9y can be regarded as an operator on
Lz (cl.Doob [9], sec. 9.2).

* z(t I r)z(s I ') + z(tl t)v(s).

Now z(sls) :a(s)  -â(s ls)  depends only on signal  and
noise up to time s. Since we have assumed that future
noise is uncorrelated with past signal, the second term
in (70) will be zero. Similarly, by the definition of
z(tlt), TAWlr:7QW1@-0 for t)s. Therefore,
we can write (70) as

v(t)v(s) : a(l)u(s) * z(tl l)z(s) * z(tl l)a(s)

* z(tl D[r(') * u(s)]

: o ( t ) u ( s ) * 0 ,  t ) s .

A similar argument applies for I ( s. Since @O
: ô ( l - s ) : 0 ,  t * s ,  w e  h a v e  M : 0 ,  r # s .  T h e r e  r e -
mains only to examine the point l:.r. Here we argue
that [@@f :NT) ( æ, but @ is infinite (be-
cause z(.) is white), and therefore l@ must be infinite
(and we have just  shown @6:0, ,#s).  This iden-
tif ies z(.) as white noise. This argument seems shaky,
but it is inevitable if we work with u(.) as an ordinary
random process rather than as a generalized random
process.

As long as we use the ordinary functional.notation for
u(.), all proofs, though they can be given in slightly
different forms (especially with additional assumptions
on z(.) ,  e.S., that  i t  is  cont inuous in the mean or,  more
strongly, that it is a lumped process), must be essen-
tially of the preceding form. A rigorous proof can be
obtained by working with integrals of u(.) and v(.)
("f. lzgll.
C. Discrete-Time Processes

Some insight is also shed on the preceding calcula-
tions by considering the discrete time

y(k) : r(k):!), iM : R(k)6*t,
a ( k ) z ( l ) : 9 ,  l < k .

In this case, the innovation process z(.) is defined as

v ( k ) :  y ( k )  -  â @ l k  -  t )  : z ; ( k l n  -  1 )  *  o ( È )  ( 7 2 )

and, by arguments similar to those in (71), we obtain
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t z(kl el - Dz(tl t - r) +d k - r),,,(t)
:  v(k)a(t) + o + z(kl k - r) lz(t)* a(f]
: o@M.

Similarly, \M€ can prove the equality for k <t. For
h:1,  we have

i,(ni :,\k) + 2r(k)z&r;i + z,&G - r)
: vz(k) + zr(kl n -1) : R(È) * r"çny, say.

(73)

Therefore

;@m: [n(r) * p"&)]ao,

so that v( . ) ,  l ike u(.) ,  is  whi te but wi th a di f ferent var i -
ance. The continuous-time case can be approached by a
limiting procedure in which Â(Ë) becomes indefinitely
large while P"(k) remains finite, so that the variances of
z( . )  and zt  ( . )  are the same.

D. A Proof of the Equiaalence of v(.) and y(.) Using the
Kalman-Bucy Formulas

We noted in our discussion of TheoremZ (cf. Remark
2) that the equivalence of z(.) and y(.) was obvious if
the Kalman-Bucy result was assumed. The proof is
trivial. Since v(t):y(t)-â(tlt) and â(tl t) can be calcu-
lated from y(s), s(t, z(l) is completely determined by
y(s), s(r. Conversely, the Kalman-Bucy formula

û(tl t) : F(t)û(tl A + x@ly(t) - E(t)û(tl t)1,
û ( a l Q : s

shows that *(tl t) is determined if {z(s), s(l} is kno*n,
and then y(t) can be obtained as y(t)--H(t)î,,1lù*v(t)
since

z(tl t) *v(t) : â(tl t) *z(tl ù +o(t) :z(t) *a(t).
Therefore, v(.) and y(.) can each be obtained from the
other by causal operations. This argument is due to
R. Geesey.

Of course, the deeper result is that this fact is true
without restriction to lumped processes and can indeed
be used, as we have shown, to give a simple proof of
the special formulas for lumped processes.

AcTNowLEDGMENT

The author thanks R. Geesey, B. Gopinath, and
P. Frost, former students at Stanford University, for
many stimulating, enjoyable, and instructive conver-
sations on various aspects of the innovations concept
and, in particular, for teaching him various aspects of
modern control theorv.

RnrBnrNcns

111 4. N. Kolmogorov, "Interpolation and extrapolation of sta-
tioxaly.ragdop sequences," BuIl,. Acail. Scd. USSR, Math. Ser.
vol. 5, 1941. A translation has been published bv.the RAND
Corp., Santa Monica, Calif., as Mem[. RM-3090:PR.

t2] N. Wiener, The Extrapolation, Interp:olat,ion, anil Smoothing of



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC.13, NO. 6, DECEMBER 1968 655

Thomas Kailath (S'57-M'62) was born
in Poona, India, on June 7, 1935. He ob-
tained the Bachelor's degree in telecom,
munications engineering at the University
of Poona, Poona, India, in 1956, and the
S.M. and Sc.D. degrees at the Massa-
chusetts Institute of Technology, Cam-
bridge, in 1959 and 1961, respectively.

He worked at the Jet Propulsion
Laboratories, Pasadena, Calif., until
1963, and since then has been at Stanford

ln University, Stanford, Calif., where he is

[34] B. D. O. Anderson_and J.-B.-Moore, 
'(W_hitening filters: A state-

space v_iewp_oinj,"_Dept. of Elec. Engrg., University of Newcastle,
Australia, Tgch. Rept. EE 6707, Àugust 1967. Ako see proc'.
JA CC, (Michigan). 1968.

[35] tI.' Kwgkgry3rqk, "Optimal frltering in linear systems with time
4gluyg," lEF,E Trans. Automatic eontuol,, vol.-AC-12, pp. 169-
173, Apri l  1967.

[36] P. Falb, "Talman-Bucy filtering in Hilbert space,,' Information
and, Conlrol, vol. 1 1, no. 1, pp. 102-137, August-septenibe r 1967 .

[37] A. V. Balakrishnan and J. L. Lions, "Sta1e estimation for in-
finite-dimensional^sys.t91._." /. Çomplttey anil System Saicnces,
vol.  1, no.4, pp.391-403, December 1967.

[38] S. S.. L. Chang, oO_ptimum frltering and. co_ntrol of randomly
samplqd lygte1ns,'l IEEE Trans. Automatic Control, vol. AC-l/,
pp. 537-546, October 1967.

t391 B. J..LçgL"r.*Duglity condition established in the frequency
dolryb,l' IEEry ?qnt, _Informatôon Theory (Correspond.encei,
vo l .  IT-11,  p .461,  Ju ly  1965.

t401 4. E. Bryson, Jr., and D. E. Johansen, "Linear filtering for
time-v_arying_systems using measurements containing colored
noise,' I ,EP-q Trans. Automatic Control, vol. AC-10, pp. 4-10,
January 1965.

t41l q. Smithies,- Integral Equations. London: Cambridge Univer-
sity Press, 1958.

V2l \. Riesz and B. S. Nagy, Functional Analysis. New York:
Ungar, 1955.

now Professor of Electrical Engineering.
He was a visiting sch_ola1 in the Department of Electrical Engineering
of the University of California, Berkeley, from January to June, 1963.
His research interests are in communication through time-variant
channels, feedback communication systems, continuous-time detec-
tion and estimation problems, and the analysis and structure of
stochastic systems. He was coauthor of a paper on feedback systems
that received the t967 Inf.ormation Theory Group Award. He is
consulting Editor for a Prentice-Hall series on information theory.

Dr. Kailath is a member of SIAM, the Institute of Mathematical
Statistics, URSI, and Sigma Xi.

cesses. For lumped processes, recursive solutions are
available for the filtered estimate (Part I), and from
these similar solutions can easily be found for the
smoothed estimate. In the literature, recursive solu-
tions to the smoothing problem have generally been
obtained rather laboriously and often in less convenient
form than ours (cf. Section III).

The problem we shall begin with is the following.
We are given observations

a 1 t 1 b  ( 1 )

7@ : o, ;CFlt : R(,)ô(, - s), R0) > o

i@ : o, xW6 ( æ, x@ffi:O, s ) t.

(2)

(3)

It is required to find the linear least-squares smoothed
estimate

x(tl fi : the linear function of the data

{y(t) ,  a1s < D} thatminimizes (4)

An Innovations Approach to Least-squares Estimation
Part II: Linear Smoothing in Additive White Noise

THOMAS KAILATH, MEMBER, IEEE, AND PAUL FROST, unuBER, IEEE

Abstract4he innovations method of Part I is used to obtain, in a
simple way, a general formula for the smoothed (or noncausd) esti-
mation of a second-order process in white noise. The smoothing solu-
tion is shown to be completely determined by the results for the
(causal) ûltering problem. 'When 

the signal is a lumped process,
differeniial equations for the smoothed estimate can easily be de-
rived from the general formula. In several cases, both the derivations
and the forms of the sotution are signitcaltly simpler than those
given in the literafirre.

I. INrnooucrroN

N THIS PAPER, we apply the innovations tech- y(t) : H(t)x(t) * v(t),
nique of Part 11 to solve the smoothing problem.
V/e shall show that the smoothing soluti,on i, "o*- where

pletely determined in a simple way by the optimum

causal filter and its adjoint. This result is valid for a
general second-order (finite-variance) signal process in

white noise, without restriction to lumped signal pro-
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