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Abstract

In this paper, we introduce the Choquet integral as a general tool
for dealing with multiple criteria decision making. After a theoretical
exposition giving the fundamental basis of the methodology, practical
problems are addressed, in particular the problem of determining the
fuzzy measure. We give an example of application, with two different
approaches, together with their comparison.

1 Introduction
Since its introduction in 1974 by Sugeno [30], the concept of fuzzy measure
has been often used in multicriteria decision making. The very first applica-
tion, by Sugeno himself, was about evaluation of faces of women [30], and
has been followed by many others in Japan from the eighties till now (see a
selection of these applications up to 1994 in [13] and in a shortened version
in [8]).

Despite the somewhat empirical way fuzzy measures were used at the
beginning, it was very early noticed that fuzzy measures can model in some
sense a kind of interaction between criteria (see e.g. the attempt of Ishii and
Sugeno [18]), but this issue was not formalized till the proposal by Muro-
fushi and Soneda [24] of an interaction index for a pair of criteria. Later,
Grabisch proposed a generalization of this index [9] to any subset of criteria,
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and Grabisch and Roubens proposed an axiomatic basis for the interaction
index [17], giving a consistent basis for dealing with the notion of interac-
tion. This work around interaction enlightens the link between multicriteria
decision making and cooperative game theory, which was already remarked
by Murofushi in 1992 [23].

Till the beginning of the nineties, the Sugeno integral was used as the
aggregation tool for computing an average global score, taking into account
the importances of criteria expressed by a fuzzy measure. Then, after the
proposal of Murofushi and Sugeno [32, 25] to use the Choquet integral [1],
which is an extension of classical Lebesgue integral, —and thus of the well-
known weighted sum—, it was quickly adopted among practitioners. Later,
the properties of Choquet and Sugeno integrals as an aggregation operator
were studied in depth, and their connection with OWA operators in their
usual additive form [36] or weighted minimum form [5, 2] discovered (see
e.g. [6, 15, 26] and the paper of Marichal in this book).

A difficulty which has slowed down the application of fuzzy measures
is its exponential complexity, since one has to define a real number for each
subset of the set of criteria, and also to find a mean of evaluating these
numbers, either by expert elicitation (but then comes the problem of the
real meaning of these numbers, not to speak of the burden on the decision
maker), or by optimization. This is the reason why most of the time in ap-
plications, particular cases of fuzzy measures were used, needing only the
definition of a “distribution” (linear in complexity) and a parameter, such
as decomposable measures [35],

�
-measures [30, 31], possibility measures

[37, 4], etc. However, in the field of multicriteria decision making, such
simple measures are unable to express non homogeneous interaction phe-
nomena between criteria, as it becomes evident with the interaction index
formalism. This is the reason why Grabisch has proposed the concept of�

-additive measure, bridging the gap between decomposable measures and
ordinary fuzzy measures [9, 11]. Interestingly enough, it happens that there
is a strong link between

�
-additive measures and the interaction index.

In this paper, we will explain the methodology of using the Choquet in-
tegral in multicriteria decision making. Our exposition will avoid the listing
of all properties of the Choquet integral and its relation with ordinary aggre-
gation operations, since many publications have been done along this line,
to which the interested reader may refer (basically, see [13] Chap. 8, and
[8, 15]). However, we will detail more fundamental and practical aspects,
in particular, the connection with game theory, and how to identify in an
experimental problem the fuzzy measure modelling the decision maker’s
behaviour. Two methods will be explained, and illustrated in detail on a
practical (although fictitious) example.

In the whole paper, we will work on a finite universe � of � elements
(criteria). �����	� is the power set of � , while 
 ��
 denotes the cardinal of a set
� , �� its complement, and ����� denotes the set difference. ����� denote min
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and max respectively.
Finally, we just mention that this paper does not aim to cover all the

range of a multicriteria decision problem, but merely to address the aggre-
gation step. It is known that for most of the methodologies, an aggregation
step exists, but the quantities to be aggregated may be of different kinds
(mainly scores, degrees of satisfaction, degrees of preference, preference re-
lations, etc.), which can be numerical or simply qualitative (ordinal). For the
sake of simplicity, but without loss of generality, it is assumed that we deal
with numerical scores on criteria, expressed on a � � ����� scale, supposed to be
an interval scale. The aggregation of ordinal scores is a completely different
topic, which will be not addressed here.

2 Basic material on fuzzy measures and Choquet
integral

In order to be as far as possible self-contained, we give in this section neces-
sary definitions, adapted for multicriteria decision making, and thus slightly
less general. See the companion paper in this book on

�
-additive measures

for more details.

Definition 1 (Sugeno [30]) A fuzzy measure � on � is a function ��� ��� �	�
	��� � ����� , satisfying the following axioms.

(i) � �� ����� .
(ii) ��� ��� � implies � � ������� � � � .

We will assume here � � �	����� as usual, although this is not necessary in
general.

Definition 2 (Choquet [1]) Let � be a fuzzy measure on � , whose elements are
denoted ��� ������� ���� here. The discrete Choquet integral of a function !"� �#	��$ %'&

with respect to � is defined by

(*) �+! �
�,�  - .
/ � �+! �0�21

.43
�5	6! �7�81

.
9 �
3
� �:� � �;1

.43
� � (1)

where <=1
.43

indicates that the indices have been permuted so that �>�?! �0�@1 �
3
�A�<�<�<*�B! �0�21  

3
� , and �C1

.43
�D�FE��21

.=3
������� ���81  

3HG
, and ! �7�81JI

3
���>� .

Definition 3 Let � be a set function (not necessarily a fuzzy measure) on � . The
Möbius transform of � is a set function on � defined by

K � �����D� -L�MON �P	;� ��Q N2RSL Q � � � � �UT �F� �V� (2)
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The transformation is inversible, and � can be recovered from K by

� � � � � -L�MON K � � � � T �F� �V� (3)

Definition 4 A fuzzy measure � is said to be
�

-order additive or simply
�

-
additive if its Möbius transform K � � � �?� for any � such that 
 � 
 � �

, and
there exists at least one subset � of � of exactly

�
elements such that K � � ���� � .

Thus,
�

-additive measures can be represented by a limited set of coefficients,
at most ���

.
/ ���  

.
	
coefficients.

3 Multicriteria decision making and game theory
As mentionned in the introduction, many ideas presented in this paper were
inspired by cooperative game theory [29]. In this framework, � is a set of
players, any subset �F� � is called a coalition, and � , called the characteristic
function of the game, expresses the worth (i.e. the amount of money the coali-
tion will earn if the game is played) of any possible coalition. In general,� is not supposed to be monotonic with respect to inclusion, and may take
negative values.

A central problem in game theory is around the concept of value. It stems
from the following problem: let � ���	� be the total worth of the game. Know-
ing the worth of each coalition, that is, groups of players, what is the mone-
tary value of a single player? Obviously, this is not � �:E��

G
� , since it may hap-

pen that � �:E��
G
� � � , while every time player � joins a coalition  � � � E��

G
,

the worth of the new coalition is considerably greater. This means that � has
been very useful, and should be rewarded by an amount �

. � � . The value
of the game is then the vector � � � <�<�<��  � . Shapley has proposed the following
definition, now called the Shapley value (while a given �

.
is the Shapley index).

Definition 5 Let � be a fuzzy measure on � . The Shapley index for every ��� �
is defined by

�
.
�,� -

� M���R . ��� 	 
  
 	B� ��� 
  
����� � � ����AE��
G
� 	 � �� � � �

The Shapley value of � is the vector � �7� � � � � � <�<�<��  � .
The Shapley index �

.
can be interpreted as a kind of average value of the

contribution of player � alone in all coalitions. The Shapley value represents
a true sharing of the total amount � � �	� , since �  . / � �

.
� � � �	� , and is also a

linear operator over the set of games.
The analogy with the multicriteria decision making can be done as fol-

lows. The worth of a coalition of criteria is the importance of the coalition,

4



or better, its importance or power to make alone the decision (without the
remaining criteria). Obviously � ���	� has the maximal value, being 1 by con-
vention. Then the Shapley index �

.
expresses the relative importance of a

single criterion into the decision problem, i.e. to what degree � is necessary
to be kept in the set of criteria.

4 Interaction among criteria
The Shapley importance index is not enough to have a good description
of the behaviour of players (or criteria) in a game (decision problem). Obvi-
ously, the Shapley index �

.
does not reduce to � �:E �

G
� because players interact

together: either they have interest to cooperate, or not. Strangely enough,
to our knowledge, there is no notion of interaction in game theory, perhaps
because this is not the core concern of game theory. In multicriteria decision
making however, the situation is different, and the comprehension of inter-
action phenomena between criteria is most informative. Let us explain on a
simple example that importance of criteria alone is not sufficient to describe
a decision model.

Let us consider two criteria 1 and 2, and four alternatives � ��� � � ��� to
rank, as represented on figure 1. We suppose the criteria equally impor-

criterion 1

criterion 2

A

B C

D

criterion 1

criterion 2

A

B C

D

criterion 1

criterion 2

A

B C

D

(a) (b) (c)

Figure 1: Different cases of interaction

tant for making decision. On the axes we represent the grade of satisfaction
(score) of the alternatives for each criterion. As we normally prefer alterna-
tives satisfying as much as possible criteria, every decision maker will have
a strict preference for C over A. The case of alternatives B and D is more
delicate. One decision maker may consider that B and D are equally bad
as A, since neither of them satisfy both criteria, but only a single one. We
could say that for this decision maker, criteria act conjunctively, so that both
of them have to be satisfied. This is the case of figure 1(a), and we call this
a case of positive interaction or positive synergy between criteria: although the
importance of a single criterion for the decision is almost zero, the impor-
tance of the pair is large. The criteria can be said to be complementary.
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Another decision maker may consider that B and D are equally good as
C. In this case, criteria are considered to act disjunctively, and it is sufficient
that one of them is satisfied (fig. 1(b)). Here we speak of negative interaction
or negative synergy: the union of criteria does not bring anything, and the
importance of the pair is almost the same as the importance of the single
criteria. They are said to be redundant.

The third case (fig. 1(c)) is intermediary. Here the decision maker thinks
that because B and D satisfy one criterion, they are better than A, but worse
than C which satisfies both of them. In other words, the importance of the
pair is more or less the sum of the individual importances of criteria: they
act independently and there is no interaction between them.

The basic quantity for defining interaction seems then to be � �:E � ���
G
� 	� �:E �

G
� 	 � �:E��

G
� . But as it was the case for the definition of the importance

index, one has to examine what happens when � , � , and E � ���
G

are added to
coalitions, so that the basic quantity becomes � �  �6E�� ���

G
� 	6� �� �"E �

G
� 	� ����AE��

G
��� � � 	� . Murofushi and Soneda [24], based on considerations of

multiattribute utility theory [19], arrived at the following definition which
exactly reflects the above discussion.

Definition 6 Let � be a fuzzy measure on � . The interaction index of elements� ��� � � is defined by

�
.
� �D� -

� M���R�� . � �
	
��� 	 
  
 	�� ��� 
  
 �

��� 	 � ��� � � �  � E ����
G
� 	�� �  � E �

G
� 	�� �  � E
�

G
��� � �� � � �

(4)

The definition can be enlarged to any coalition, as done by Grabisch [9].

Definition 7 Let � be a fuzzy measure on � . The interaction index for any
coalition �F� � is defined by

� � �����D� -L�M ��R N ��� 	 
 � 
 	 
 � 
 � � 
 � 
����� 	 
 � 
��>� ��� -
� M N ��	;� ��Q N2R � Q � � � � � � � (5)

It is clear that this is a generalization of both the Shapley value and the
interaction index of Murofushi and Soneda, since �

.
coincides with

� �:E �
G
�

and
�
.
� with

� �:E ����
G
� .

An axiomatization of
�

has been built by Grabisch and Roubens [16]. It
is seen that one of the fundamental axioms is the following:

Dummy axiom: If � is a dummy player, then for every � � � �8E��
G
,

� ��> , � � � �AE��
G
� ��� .

We say that � is a dummy player (criterion) if � � � � E��
G
� � � � ������� �:E �

G
� for

any � � � � E �
G
. This axiom expresses the very meaning of interaction. A

dummy player brings only its worth to the coalition, nothing more, nothing
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less. This means that he/she has no interaction with any coalition. This ax-
iom together with linearity over games is sufficient to get the characteristic
form of the alternating sum in (4) and (5).

Relating the interaction index with
�

-additivity, we just mention the fol-
lowing fundamental property:

Property 1 Let � be a
�

-additive measure on � . Then

(i)
� � � � ��� for every �F� � such that 
 � 
 � � ,

(ii)
� � � � � K � ��� for every �F� � such that 
 ��
 � � ,

5 The Choquet integral for 2-additive measures
The case of 2-additive measure is particularly interesting. It remains simple
(only quadratic complexity) and allows the modelling of interaction. It is
possible to express the Choquet integral in the case of 2-additive measures,
by using only the interaction index, as follows. Let � � ������� ���  be scores on
criteria.

( ) ��� � ������� ���  ��� -
�����	� I ���

.
�
� � � �

.
� �

-
������ I ���

.
�
� � � 
 �

.
� 
 �

 - .
/ � �

.
���
.
	 �� - ���/

.

 �
.
� 
 � � (6)

with the property that �
.
	 �� � ���/

.

 �
.
� 
�� � for all � . Here 
 �

.
� 
 denotes

the absolute value of
�
.
� . It can be seen that the Choquet integral for 2-

additive measures can be decomposed in a conjunctive, a disjunctive and
an additive part, corresponding respectively to positive interaction indices,
negative interaction indices, and the Shapley value. This makes clear the
precise meaning of

�
.
� in the framework of the Choquet integral:

� a positive
�
.
� implies a conjunctive behaviour between � and � . This

means that the simultaneous satisfaction of criteria � and � is signifi-
cant for the global score, but a unilateral satisfaction has no effect.

� a negative
�
.
� implies a disjunctive behaviour, which means that the

satisfaction of either � or � is sufficient to have a significant effect on
the global score.

� the Shapley value acts as a weight vector in a weighted arithmetic
mean. This represents the linear part of Choquet integral. It will be
small if interaction indices are large.

6 Veto and favor
(see [10] for details)
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Definition 8 Suppose � is an aggregation operator being used for a multicri-
teria decision making problem. A criterion � is a veto for � if for any � -uple
��� � ������� ���P � � $ %'&  of scores,

�	��� � ������� � �P �
� �
.
�

Similarly, criterion � is a favor for � if for any � -uple ��� � ������� ���  � of scores,

�	��� � ������� � �P �
� �
.
�

This means that when criterion � is a veto, if the score on � is high, it has
no effect on the evaluation, but if it is low, the global score will be low too,
whatever the values of the other scores are. The concepts of veto and favor
have been already proposed by Dubois and Koning in the context of social
choice functions,[3] where “favor” was called “dictator”.

Fuzzy measure can represent veto and favors, as shown in the following
proposition.

Property 2 For the Choquet integral, � is a veto if and only if the fuzzy measure
satisfies � � � �C��� whenever � �� � . Such fuzzy measures are denoted �

.
�

. Sim-
ilarly, � is a favor if and only if the fuzzy measure satisfies � � � � �#� whenever� � � . Such fuzzy measures are denoted �

.
�

.

Remark that if criterion � is both a veto and a favor, then it is a dictator, i.e.(*) ��� � ������� � �P � � �
.
. Another consequence of the definition is that for a given

� , it is not possible to have simultaneously a veto on � and a favor on � , � �� �
since having �	��� � ������� � �P � � �

.
and � ��� � ������� ���P � � � � is not compatible in

general.
Let us examine the interaction representation of �

.
�

and �
.
�

. Denoting�
.
�� � and

�
.
�� � their respective interaction indices, it is easy to show that

�
.
�
.
� �B� � �

.
�
.
� �B� � T � �� �H� (7)

Property 2 and equation (7) show that if � is a veto, then necessarily
�
.
� � � ,

for any
� �� � (similarly for a favor), but this is not a sufficient condition.

Simple results can be given for 2-additive measures. The following can be
shown.

Property 3 Let � be a 2-additive measure. Criterion � is a veto for the Choquet
integral if and only if the following conditions are satisfied

(i)
�
.
� � � � T � �� � ,

(ii)
� � � �>� ��T � ������ � ,

(iii) � � � �
�
�
.
� � T � �� �S�

Similarly, � is a favor if and only if
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(i)
�
.
� � � � T � �� � ,

(ii)
� � � �>� ��T � ������ � ,

(iii) � � ��	 �� �
.
� �UT � �� �S�

It is possible to generalize the concept of veto to several criteria as fol-
lows. A group � � � of criteria is a veto (resp. a favor) for � if every
criterion in � is a veto (resp. a favor). This leads to the following equation
in the case of a veto

�	��� � ������� ���  �
� �.�� N �
.
� (8)

and in the case of a favor

�	��� � ������� ���  �
���.�� N �
.
� (9)

For the Choquet integral, property 2 generalizes easily: a veto effect on a
coalition � of criteria is obtained if and only if the fuzzy measure satisfies� � � � � � whenever � �� � . The interaction of such measures satisfies

� � � �E �
G
� �B� , T � �� � . Similarly, a favor effect is obtained for � if and only if the

fuzzy measure satisfies � � ��� � � whenever ��� � ��  , and the interaction
of such measure satisfies

� N � � � �AE �
G
� �B� , T � �� � .

7 Practical identification of a fuzzy measure
We present in this section two methods of identifying the fuzzy measure
based on experimental data, i.e. examples given by a decision maker. As
the reader will see, the two methods do not use exactly the same kind of
input: the first one (based on minimization of squared error) needs (numer-
ical) scores on criteria and the (numerical) global score, while the second one
(based on constraint satisfaction) does not need a global score but only a
ranking of the acts or objects to be evaluated, however it needs in addition
some indication on the importance and interaction of the criteria.

7.1 Minimization of squared error
The idea of minimizing a squared error criterion to identify the fuzzy mea-
sure in a Choquet integral model has been advocated by several authors,
essentially in Japan. We should cite in particular Tanaka and Sugeno [33, 34]
in an application of printed color images evaluation, Mori and Murofushi
[22], and Nakamori [27] in environmental evaluation.

Considering � acts or objects to be evaluated, we suppose that the deci-
sion maker is able to assess a numerical score for each act and each criterion,
and also a numerical global score for each act. For act number

�
, we denote
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by � � � ������� ��� �  the scores on each criterion, and by � � the global score. We
want to find the fuzzy measure � which minimizes the total squared error
of the model, i.e.

� � �
�-
� / �

� ( ) ��� � � ������� ��� �  � 	�� � � � (10)

under the constraint of monotonicity of the fuzzy measure. This can be put
under a quadratic program of the form (see [13])

minimize ����
	��� ��� 	��
under the constraint � � ��� ���

where � is a � �  	 � � dimensional vector containing all the coefficients of the
fuzzy measure � (except � �+ � and � � �	� which are fixed), � is a � �  	 � � di-
mensional square matrix, � a � �  	 � � dimensional vector, � a � � �  9 � 	"� ���
� �  	 � � matrix, and � a � � �  9 � 	 � � dimensional vector. The solution is in
general not unique (see [21] for a study of this question), and it is possible to
translate the quadratic program expressed in terms of � to another quadratic
program expressed in terms of the Möbius transform K , or directly the in-
teraction index

�
(again see [21]). This allows to deal easily with

�
-additive

measures, and to add constraints on interaction index values given by the
decision maker.

The program can be solved by any standard method of quadratic opti-
mization, although matrix � may be ill-conditioned (rank � �  	 � ). In the
sequel, we have used the method of Powell-Schittkowski, referred hereafter
as the optimal quadratic method.

Experiments on real data have shown some drawbacks of this method.
� if there is too few data1, the solution is not unique of course, and the

solution proposed by the program may be counterintuitive, because
many coefficients are near 0 or 1.

� as � grows up, the dimensions of vectors and matrices grows exponen-
tially, so does the memory required and the computation time. �"���
is already a large value, and � ����� is nearly infeasible.

For these reasons, some authors have looked for more heuristic methods, as
Ishii and Sugeno [18] and Mori and Murofushi [22]. Based on this last one,
Grabisch has proposed an optimization algorithm [7], which although sub-
optimal, gives better results than previous attempts. It is referred hereafter
as the heuristic least mean squares algorithm (HLMS). The basic idea is that, in

1Let us say much less than ��� � � !"�#�%$'&�� (*) , as proposed in [14]. In fact, there is not yet any
definitive result on the minimum number of data for a correct identification, where “correct”
is related to the number of solutions of the quadratic program. In [21], Miranda and Grabisch
have given counterintuitive examples where the number of necessary data is 2 (!) whatever the
value of � , and where �+� data (which is greater than $-,/.0$ , the number of variables, if �0132 )
is not sufficient for having a unique solution.
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the absence of any information, the most non arbitrary (least specific) way
of aggregation is the arithmetic mean (provided scores are on a difference
scale), thus a Choquet integral with respect to an additive equidistributed
fuzzy measure. Any input of information tends to move away the fuzzy
measure from this equilibrium point. This means that, in case of few data,
coefficients of the fuzzy measure which are not concerned with the data are
kept as near as possible to the equilibrium point, in order to ensure mono-
tonicity. Thus, in this algorithm, there is no problem of having too few data.

Experiments done in classification problems show the good performance
of the algorithm, even better than the optimal method when � is large. Es-
pecially, the memory and computation time required are much smaller than
for the quadratic program, and it is possible to treat problems with �V� ��� .

This method has been applied to a practical case, namely the evaluation
of cosmetics [12].

7.2 Constraint satisfaction
As indicated at the beginning of this section, we suppose now that we have
an expert who is able to tell the relative importance of criteria and the kind
of interaction between them, if any.

Formally, keeping previous notations, the input data of the problem can
be summarized as follows.

� The reference set of objects � ��E � ������� � � ������� ���
G
, and the set of criteria

� � E � ������� ��� ������� � �
G
.

� A table of individual scores (performances) : E � �
.
� � � � ��� � �

G
.

� A partial preorder � N on � (partial ranking of the objects on a global
basis).

� A partial preorder � � on � (partial ranking of the criteria).
� A partial preorder ��� on the set of pair of criteria (partial ranking of

interaction indices).
� The sign of interaction between some pairs of criteria translating the

synergy, independence or redundancy between these pairs.

The global scores are not needed in this approach.
All this information can be translated in terms of linear equalities or in-

equalities linking the unknown “weights” � (constraint satisfaction prob-
lem).

Marichal and Roubens [20] proposed to solve the following linear pro-
gram : ���
	

� ���
subject to
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� � � (positive slack variable)
�
) � � �5	 �
) � ��� � � � � � if

� � N ���	 � � � ) � � �5	 � ) � ��� �
� �
if
��� N ��� �

partial semiorder on �
with threshold

�
� �PE��

G
� 	 � �:E��

G
�
� � if � � � �� �PE��

G
� �>� �:E
�

G
� if � � � �

�
ranking of criteria

�
.
� 	 ���	� � � if E � ���

G � � E�
 ���
G

�
.
� � ����

if E � ���
G � � E�
 ���

G �
ranking of pairs of criteria

�
.
� � � (resp. � 	 � � if ����� � �

.
� � � � (resp. ����� � �

.
� � 	;� ��

.
� �>� otherwise

�
sign of some
interactions - .

/ � �
.
�  - .

/ �
� �:E �

G
� � � (boundary condition on the values)

� � � � ��� � ��� for all �F� ��� � (monotonicity conditions).
�
) � � � � �
) � � � � ������� ��� ��� � represents the unknown global score for ob-

ject
�

and
�

represents the threshold level that should be reached by the
difference between global scores to consider that one object should be sig-
nificantly preferred to another object.

All the previous expressions can be rewritten in terms of the Möbius
transform K related to � . The fact that we suppose by reason of simplicity
the fuzzy measure � to be 2-additive gives K ��� � � � for every � such that

 � 
 � � and there is no distinction between the Shapley or Banzhaf values
related to the criteria.

It has been proved (see [11]) that in the 2-additive case :

� ) � � � �  - .
/ � K �PE��

G
� � �
.
�

-
�
.
� �
	 M � K �PE�� ���

G
��� � �

.
�3� � � �

� �PE��
G
� � �

.
� K �PE��

G
��� �

�
-

� M���R . K �:E�� ��
G
�

� �PE�� ���
G
� � K �PE�� ���

G
�

� �PE��
G
� � K �PE��

G
���

Moreover, the monotonicity conditions are equivalent to (see [11])K �PE��
G
� � � for all � � �K �:E �

G
��� K �:E � ���

G
� � � for all � �� � �K �PE��

G
� � K �PE�� ���

G
��� K �:E�� � �

G
� � � for all � �� � � � �6�

The objective function that is chosen (maximize the value of the positive
slack variable) to solve a linear program is justified by the following result
(see [28]) :
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� � $ %�� is a solution of the linear system (constraint satisfaction
problem) ������ �����

�-
� / ���

.
� � � �	�

.
� � � � ������� � 
�-

� / ��

.
� � � ���

.
� � �F� ������� ���

if and only if the following linear program���
	
� ���

subject to ������ �����
�-

� / � �
.
� � � �	�

.
� � �F� ������� ��
�-

� / � 

.
� � � ��

.
	 � � � �F� ������� ���

has an optimal value ��� � $ % � with an optimal value ��� � � . In
this case, ��� is a solution of the constrained satisfaction problem.

8 Illustrative example
In this section, we illustrate on a fictitious example the two approaches ex-
plained above for the determination of the fuzzy measure.

8.1 Definition of the example
We consider the problem of the evaluation of trainees learning to drive mil-
itary vehicles. Trainees are evaluated by instructors according to 4 criteria:

C.1 precision: the trainees are supposed to fire on targets, as precisely as
possible. The percentage of success during the exercice is computed.

C.2 rapidity: the trainees have to detect as fast as possible the target, in
order to fire on it. The elapsed time between the appearance of the
target and the detection is measured (in tu (time unit)).

C.3 driving: in order to go from one point to another, the trainee has to
choose a suitable trajectory, or to follow a given one as precisely as
possible. A qualitative score is given by the instructor, going from �
(excellent) to

�
(hopeless).

13



C.4 communication: the trainee is supposed to belong to some unit, and
thus he has to understand and obey orders, and also to report actions.
As for the driving criterion, a qualitative score is given by the instruc-
tor, going from � (perfect) to

�
(incontrollable).

We consider 5 trainees, whose names (they may be considered as a modern
version of knights...) and performances on each criterion are given in table
1. The instructor can make the following comments about the scores on the

name precision (%) rapidity (tu) driving communication
Arthur 90 2 B D

Lancelot 80 4 B B
Yvain 95 5 C A

Perceval 60 6 B B
Erec 65 2 C B

Table 1: Performances of the different trainees

criteria:
� C.1 (precision): over 90% of success is perfect, below 50% is totally

unacceptable.
� C.2 (rapidity): below 2 tu is perfect, over 10 tu is totally unacceptable.
� criteria C.3 and C.4 are already expressed under the form of a score.

This permits us to draw utility curves in order to derive numerical scores
(degrees of satisfaction). They are given on figure 2. Applying these utility

0 50 90 100 2 10 A E A E

precision rapidity driving communication

Figure 2: Scores on the different criteria

functions gives the following numerical scores for the trainees (table 2).
Looking at the performances of the different trainees, the instructor is

able to rank the trainees, as given in table 3. There are three predetermined
classes, called good, average, bad. In each class, a ranking is done, labelling
by 1 the best in the class, by 2 the second best, etc. According to this notation,

14



name precision rapidity driving communication
Arthur 1.000 1.000 0.750 0.250

Lancelot 0.750 0.750 0.750 0.750
Yvain 1.000 0.625 0.500 1.000

Perceval 0.250 0.500 0.750 0.750
Erec 0.375 1.000 0.500 0.750

Table 2: Numerical scores on criteria

name class rank in the class
Arthur bad 2

Lancelot good 1
Yvain good 2

Perceval bad 1
Erec average 1

Table 3: Ranking of the 5 trainees

Arthur is the worst driver, and Lancelot the best one. The instructor is able
to comment about his decision as follows.

� Arthur is excellent at firing on targets: he is both very precise and very
quick. He also drives well, but he is very bad at communication. This
is rather dangerous, since he may not obey orders, nor report on what
he is doing. Despite his technical ability, he is completely unsuitable
for driving military vehicles, and should be put in the bad class.

� Lancelot is not as good as Arthur for firing, but indeed sufficiently
good. Since he has no weak point and has a satisfying score on all
criteria, he has to be put without any doubt in the good class.

� Yvain is the best at precision (even better than Arthur), but he is some-
what weak at rapidity. To a certain extent, his deficiency on rapidity can
be compensated by his outstanding score on precision, since once he
detects the target he will not miss it. Also, Yvain is perfect for commu-
nication, and although only average on driving, he can be put into the
good class, but behind Lancelot however.

� Perceval is weak at firing since he has a bad score on precision and
rapidity too. Whatever the remaining score, this cannot be accepted,
and we have to put him in the bad class. It is not clear whether he is
worse or better than Arthur, but finally the instructor put him before.

� Erec has a bad precision but detects quite quickly. To a certain extent,
this can compensate the bad precision. Since he is rather good on the
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other criteria, he can be put in the average class.

8.2 Approach by the minimization of the quadratic error
Here we need a numerical global score and not only a ranking. We use
an arbitrary numerical mapping to transform this ranking into numerical
global scores, in order to apply our approach. The mapping is based on con-
tiguous intervals for each class, and an equirepartition in each class (i.e. a
sample alone in a class will be attributed the mean of the interval, 2 sam-
ples in a class will divide the interval in 3 parts, etc.). The intervals for this
application are given in table 4. This leads to table 5, which summarizes

class interval for the global score
good � � ����� � � � � �

average � � � � � � ����� �
bad � �*� � � �*� � �

Table 4: Mapping from class and rank to [0,1]

all the data. It can be noticed that the global evaluation seems to be too ex-

name precision rapidity driving communication global
Arthur 1.000 1.000 0.750 0.250 0.133

Lancelot 0.750 0.750 0.750 0.750 0.917
Yvain 1.000 0.625 0.500 1.000 0.833

Perceval 0.250 0.500 0.750 0.750 0.267
Erec 0.375 1.000 0.500 0.750 0.575

Table 5: Numerical data on criteria and global performance (after conver-
sion)

treme, putting a too low score for Arthur (below the minimum of scores on
the criteria), and a too high for Lancelot (above the maximum of scores on
the criteria). We perform however the two available optimization methods
described above. In what follows, the Shapley value will be always normal-
ized (i.e. multiplied by � , the number of criteria), so that a value of 1 indicate
an average importance for the criterion.

We begin by the heuristic least mean square algorithm (HLMS), with
parameters �"����� � � ��� , and 300 iterations2. The result is listed below.

fuzzy measure coefficients

2The parameter 	 is the learning rate in the gradient descent algorithm, while 
 is a coeffi-
cient used for updating (see [7] for details).
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--------------------------
subset 1 : 0.16929
subset 2 : 0.175353
subset 3 : -9.11165e-08
subset 4 : -4.55582e-08
subset 1 2 : 0.175396
subset 1 3 : 0.175396
subset 1 4 : 0.613114
subset 2 3 : 0.175396
subset 2 4 : 0.425354
subset 3 4 : -4.55582e-08
subset 1 2 3 : 0.175396
subset 1 2 4 : 0.787705
subset 1 3 4 : 0.739775
subset 2 3 4 : 0.425375
subset 1 2 3 4 : 1
Arthur : model output = 0.381547, desired output = 0.133333
Lancelot : model output = 0.750000, desired output = 0.916667
Yvain : model output = 0.828381, desired output = 0.833333
Perceval : model output = 0.356344, desired output = 0.266667
Erec : model output = 0.578349, desired output = 0.575000
Results
-------
criterion value : 0.097465
mean error : 0.139618
best approximation for Erec (|error| = 0.003349)
worst approximation for Arthur (|error| = 0.248213)

Shapley index (normalized)
--------------------------
precision : 1.398027
rapidity : 0.861737
driving : 0.280457
communication : 1.555321

Matrix of interaction index
---------------------------
I( 1, 2)=-0.190 I( 1, 3)= 0.086 I( 1, 4)= 0.486

I( 2, 3)= 0.020 I( 2, 4)= 0.232
I( 3, 4)= 0.083

We can make the following comments.
� the most important criterion is communication, and then precision.

driving seems to be negligible. Referring to the comments of the in-
structor, we see that there is no special mention of the driving criterion
(so it does not take part in the decision), and that communication is
very important.

� there is a negative interaction between precision and rapidity. This is
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also in accordance with the instructor’s comment, since a kind of com-
pensation exists between these two criteria.

� there is a strong positive interaction between precision and communi-
cation, and rapidity and communication, meaning that a good driver
must be good at precision and communication. In fact, communication
is a (non strict) veto. This clearly reflects the instructor way of think-
ing, since he discarded Arthur because of the communication. The or-
dering given by the instructor is not satisfied, since we obtain:

Yvain � Lancelot � Erec � Arthur � Perceval

(two inversions) But observe that the two inverted trainees have nev-
ertheless close global scores.

We apply now the optimal quadratic method. The results are as follows.

Fuzzy measure coefficients
--------------------------
subset 1 : 1e-06
subset 2 : 1e-06
subset 3 : 1e-06
subset 4 : 1e-06
subset 1 2 : 1e-06
subset 1 3 : 1e-06
subset 1 4 : 0.666667
subset 2 3 : 1e-06
subset 2 4 : 0.389743
subset 3 4 : 1e-06
subset 1 2 3 : 1e-06
subset 1 2 4 : 0.666667
subset 1 3 4 : 0.666667
subset 2 3 4 : 0.389743
subset 1 2 3 4 : 1
Arthur : model output = 0.250001, desired output = 0.133333
Lancelot : model output = 0.750000, desired output = 0.916667
Yvain : model output = 0.833333, desired output = 0.833333
Perceval : model output = 0.347436, desired output = 0.266667
Erec : model output = 0.521154, desired output = 0.575000
Results
-------
criterion value : 0.050812
mean error : 0.100809
best approximation for Yvain (|erreur| = 0.000000)
worst approximation for Lancelot (|erreur| = 0.166667)

Shapley index (normalized)
--------------------------
precision : 1.147010
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rapidity : 0.593162
driving : 0.333334
communication : 1.926493

Matrix of interaction index
---------------------------
I( 1, 2)=-0.084 I( 1, 3)= 0.111 I( 1, 4)= 0.583

I( 2, 3)= 0.111 I( 2, 4)= 0.306
I( 3, 4)= 0.111

It can be seen that the model error is twice better, but the results are
qualitatively the same (same ranking of the criteria, same signs for the inter-
action). However, in addition, communication has become a strict veto. The
ranking is slightly better since only one inversion remains:

Yvain � Lancelot � Erec � Perceval � Arthur

We try now to modify the numerical global score, to be more in accor-
dance with the instructor’s thinking, and following the rule of being con-
sistent with minimum and maximum. We obtain the following new table
(table 6), after, let us say, some discussion with the instructor.

name precision rapidity driving communication global
Arthur 1.000 1.000 0.750 0.250 0.3

Lancelot 0.750 0.750 0.750 0.750 0.75
Yvain 1.000 0.625 0.500 1.000 0.7

Perceval 0.250 0.500 0.750 0.750 0.35
Erec 0.375 1.000 0.500 0.750 0.5

Table 6: Numerical data on criteria and global performance (2nd version)

We obtain the following result (presented for the optimal method only,
skipping details).

....
Results
-------
criterion value : 0.000000
....

Shapley index (normalized)
--------------------------
precision : 0.977778
rapidity : 0.888888
driving : 0.637038
communication : 1.496296
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Matrix of interaction index
---------------------------------
I( 1, 2)= 0.093 I( 1, 3)= 0.181 I( 1, 4)= 0.437

I( 2, 3)= 0.181 I( 2, 4)= 0.259
I( 3, 4)= 0.237

It is remarkable that the system has succeeded to find an exact model
(no error). Although the result shows the same ordering of values for Shap-
ley and interaction indices, there are some significant differences with the
previous case:

� the most important criterion is still communication, and the less im-
portant is still driving, but the importances are less contrasted. In par-
ticular, driving is more important than before, and is close to rapidity.

� there is still a strong positive interaction between communication and
precision, but now there is no more compensation between precision
and rapidity.

We can explain this as follows. If we want to maintain Yvain below Lancelot,
i.e. lower than 0.75, it means that, since he is perfect on precision and com-
munication, we must take into account his mediocre score on driving, —and
thus putting some importance on this criteria—, and on rapidity, —which
inevitably cancels the (supposed) compensativity between precision and ra-
pidity.

We can verify this by modifying the data as follows. We suppose that,
being aware of this fact, the instructor now changes his mind, and decides
that Yvain is after all better than Lancelot, with a global score of 0.85 (others
remain inchanged). The results are as follows.

....
Results
-------
criterion value : 0.000000
....

Shapley index (normalized)
--------------------------
precision : 1.277779
rapidity : 0.588888
driving : 0.337038
communication : 1.796296

Matrix of interaction index
---------------------------------
I( 1, 2)=-0.007 I( 1, 3)= 0.081 I( 1, 4)= 0.637

I( 2, 3)= 0.081 I( 2, 4)= 0.159
I( 3, 4)= 0.137
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The effect of the modification is noticeable. driving has become much less
important, and a slight effect of redundancy between precision and rapidity
appears. However, it seems that there is a large difference in importance
between precision and rapidity, in favor of the first. Looking at the scores of
Erec, this is not surprising since he has got a mediocre global score, despite
his performance on rapidity (perfect) and communication (good). In a last
attempt, the instructor decides to raise a little the global score of Erec, from
0.5 to 0.6. The following results are obtained.

Arthur : model output = 0.305785, desired output = 0.300000
Lancelot : model output = 0.750000, desired output = 0.750000
Yvain : model output = 0.850000, desired output = 0.850000
Perceval : model output = 0.376033, desired output = 0.350000
Erec : model output = 0.582645, desired output = 0.600000
Results
-------
criterion value : 0.001012
....

Shapley index (normalized)
--------------------------
precision : 1.027825
rapidity : 0.784847
driving : 0.300001
communication : 1.887328

Matrix of interaction index
---------------------------------
I( 1, 2)=-0.152 I( 1, 3)= 0.100 I( 1, 4)= 0.548

I( 2, 3)= 0.100 I( 2, 4)= 0.278
I( 3, 4)= 0.100

This time, a small residual error exists, but there is no inversion of the
ranking. The results show as expected a noticeable gap between rapidity
and driving, while precision and rapidity are now very close. Also, there is a
strong redundancy effect between precision and rapidity. Remark also that
we have become close to the first results, with the numerical mapping to
convert classes and ranks into global scores, but with a much smaller error.

The results presented here shows the flexibility of the methodology, and
its adequacy to reflect the decision strategy.

8.3 Approach based on constraint satisfaction
We consider the following data that is supposed to be given by the instruc-
tor.

� Table 2 as the table of � values (reproduced in Table 7)

21



� A total order on the reference set :

Lancelot � Yvain � Erec � Perceval � Arthur

� A partial order on � which corresponds to the Hasse diagram (for a
definition see [28]) of figure 3. This partial order indicates that � � � � �

rapidity

communication

driving

precision

Figure 3: Partial order on the criteria

� ��� � , � � � � � � � � � , � ��� � � � � � � , � ��� � � � � � � (and by transitivity : � � � � �� � � � ).
However nothing is said about the preference relation between preci-
sion and rapidity.

� Some information about the interactions :
� � � � � � � ��� � � and

� � � � �*�
This information states that there is a negative interaction between
precision and rapidity, a positive interaction between precision and
communication and between rapidity and communication.

Note that, as expected, the data are not of the same type than for the former
method.

Applying the linear programming method described in section 7.2 with
�

equal to 0.05 (there should be at least a difference of 5% between the global
scores of the trainees) we obtain the results of table 7. The (normalized)
Shapley indices are given below, as well as the interaction indices (table 8).

Let us examine what happens in this example if we make a slight change
in the data supplied by the decision maker, concerning the interaction. We
have done two experiments.

� the instructor says there is no interaction between the criteria (thus all�
.
� are 0). In this case, there is no solution, even with

� �>� . This means
that no solution can be obtained if one uses the classical weighted
mean to solve this specific problem.
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name precision rapidity driving communication global
Arthur 1.000 1.000 0.750 0.250 0.39
Lancelot 0.750 0.750 0.750 0.750 0.75
Yvain 1.000 0.625 0.500 1.000 0.66
Perceval 0.250 0.500 0.750 0.750 0.48
Erec 0.375 1.000 0.500 0.750 0.57

Table 7: Numerical data on criteria and global performance

criterion Shapley index
precision 0.80
rapidity 0.72
driving 0.88
communication 1.6

Interaction index
I(1,2) = -0.04 I(1,3) = 0.23 I(1,4) = 0.13

I(2,3)=0 I(2,4)) = 0.31
I(3,4) = 0.21

Table 8: Shapley (left) and interaction (right) indices obtained by the con-
straint satisfaction method

� the instructror says that he is unable to tell anything about the interac-
tion (thus there is no contraint on

�
.
� ). In this case, the method gives

exactly the same result as in table 8.

8.4 Comparisons
Strictly speaking, the methods are in fact not comparable, since they don’t
take exactly the same input, nor provide the same kind of output. To sum
up :

� the MSE method (minimization of the squared error) needs only a
global score, which can be provided (as in the example) by a rank-
ing of the acts through a suitable mechanism (this last point is not so
obvious, as shown in the example). The output is (apart the fuzzy
measure) an estimation of the model error.

� the CS (constraint satisfaction) method needs only a ranking of the acts
(and not a global score), but also a ranking on the importance of the
criteria, and possibly some information on the interactions. There is
no notion of model error in such approach : either there is a solution
satisfying the constraints, or there is not.
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The advantages and shortcomings of these two approaches can be summa-
rized as follows.

� on the positive side, the MSE method gives always a solution, which
fits at best3 the given global scores. More importantly, the method does
not need any information on the decision strategy (importance and
interaction). It is perfectly suitable for identifying a hidden decision
behaviour (of a consumer, etc.), as was done in [12].

On the negative side, the method may disturb the ranking provided
by the decision maker (as it was the case in the example).

� the CS method has the advantage of being based only on ordinal infor-
mation, as it is often the case in real multicriteria decision problems.
Also, the method does not violate the ranking provided by the de-
cision maker. However, the method needs some information on the
decision strategy in order to be efficient. Strictly speaking, one may
use the method without such information (no constraint but the rank-
ing of the acts), but then the space of feasible solutions may be so huge
that the solution chosen has no real value in terms of decision strat-
egy. This method is more suitable when one want to define or build a
decision strategy in terms of importance and interaction.
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