Chapter IX: Nuclear fusion

Summary

- 1. General remarks
- 2. Basic processes
- 3. Characteristics of fusion
- 4. Solar fusion
- 5. Controlled fusion

General remarks (1)

- Maximum of binding energy per nucleon at about $A \approx 56$ (Fe) \rightarrow fission for heavier nuclei \rightarrow fusion for lighter nuclei
- Fusion of 2 light nuclei produces an increase of binding energy per nucleon

General remarks (2)

- Advantages of fusion (compared to fission) as energy source:
	- 1. Light nuclei are abundant and easy to obtain
	- 2. End products are lights and usually stable
	- 3. Production of small quantity of short-live radioactive wastes
	- 4. No risk of core meltdown
	- 5. No proliferation
- Disadvantages of fusion:
	- 1. Before combination of light nuclei \rightarrow overcoming of the Coulomb repulsion \rightarrow enormous disadvantage
- To reach fusion \rightarrow kinetic energy at least equal to energy repulsion has to be provided to nuclei
- Use of accelerators \rightarrow current very low \rightarrow power output very low (a few W)
- Use of thermal energy \rightarrow very high temperature has to be reached \rightarrow magnetic or inertial confinement $4\overline{4}$

Basic processes (1)

- In controlled fusion reactors \rightarrow to overcome the Coulomb barrier \rightarrow choice of nuclei with small charge
- Most elementary fusion reaction $\rightarrow p + p \rightarrow$ ²He \rightarrow not possible (2 + charges) \rightarrow attention: other possible pp reaction: positron emission \rightarrow see solar fusion section
- Another elementary reaction \rightarrow ²H + ²H \rightarrow ⁴He + γ (γ is necessary for energy balance because ⁴He has no excited states) \rightarrow problem because *Q* = 23.8 MeV > the separation energy of both proton and neutron of ⁴He
- More likely reactions \rightarrow ²H + ²H \rightarrow ³He + n (*Q* = 3.3 MeV) or ²H + ²H \rightarrow ³H + p (*Q* = 4.0 MeV) \rightarrow deuterium-deuterium (D-D) reactions
- But more stable is the fusion product greater is the energy released \rightarrow a reaction that form ⁴He has a particularly large energy release \rightarrow ²H + ³H \rightarrow ⁴He + n (*Q* = 17.6 MeV) \rightarrow deuterium-tritium (D-T) reaction

Basic processes (2)

- The D-T reaction is often used as neutron source
- The D-T reaction produces a large amount of energy (17.6 MeV) \rightarrow separated into ⁴He and n
- The D-T reaction has a large cross section (see below)
- The D-T reaction is characterized by the same Coulomb barrier as D-D reactions
- For these reasons the D-T reaction has been selected to be used in controlled fusion reactors
- Other basic processes will be explained in the solar fusion section

Characteristics of fusion: Energy release

Calculation of the Q value \rightarrow for controlled fusion reactors and solar processes the kinetic energy of the initial particles is small (in the 1-10 keV energy range) compared to $Q \rightarrow$ energy release = final total energy of the products particles \rightarrow

$$
A + B \to C + D
$$

$$
\quad \Longrightarrow \quad
$$

$$
\frac{1}{2}m_C v_C^2 + \frac{1}{2}m_D v_D^2 \simeq Q
$$

- Again neglecting the initial motions \rightarrow $m_{C}v_{C} \simeq mDv_{D}$
- We obtain thus \rightarrow

$$
\frac{1}{2}m_{C}v_{C}^{2} \simeq \frac{Q}{1 + m_{C}/m_{D}} \qquad \frac{1}{2}m_{D}v_{D}^{2} \simeq \frac{Q}{1 + m_{D}/m_{C}} \qquad \frac{\frac{1}{2}m_{C}v_{C}^{2}}{\frac{1}{2}m_{D}v_{D}^{2}} \simeq \frac{m_{D}}{m_{C}}
$$

• For D-T reaction \rightarrow 80% of energy is taken by neutron \leftrightarrow for D-D reaction \rightarrow 75% of energy is taken by neutron/proton

Characteristics of fusion: Coulomb barrier

• With R_A and R_B the radii of reacting particles \rightarrow the Coulomb barrier for just touching particles is

$$
V_C = \frac{e^2}{4\pi\epsilon_0} \frac{Z_A Z_B}{R_A + R_B}
$$

- The effect of the Coulomb barrier on the fusion reaction is similar to the effect of the Coulomb barrier on α decay \rightarrow the product $Z_A Z_B$ will appear in an exponential barrier penetration probability \rightarrow cross section very sensitive to its \rightarrow the barrier is lowest for the hydrogen isotopes
- For D-T reaction $V_c = 0.4$ MeV \rightarrow it is low but still far above the typical incident particle energy of 1-10 keV \rightarrow tunnel effect

Characteristics of fusion: Cross section (1)

• Calculations from basic expression for nuclear reaction cross sections \rightarrow use of the Breit-Wigner formula (eq. 10.102 of N. Cerf, Mécanique quantique, Première partie: Notions de base) \rightarrow

$$
\sigma_l = \frac{4\pi}{k^2} (2l+1) \frac{\Gamma^2/4}{(E_r - E)^2 + \Gamma^2/4}
$$

- Particles reacting at thermal energies \rightarrow reaction occurs far from any resonance \rightarrow energy dependence of the cross section comes mainly from two terms \rightarrow
	- 1. The k^2 factor $\rightarrow v^2$ dependence
	- 2. A barrier penetration factor on the form e^{-2G} as for α decay but substituting for *Q* the center of mass energy *E* of reacting particles

$$
\sigma \propto \frac{1}{v^2} e^{-2G}
$$

Characteristics of fusion: Cross section (2)

• G is the Gamow factor of α decay but substituting for Q the center of mass energy *E* of reacting particles \rightarrow as $E \ll B \rightarrow$ with *v* the relative velocity of interacting particles \rightarrow

$$
G \simeq \frac{e^2}{4\pi\epsilon_0} \frac{\pi Z_A Z_B}{\hbar v}
$$

In σ the proportionality factor involve nuclear matrix elements and statistical factors depending on the spins of the particles but energy dependence is correct

Characteristics of fusion: Cross section (3)

Characteristics of fusion: Reaction rate (1)

- The reaction rate is \propto to $\sigma \times v$ (see Nuclear Metrology Techniques)
- In thermonuclear fusion the distribution of particle speeds is described by the usual Maxwell-Boltzmann velocity distribution for particles in thermal equilibrium (with *k* the Boltzmann constant and *T* the temperature) \rightarrow

$$
n(v) \propto e^{-mv^2/2kT}
$$

- *n*(*v*)*v*²*dv* gives the relative probability to find a particle with speed between *v* and *v* + *dv* in a collection of particles in thermal equilibrium at T
- For a gas of identical particles \rightarrow

$$
\langle \sigma v \rangle \propto \int_0^\infty \frac{1}{v} e^{-2G} e^{-mv^2/2kT} v^2 dv \qquad \qquad \langle \sigma v \rangle \propto \int_0^\infty e^{-2G} e^{-E/kT} dE
$$

Characteristics of fusion: Reaction rate (2)

- At low $T \rightarrow$ little overlap between $n(E)$ and $\sigma v \rightarrow$ the average is small
- AT very high $T \rightarrow$ the area of the Maxwell-Boltzmann distribution becomes small \rightarrow the average value of σv is small
- At intermediate $T \rightarrow \langle \sigma v \rangle$ reaches a maximum

13

Characteristics of fusion: Reaction rate (3)

- At extremely high $T \approx 10^{10}$ K (corresponding to MeV energies) \rightarrow the D-T reaction may become less favorable
than others
In the temperature region than others
- In the temperature region achievable in a thermonuclear fusion reactor (1-10 keV or *T* ≈ 10⁷ - 10^8 K) \rightarrow the D-T reaction is clearly favored

Characteristics of fusion: Reaction rate (4)

- The simple theory used here is appropriate only for the D-D reaction (only 1 type of nuclei)
- For reactions involving two different nuclei (D-T, ...) \rightarrow the velocities of the different species have to be considered
- The cross section and reaction rate involve a relative velocity $\rightarrow \sigma(v_{rel})$ and $\langle \sigma(v_{rel}) v_{rel} \rangle$ have to be determined \rightarrow average is done over the Maxwell-Boltzmann distribution of both species
- More complicated calculations but previous general conclusions about fusion reaction rates remain valid

Solar fusion: General remarks

- Sun = extremely successful prototype of a self-sustaining thermonuclear reactor at (in the core) $T \approx 15 \times 10^6$ K (output constant during 10⁹ years)
- Basic process in the Sun (and in most other stars) \rightarrow fusion of H into He
- Abundance of atoms in universe \rightarrow about 92% of the atoms in the universe are hydrogen \leftrightarrow 7% are He (formed during the early stages of universe) \leftrightarrow less than 1% are other ones
- All reactions in any fusion cycle must be two-body reactions because the simultaneous collision of three particles is too improbable

Solar fusion: pp chain (1)

- First step: $p + p \rightarrow {}^{2}H + e^{+} + \nu$ (Q = 0.42 MeV) \rightarrow very small reaction rate (5 \times 10⁻¹⁸ s⁻¹ per proton) \rightarrow bottleneck process \rightarrow but number of protons in the Sun $\approx 10^{56}$
- Second step: $p + {}^{2}H \rightarrow {}^{3}He + \gamma$ (Q = 5.49 MeV) \rightarrow D-D reaction is very unlikely because the number of deuterons is small (1 ²H for \approx 1018 1H)
- Third step: ³He + ³He \rightarrow ⁴He + 2¹H + γ (Q = 12.86 MeV) \rightarrow ³He-p reaction is not possible (⁴Li does not exist as a bound system) and 3 He-D is unlikely because density of D is very low and because D is rapidly converted to T
- The net reaction called the proton-proton (pp) chain is thus the conversion of 4 protons to helium : $4p \rightarrow 4He + 2e^+ + 2\nu$ with a total $Q = 2 \times (0.42 + 5.49) + 12.86 + 4 \times 0.51 = 26.72$ MeV

Solar fusion: pp chain (2)

Solar fusion: pp chain (3)

- More precisely this chain is called pp1 and is dominating for T \approx 10-14 10⁶ K
- An alternative chain (pp2) is dominating for $T \approx 14$ -23 10⁶ K \rightarrow 3 He + 4 He \rightarrow 7 Be + γ $\;\rightarrow$ 7 Be + e $^-\!\rightarrow$ 7 Li + ν \Rightarrow 7 Li + p \rightarrow $\;2^4$ He
- pp3 is dominating for T > 23 10⁶ K \rightarrow ³He + ⁴He \rightarrow ⁷Be + γ \rightarrow 7 Be + p \rightarrow 8 B + γ \rightarrow 8 B \rightarrow 8 Be + e⁺ + ν \rightarrow 8 Be \rightarrow 2 4 He
- The net reaction and the net *Q* value are the same for these three possible paths

Solar fusion: pp chain (4)

pp2 pp3

Solar fusion: CNO cycle (1)

- Heavier elements are present in a star \rightarrow different series of fusion reactions can occur
- One important process is the carbon or CNO cycle \rightarrow

$$
{}^{12}\text{C} + {}^{1}\text{H} \rightarrow {}^{13}\text{N} + \gamma
$$

\n
$$
{}^{13}\text{N} \rightarrow {}^{13}\text{C} + \text{e}^{+} + \nu
$$

\n
$$
{}^{13}\text{C} + {}^{1}\text{H} \rightarrow {}^{14}\text{N} + \gamma
$$

\n
$$
{}^{14}\text{N} + {}^{1}\text{H} \rightarrow {}^{15}\text{O} + \gamma
$$

\n
$$
{}^{15}\text{O} \rightarrow {}^{15}\text{N} + \text{e}^{+} + \nu
$$

\n
$$
{}^{15}\text{N} + {}^{1}\text{H} \rightarrow {}^{12}\text{C} + {}^{4}\text{He}
$$

- $12C$ is neither created nor destroyed \rightarrow acts as a catalyst to aid in the fusion process
- The net process is 4p \rightarrow ⁴He + 2e⁺ + 2 ν as in pp chain and *Q* is the same 21

Solar fusion: CNO cycle (2)

Solar fusion: CNO cycle (3)

- The CNO cycle proceeds more rapidly than the pp cycle (no deuterium bottleneck)
- However the Coulomb barrier is 6 or 7 times higher for proton reactions with carbon and nitrogen than for proton-proton reactions
- The CNO cycle is thus dominant at higher *T* (additional thermal energy is needed to increase the probability to penetrate the Coulomb barrier)

Solar fusion: After…

- Once a star has consumed its hydrogen \rightarrow helium fusion reactions takes place with 3^4 He \rightarrow ¹²C at the higher *T* needed to penetrate the Coulomb barrier
- Other reactions involving fusion of light nuclei and α -particle capture continues to release energy
- The process ends near $^{56}Fe \rightarrow$ beyond it there is no energy gain in combining nuclei

Controlled fusion: General remarks

- High $T (\sim 10^8 \text{ K} \rightarrow \text{mean}$ particle kinetic energies of 10 keV) \rightarrow the atoms are ionized \rightarrow fuel is a hot mixture of clouds of positive ions and negative electrons (overall electrically neutral) \rightarrow plasma (see Y. Louis, Statistical physics and plasma physics)
- In a star \rightarrow gravitational force confine the plasma \rightarrow allows high temperature and pressure \rightarrow fusion
- In Earth \rightarrow gravitational confinement is impossible \rightarrow magnetic or inertial confinement (electrostatic confinement is also possible but not mature)

Controlled fusion: Lawson criterion (1)

- In a plasma \rightarrow high agitation of ions and electrons \rightarrow many collisions between \rightarrow to obtain fusion 3 quantities have to be considered \rightarrow
	- 1. Temperature *T*
	- 2. Density *N*
	- 3. Confinement time τ
- Considering a D-T plasma \rightarrow we assume that \rightarrow
	- densities of D and T are each equal to *n*/2
	- *Q* is the energy released per reaction (17.6 MeV for D-T)
	- τ is the confinement time during which reactions occur
- The energy released per unit volume from fusion reactions in the plasma is \rightarrow

$$
E_f=\frac{1}{4}n^2\langle\sigma v\rangle Q\tau
$$

Controlled fusion: Lawson criterion (2)

• The thermal energy per unit volume needed to raise both ions and electrons to temperature *T* is 3/2*nkT* (with $n = n_e$) \rightarrow the total thermal energy is \rightarrow

$$
E_{th} = 3nkT
$$

- Energy E_{th} is supplied to heat the plasma \rightarrow during time τ plasma is confined and energy *E^f* can be extracted
- The reactor shows a net energy gain if \rightarrow

$$
E_f > E_{th}
$$

$$
\frac{1}{4}n^2 \langle \sigma v \rangle Q \tau > 3nkT
$$

$$
n\tau > \frac{12kT}{\langle \sigma v \rangle Q}
$$

• This is called the Lawson criterion \rightarrow represents the goal of reactor designers \rightarrow for D-T reaction \rightarrow $n\tau > 10^{20}$ s/m³

Controlled fusion: Magnetic confinement (1)

- In a magnetic confinement \rightarrow the plasma is trapped and maintained at high temperature
- It must be confined in a limited immaterial box far from any material wall \rightarrow the simplest magnetic confinement is a uniform magnetic field \rightarrow charged particles spiral about the field direction
- To prevent the loss of particles along the axis \rightarrow the line forms a torus \rightarrow the spiral is kept in a ring

Controlled fusion: Magnetic confinement (2)

- In a toroidal geometry \rightarrow the field is weaker at larger radii \rightarrow as a particle spirals it sees a region of lower field which lets the spiral radius become larger \rightarrow the particle approach the outer wall
- To reduce this effect a magnetic field component along the surface of the toroid is introduced \rightarrow the poloidal field \rightarrow helical path
- It can be achieved using
	- $-$ a set of external coils \rightarrow stellarator
	- a current along the axis of the toroid through the plasma itself \rightarrow tokamak

Controlled fusion: Plasma heating (1)

- The plasma is created inside the confinement structure at temperature too low to reach fusion \rightarrow 3 methods are possible to heat the plasma up
- 1. The current in the plasma itself is used to heat the plasma by Joule effect \rightarrow effective to T $\approx 10^7$ K \rightarrow beyond plasma resistivity becomes too weak \rightarrow effectiveness \searrow (impossible in stellarator \leftrightarrow no central current)
- 2. Heating by injection of neutrals \rightarrow a beam of ions (outside the machine) is created \rightarrow neutralized before entering the plasma \rightarrow collisions transfer energy \rightarrow T \rightarrow
- 3. Absorption of energy from electromagnetic waves \rightarrow heating is transmitted to the plasma by antennas covering part of the confinement area

Controlled fusion: Plasma heating (2)

- Generally in fusion reactor with magnetic confinement \rightarrow temperature is raised by a combination of the 3 methods
- When the number of fusion reactions $\Box \rightarrow$ the energy carried by the helium nuclei is confined in the plasma \rightarrow heating
- If this contribution becomes equal to the energy lost by the plasma \rightarrow previous heating methods are no more necessary \rightarrow plasma is self-maintained \rightarrow ignition process
- We define the amplification factor *Q* as the ratio between the power generated by the plasma and the heating power injected into the plasma \rightarrow If $Q = \infty$ \rightarrow plasma is self-maintained \rightarrow If $Q = 1$ \rightarrow plasma supplies as much energy as injected \rightarrow « break even »
- European tokamak JET (Joint European Torus) is close to break even $(Q \approx 0.65)$

Controlled fusion: JET heating system

Controlled fusion: Stellarator

- The stellarator attempts to create a natural twist plasma path using external magnets
- In first tests \rightarrow stellarator suffers from instabilities and plasma leakage
- Now \rightarrow development of computers \rightarrow new calculations possibilities \rightarrow building of the largest stellarator (Wendelstein 7-X) at the Max Planck Institute of Plasma Physics in 2015

Controlled fusion: Tokamak

- Imagined by Tamm and Sakharov in 1950 \rightarrow tokamak = **to**roïdalnaïa **ka**mera s **ma**gnitnymi **k**atushkami = toroidal chamber with magnetic coils
- Actually \rightarrow the Lawson criterion is not reached (JET) \rightarrow most interesting way to achieve controlled fusion for energy production \rightarrow ITER project = International Thermonuclear Experimental Reactor

Controlled fusion: JET

- First plasma production: 1983
- Pulse duration: 20 s
- Maximum magnetic field (toroidal): 3.45 T
- Maximum plasma current: 5 MA
- Maximum injected power: 25 MW
- Mass (nucleus) : 2 800 tons

Controlled fusion: ITER (1)

- First expected test \rightarrow 2025
- Electricity production \rightarrow 2050

Controlled fusion: ITER (2)

- Plasma volume: 840 m^3
- Plasma mass: \sim g
- Maximum plasma current: 15 MA
- Maximum magnetic field (toroidal): 5.3 T
- Pulse duration: 6 min to 1 h
- Expected Q: \sim 10

Controlled fusion: Inertial confinement (1)

- We consider a microball generally in gold (« hohlraum ») enclosing a pellet of gaseous deuterium and tritium encased in ablator material
- Laser energy enters the hohlraum target \rightarrow strikes the hohlraum walls \rightarrow is converted to X-radiation
- X-radiation fills the hohlraum \rightarrow creating a radiation oven that bathes the capsule \rightarrow the ablator heats up
- The ablated shell expands outward \rightarrow the remainder of the capsule is compressed inward
- Fusion initiates in a central hot spot where the ion temperature is high \rightarrow a burn front propagates outward

Controlled fusion: Inertial confinement (2)

