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Nuclear fission 
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General remarks (1) 

• Fission results from competition between nuclear and Coulomb 
forces in heavy nuclei → total nuclear binding energy increases 
roughly like A ↔ Coulomb repulsion energy of protons increase 
like Z2 → faster 
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• Example of 238U → binding 
energy B ≈ 7.6 MeV/nucleon → 
if division into 2 equal Pd 
fragments with A ' 119 → B 
by nucleon ≈ 8.5 MeV → more 
tightly bound system → energy 
is released → (-238 £ 7.6) -     
(-2 £ 119 £ 8.5) = 214 MeV  



General remarks (2) 

• To conserve energy → the final state must include an extra energy → 
variety of forms → neutrons, ¯ and ° emissions from the fragments 
and primarily (» 80%) as kinetic energy of the fragments as Coulomb 
repulsion drives them apart  

• Generally fragments are not identical → binary fission if 2 fragments 
↔ ternary fission if 3 fragments (rare and generally 1 of the 3 
fragments is an ®)  

• Attention → not so obvious → for 238U competition with spontaneous 
® decay (T1/2 = 4.5 £ 109 y) while T1/2 for fission is ≈ 1016 y → not 
important decay mode for 238U → become important for A ≥ 250  
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 Spontaneous and induced fissions (1)  

• Inhibition of the fission by the Coulomb barrier (analogous to 
Coulomb barrier of ® decay) → improbable in general for a nucleus in 
its ground state 

• In previous example of 238U → 238U may perhaps exist instantaneously 
as two fragments of 119Pd but Coulomb barrier of about 250 MeV for 
238U  prevents the fission 
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Spontaneous and induced fissions (2) 

• If the height of the Coulomb barrier is roughly equal to the energy 
released in fission → reasonably good chance to penetrate the 
barrier 

• This process is called spontaneous fission → in that case fission 
competes successfully with other decay processes 

• Lightest nucleus for which spontaneous fission is the dominant decay 
mode → isotope             of the curium (80% of the disintegrations are 
fission and T1/2 = 104 y) 

• For            of californium (T1/2 = 60 days) → lightest nucleus for which 
almost 100% of decay is spontaneous fission 

• These 2 nuclei does not exist in natural state 
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Spontaneous and induced fissions (3) 

• Fission is much more frequent if the nucleus is in an excited state → 
occurs if a heavy nucleus absorb energy from a neutron or a photon 
→ formation of an intermediate state in an excited state that is at or 
above the barrier → phenomenon called induced fission 

 

 

 

 

• The ability of a nucleus to undergo induced fission depends critically 
on the energy of the intermediate system → for some absorption of 
thermal neutrons (≈ 0.025 eV) is sufficient ↔ for others fast (MeV) 
neutrons are required 

• The height of the fission barrier above the ground state is called the 
activation energy Eact 

7 



Spontaneous and induced fissions: activation energy (1) 
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Spontaneous and induced fissions: activation energy (2) 

• Calculation of the barrier height is based on the liquid-drop model → 
the use of the shell model including more sophisticated effects 
modifies a bit the calculation (especially for magic numbers) 

• Liquid-drop model implies the vanishing energy around mass 280 → 
these nuclei are thus extremely unstable to spontaneous fission 

• Shell closure suggests that super-heavy nuclei around A = 300 are 
more stable against fission → research about super-heavy nucleons 
around the magic number N = 184 for neutrons 

• Note the typical 5-MeV energies around uranium 
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Spontaneous and induced fissions: activation energy (3) 
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 Nucleus deformation (1)  

• To qualitatively understand fission → effect of the deformation on a 
heavy nucleus on semi-empirical Bethe-Weizsäcker equation → 

 

 

• Effect on the binding energy of an initially spherical nucleus               
(V = (4/3)¼R3) that we gradually stretch → V is kept constant (cannot 
change because of the short-range of nuclear interaction) → 
stretched nucleus is an ellipsoid of revolution (V = (4/3)¼ab2) whit a 
the semimajor axis and b the semiminor axis → deviation of the 
ellipsoid from a sphere of is given in terms of the distortion 
parameter ² (eccentricity of the ellipse) → 
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 Nucleus deformation (2) 

• Distortion of a sphere to an ellipse → increase of area S → 

 

 

• Consequently → the absolute value of the surface energy term in the 
Bethe-Weizsäcker formula increases → decrease of the binding 
energy by ¢BS → 

 

 

• Distortion of a sphere to an ellipse → decrease of the Coulomb term  
by a factor (1 - (1/5)²2 +…) → increase of the of the binding energy by 
¢BC → 
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Nucleus deformation (3) 

• The total variation of the binding energy is given by → 

 

 

• If the second term is larger than the first → the energy difference ¢B 
is > 0 → gain energy due to the stretching → more the nucleus is 
stretched more energy is gained → amplification of the stretching → 
nucleus unstable → fission 

 

• The condition for spontaneous fission is thus →  
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Nucleus deformation (4) 

• For heavy nuclei → Z/A ≈ 0.4 → nuclei become instable for Z > 117 

• In practice → modifications of this expression 
– Quantum mechanical barrier penetration could be possible even for negative 

energy deformation 

– Heavy nuclei have permanent deformation → the equilibrium shape is 
ellipsoidal 

• However Z2/A gives an indicator of the ability of a nucleus to fission 
spontaneously → the larger the value o Z2/A the shorter is the half-
life for spontaneous fission 

• An approached expression for the half-life for spontaneous fission is: 
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Nucleus deformation (5) 

• Attention → the real T1/2 can be very different of the         due to 
other decay possibilities 

• Extrapolation for 45 < Z2/A < 50 →                        s i.e. an instantaneous 
fission → it corresponds to A ≈ 280 as obtained previously 

• For Z = constant →         are not constant → parabolic shape → more 
elaborated models are needed 15 



Nucleus deformation (6) 

16 Lifetimes for spontaneous fission 



 Mass distribution of fragments (1)  

• Typical neutron-induced fission reaction is 

 

• As for instance → 

 

• This last reaction is particularly probable for low energy neutrons 
(thermal energies) but other reactions are only possible for large 
neutron energies (i.e. 238U) 

• Fission products are not determined uniquely → distribution of 
masses of the 2 fission products (ternary decay is rare) with condition 
Z1 + Z2 = Z and N1 + N2 + º = N + 1 

• For 235U → distribution is symmetric about the center (A ≈ 116) → an 
heavy fragment (A1 ≈ 140 → I, Xe, Ba) and a light fragment (A2 ≈ 95 → 
Br, Kr, Sr, Zr) → fission with A1 ≈ A2 is less probable by a factor 600 
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Mass distribution of fragments (2) 

Mass distribution of fission fragments for 235U + n  
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Number of emitted neutrons: prompt neutrons (1)  

• The º neutrons of previous equation are emitted in a time < 10-16 s 
(time analog to the fragmentation duration) → they are called 
prompt neutrons 

• To understand their origin → we consider again the case of 235U → 
the fragments in the vicinity of A = 95 and A = 140 must share 92 
protons → if it happens in rough proportion to their masses the 
nuclei formed are              and               → nuclei rich in neutrons 

• These fission products have Z/A = 0.39 (i.e. same Z/A ratio as the 
initial nucleus 235U)  

• The stable A = 95 isobar has Z = 42 and the stable A = 140 isobar has  
Z = 58 → neutron excess emits at the instant of fission 

• The average number of prompt neutrons depends of the nature of 
the 2 fragments and of the energy of incident particle for induced 
fission  19 



Number of emitted neutrons: prompt neutrons (2) 

• Distribution of fission neutrons → the average number of neutrons changes 
with the fissioning nucleus but the distribution about the average is 
independent of the original nucleus 20 



Number of emitted neutrons: delayed neutrons (1)  

• Nuclei A1 and A2 are generally far from the stability valley → ¯- decay 

 

 

 

 

 

 

• Following this ¯- decay → ¯-delayed nucleon emission (as explained 
in chapter V) → these neutrons are called delayed neutrons 

• Nucleon emission occurs rapidly → nucleon emission occurs with a 
half-life characteristic of ¯- decay → usually of the order of seconds 
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Number of emitted neutrons: delayed neutrons (2) 

• Practical example: 93Rb →  
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Number of emitted neutrons: delayed neutrons (3) 

• The total intensity of delayed neutrons is ≈ 1 per 100 fissions 

• Delayed neutrons are essential for the control of nuclear reactors  

• No mechanical system could respond rapidly enough to prevent 
important variations in the prompt neutrons 

• On the contrary → possible to achieve control using the delayed 
neutrons 
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 Radioactive decay processes 

• Initial fission products are highly radioactive → they decay toward 
stable isobars by emitting many ¯ and ° → these radiations 
contribute to the total energy release during fission 

• Examples of decay chains → 

 

 

 

• These radioactive products are the waste products of nuclear 
reactors  

• Many decay very quickly ↔ others have long half-lives (especially 
near the stable members of the series) 
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Fission cross section: 235U  
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Fission cross section: 238U  
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Fission cross section: Simple model 

• Simple estimation of energy dependence is provided by the Ramsauer 
model  

• The effective size of a neutron is /  to its de Broglie wavelength → 

 

 

• R is the effective radius of the nucleus → the cross section of interaction 
¾(E) / ¼[R + ¸(E)]2 £T (T is the transmission probability of crossing the 
barrier potential, written 4kK/(k + K)2 with k = (2mE/~2)1/2 and K = (2m(E + 
V0)/~2)1/2 for a barrier of depth -V0) 

• For low energy neutron = large wavelength → R can be neglected, E ¿ V0 

and k ¿ K →  ¾ / ¸ → ¾ (E) is inversely proportional to neutron velocity 

• For high energy neutron = small wavelength → ¾(E) / R2 → constant 

• Attention → presence of resonances → precisely defined states of the 
composed nucleus  
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Fission cross section: For thermal neutrons 
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Fission cross section: 235U and 238U 
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Energy in fission: Excitation energy (1) 

• We consider 235U capturing a neutron → compound state 236U* 

• The excitation energy Eex is 

 

 

• Energy of 236U* is given by (assuming a negligible kinetic energy for 
the incident neutron ↔ thermal neutron) → 
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Energy in fission: Excitation energy (2) 

• The activation energy obtained for 236U is 6.2 MeV 

• We have Eex > Eact 

• 235U can be fissioned with ≈ 0-energy neutrons 

• For 238U + n ! 239U* → Eex = 4.8 MeV and Eact = 6.6 MeV → neutrons 
of a few MeV are required for fission → threshold in energy 
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• The extreme differences in the fissionability of 235U and 238U is due to 
the difference between their excitation energies: 6.5 and 4.8 MeV 

• This ≠ in Eex is explained by the pairing energy term ± = ±12A-1/2 in the 
Bethe-Weizsäcker formula ↔ only significant ≠ between A and A+1  

 

• The role of ± in the excitation energy → 
– 235U  (N-odd – Z-even → ± = 0) + n →  236U  (N-even – Z-even → ± ≈ +12/(235)1/2 

= 0.78 MeV) → gain of 1 ± ≈ +0.78 MeV 

– 238U  (N-even – Z-even → ± = 0. 78 MeV) + n →  239U  (N-odd – Z-even → ± ≈ 0 
MeV) → decrease of 1 ± ≈ -0. 78 MeV 

– The difference in excitation energy between 235U + n and 238U + n is therefore 
about 2± ≈ +1.6 MeV → corresponds to observed difference 

Energy in fission: Excitation energy (3) 
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 Energy in fission: Excitation energy (4)  

• In a general way → if we call ¢EX* the contribution to the excitation 
energy due to the pairing energy term ± → if we consider the 4 
possible case types → we obtain (for initial N) → 

 

• The difference between nuclei with even neutrons and odd neutrons 
is 2± → ≈ 1.6 MeV for A ≈ 240 

33 



Energy in fission: Released energy (1)  

• We consider again the reaction → 

 

• Using the binding energy/nucleon (see for instance 
http://amdc.in2p3.fr/masstables/Ame2012/Ame2012b-v2.pdf) →     
Q ≈ 180 MeV → other final products gives energy releases of roughly 
the same magnitude → quite reasonable to take 200 MeV as an 
average value for the energy released for 235U fission 

• Experiments allows obtaining the energy distribution of the two 
fission fragments → the 2 higher energies are at 66 MeV for heavy 
fragment and 98 MeV for light fragment  
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Energy in fission: Released energy (2) 

• Conservation of momenta gives (neutrons carry very little 
momentum) → m1v1 = m2v2 → ratio between kinetic energies is the 
inverse of the ratio of the masses → 

 

 

• The ratio of the energies 66 MeV / 98 MeV = 0.67 is consistent with 
the ratio of the masses 95 / 140 = 0.68 

• The total energy carried by the 2 fragments = 164 MeV ≈ 80% of the 
total  fission energy 

• The average energy carried by 1 prompt neutron is about 2 MeV → 
with 2.5 neutrons per fission → the total  average energy carried by 
the neutrons in fission is ≈ 5 MeV (3% of the fragments energy → can 
be neglected in the equation of momentum conservation) 35 



Energy in fission: Released energy (3) 
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Energy spectrum of prompt neutrons emitted during fission of 235U → mean value ≈ 2 MeV 



Energy in fission: Released energy (4) 

• Measurements allows identification of other released energy → 
– prompt ° rays (at the instant of fission → within 10-14 s) → 8 MeV 

–  ¯ decays from radioactive fragments → 19 MeV 

–  ° decays from radioactive fragments → 7 MeV 

• Remark → the energy released during the ¯ decay is shared between 
¯ particle and neutrino → about 30-40% is given to ¯ particles → the 
remainder (≈ 12 MeV) goes to neutrinos → the neutrino energy is lost 
and have no contribution in practice 
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Nuclear structure (1)  

• Previous results obtained from the liquid-drop model 

• However shell effect (↔ shell model) also plays an important role 

• Effect 1 → mass distribution of fragments → 
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• For heavy fragments → the 
mass distributions overlap 
quite well 

• For lighter fragment → large 
variation 



Nuclear structure (2) 

• Comparing 236U and 256Fm → Z, N and A ↗ by ≈ 8.5% 

• If the liquid-drop model of fission is completely correct → shift of 
both the heavy and light fragment distributions by ≈ 8.5% between 
236U and 256Fm → the average masses should go from ≈ 95 and 140 in 
236U to about 103 and 152 in 256Fm  

• Practically → the observed average masses in 256Fm are ≈ 114 and 
141 → the 20 additional mass goes to the lighter fragment 

• More generally → looking for the average masses of the light and 
heavy fragments over a mass range from 228 to 256 → for heavy 
fragment it stays constant at ≈ 140 ↔ for light fragment it ↗ linearly 
with A → the added nucleons all go to the lighter fragment 

• This is in contradiction with the liquid-drop model for which the 
masses would be uniformly shared 39 



Nuclear structure (3) 
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Nuclear structure (4) 

• Difference can be explained with the shell model 

• In previous figure are shown regions with fission fragments with 
shell-model magic numbers of protons or neutrons 

• For heavy fragment → presence of one of this regions → especially 
presence of a double magic nucleus (Z = 50 and N = 82): 

• This exceptionally stable configuration determines the low edge of 
the mass distribution of the heavier fragment 

• No such effect occurs for the lighter fragment → unaffected by shell 
closures 
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Nuclear structure (5) 

• Effect 2 → modification of the fission barrier 

• Very often → deformed nuclei are stable due to the presence of 
shells → introduction of a double-humped barrier 
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Nuclear structure (6) 

• For these nuclei → Eex ≈ 2-3 MeV (far below the barrier height of 6-7 
MeV) → but their half-lives for spontaneous fission are in the range 
of 10-6-10-9 s 

• These isotopes have states in the intermediate potential well → they 
could decay either by fission (through a relatively thin barrier) or by ° 
emission back to the ground state 

• They are called fission isomers or shape isomers ↔ the word             
« isomer » is used because they have a long-life for ° decay 

• Properties of the fission isomers controlled by the relative height of 
the 2 barriers → 
– For U and Pu → they are close 

– For Z < 93 (neptunium) → the left barrier is the lowest → ° decay 

– For Z > 97 (berkelium) → the right barrier is the lowest → rapid fission 

• Moreover when energy states are closed in the 2 wells → resonances  
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Applications 

• Fission reactors → see « Introduction to reactor physics » → 
– Power reactors → extraction of the kinetic energy of the fission fragments as 

heat → conversion of that heat energy to electrical energy 

– Research reactors → production of neutrons for research (nuclear physics, 
solid-state physics,…) → particular case:  MYRRHA (Multi-purpose hYbrid 
Research Reactor for High-tech Applications) → nuclear reactor coupled to 
a proton accelerator (Accelerator-driven system or ADS) 

• Fission explosives (no comment…) 

• Neutron detectors based on fission reactions → Ionization chamber 
with fissile coating → see « Nuclear Metrology Techniques » 
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