Chapter VIII: Nuclear fission

Summary

- 1. General remarks
- 2. Spontaneous and induced fissions
- 3. Nucleus deformation
- 4. Mass distribution of fragments
- 5. Number of emitted electrons
- 6. Radioactive decay processes
- 7. Fission cross section
- 8. Energy in fission
- 9. Nuclear structure
- 10. Applications

General remarks (1)

- Fission results from competition between nuclear and Coulomb forces in heavy nuclei → total nuclear binding energy increases roughly like A ↔ Coulomb repulsion energy of protons increase like Z² → faster
- Example of ²³⁸U \rightarrow binding energy $B \approx 7.6$ MeV/nucleon \rightarrow if division into 2 equal Pd fragments with A $\simeq 119 \rightarrow B$ by nucleon ≈ 8.5 MeV \rightarrow more tightly bound system \rightarrow energy is released $\rightarrow (-238 \times 7.6) (-2 \times 119 \times 8.5) = 214$ MeV

General remarks (2)

- To conserve energy → the final state must include an extra energy → variety of forms → neutrons, β and γ emissions from the fragments and primarily (~ 80%) as kinetic energy of the fragments as Coulomb repulsion drives them apart
- Generally fragments are not identical → binary fission if 2 fragments
 ↔ ternary fission if 3 fragments (rare and generally 1 of the 3 fragments is an α)
- Attention \rightarrow not so obvious \rightarrow for ²³⁸U competition with spontaneous α decay ($T_{1/2} = 4.5 \times 10^9$ y) while $T_{1/2}$ for fission is $\approx 10^{16}$ y \rightarrow not important decay mode for ²³⁸U \rightarrow become important for $A \ge 250$

Spontaneous and induced fissions (1)

- Inhibition of the fission by the Coulomb barrier (analogous to Coulomb barrier of α decay) → improbable in general for a nucleus in its ground state
- In previous example of ²³⁸U → ²³⁸U may perhaps exist instantaneously as two fragments of ¹¹⁹Pd but Coulomb barrier of about 250 MeV for ²³⁸U prevents the fission

Spontaneous and induced fissions (2)

- If the height of the Coulomb barrier is roughly equal to the energy released in fission → reasonably good chance to penetrate the barrier
- This process is called spontaneous fission → in that case fission competes successfully with other decay processes
- Lightest nucleus for which spontaneous fission is the dominant decay mode \rightarrow isotope $_{96}^{250}$ Cm of the curium (80% of the disintegrations are fission and $T_{1/2} = 10^4$ y)
- For ${}^{254}_{98}$ Cl of californium ($T_{1/2}$ = 60 days) \rightarrow lightest nucleus for which almost 100% of decay is spontaneous fission
- These 2 nuclei does not exist in natural state

Spontaneous and induced fissions (3)

Fission is much more frequent if the nucleus is in an excited state → occurs if a heavy nucleus absorb energy from a neutron or a photon → formation of an intermediate state in an excited state that is at or above the barrier → phenomenon called induced fission

- The ability of a nucleus to undergo induced fission depends critically on the energy of the intermediate system → for some absorption of thermal neutrons (≈ 0.025 eV) is sufficient ↔ for others fast (MeV) neutrons are required
- The height of the fission barrier above the ground state is called the activation energy E_{act}

Spontaneous and induced fissions: activation energy (1)

Spontaneous and induced fissions: activation energy (2)

- Calculation of the barrier height is based on the liquid-drop model → the use of the shell model including more sophisticated effects modifies a bit the calculation (especially for magic numbers)
- Liquid-drop model implies the vanishing energy around mass 280 → these nuclei are thus extremely unstable to spontaneous fission
- Shell closure suggests that super-heavy nuclei around A = 300 are more stable against fission → research about super-heavy nucleons around the magic number N = 184 for neutrons
- Note the typical 5-MeV energies around uranium

Spontaneous and induced fissions: activation energy (3)

Nucleus deformation (1)

 To qualitatively understand fission → effect of the deformation on a heavy nucleus on semi-empirical Bethe-Weizsäcker equation →

$$B(A,Z) = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_a \frac{(N-Z)^2}{A} + \delta$$

• Effect on the binding energy of an initially spherical nucleus $(V = (4/3)\pi R^3)$ that we gradually stretch $\rightarrow V$ is kept constant (cannot change because of the short-range of nuclear interaction) \rightarrow stretched nucleus is an ellipsoid of revolution $(V = (4/3)\pi ab^2)$ whit *a* the semimajor axis and *b* the semiminor axis \rightarrow deviation of the ellipsoid from a sphere of is given in terms of the distortion parameter ϵ (eccentricity of the ellipse) \rightarrow

$$a = R(1 + \epsilon)$$

$$b = R(1 + \epsilon)^{-1/2}$$

Nucleus deformation (2)

Distortion of a sphere to an ellipse \rightarrow increase of area $S \rightarrow$

$$S = 4\pi R^2 (1 + \frac{2}{5}\epsilon^2 + \dots)$$

Consequently \rightarrow the absolute value of the surface energy term in the Bethe-Weizsäcker formula increases \rightarrow decrease of the binding energy by $\Delta B_s \rightarrow$

$$\Delta B_S \simeq -a_S A^{2/3} \frac{2}{5} \epsilon^2$$

Distortion of a sphere to an ellipse \rightarrow decrease of the Coulomb term by a factor $(1 - (1/5)\epsilon^2 + ...) \rightarrow$ increase of the of the binding energy by $\Delta B_{c} \rightarrow$ $\Delta B_C \simeq a_C \frac{Z^2}{A^{1/3}} \frac{1}{5} \epsilon^2$

Nucleus deformation (3)

• The total variation of the binding energy is given by \rightarrow

$$\Delta B \simeq A^{2/3} \frac{2}{5} (-a_s + \frac{a_C}{2} \frac{Z^2}{A}) \epsilon^2$$

If the second term is larger than the first → the energy difference *ΔB* is > 0 → gain energy due to the stretching → more the nucleus is stretched more energy is gained → amplification of the stretching → nucleus unstable → fission

• The condition for spontaneous fission is thus \rightarrow

$$\Delta B > 0 \rightarrow \frac{a_C}{2} \frac{Z^2}{A} > a_S \rightarrow \frac{Z^2}{A} > 47$$

Nucleus deformation (4)

- For heavy nuclei $\rightarrow Z/A \approx 0.4 \rightarrow$ nuclei become instable for Z > 117
- In practice \rightarrow modifications of this expression
 - Quantum mechanical barrier penetration could be possible even for negative energy deformation
 - Heavy nuclei have permanent deformation → the equilibrium shape is ellipsoidal
- However Z^2/A gives an indicator of the ability of a nucleus to fission spontaneously \rightarrow the larger the value o Z^2/A the shorter is the half-life for spontaneous fission
- An approached expression for the half-life for spontaneous fission is:

$$T_{1/2}^{SF} = 10^{-21} \times 10^{178 - 3.75Z^2/A}$$
 s

Nucleus deformation (5)

- Attention \rightarrow the real $T_{1/2}$ can be very different of the $T_{1/2}^{SF}$ due to other decay possibilities
- Extrapolation for 45 < Z²/A < 50 → T^{SF}_{1/2} = 10⁻²⁰ s i.e. an instantaneous fission → it corresponds to A ≈ 280 as obtained previously
- For Z = constant $\rightarrow T_{1/2}^{SF}$ are not constant \rightarrow parabolic shape \rightarrow more elaborated models are needed

Nucleus deformation (6)

16

Mass distribution of fragments (1)

Typical neutron-induced fission reaction is

$${}^{A}_{Z}X_{N} + n \rightarrow {}^{A+1}_{Z}X^{*}_{N+1} \rightarrow {}^{A_{1}}_{Z_{1}}X_{N_{1}} + {}^{A_{2}}_{Z_{2}}X_{N_{2}} + \nu n$$

As for instance \rightarrow

 $^{235}_{92}U_{143} + n \rightarrow ^{93}_{37}Rb_{56} + ^{141}_{55}Cs_{86} + 2n$

- This last reaction is particularly probable for low energy neutrons (thermal energies) but other reactions are only possible for large neutron energies (i.e. ²³⁸U)
- Fission products are not determined uniquely \rightarrow distribution of masses of the 2 fission products (ternary decay is rare) with condition $Z_1 + Z_2 = Z$ and $N_1 + N_2 + \nu = N + 1$
- For $^{235}U \rightarrow \text{distribution}$ is symmetric about the center (A ≈ 116) \rightarrow an heavy fragment ($A_1 \approx 140 \rightarrow I$, Xe, Ba) and a light fragment ($A_2 \approx 95 \rightarrow I$) Br, Kr, Sr, Zr) \rightarrow fission with $A_1 \approx A_2$ is less probable by a factor 600

Mass distribution of fission fragments for ²³⁵U + n

Number of emitted neutrons: prompt neutrons (1)

- The
 ν neutrons of previous equation are emitted in a time < 10⁻¹⁶ s
 (time analog to the fragmentation duration) → they are called
 prompt neutrons
- To understand their origin → we consider again the case of ²³⁵U → the fragments in the vicinity of A = 95 and A = 140 must share 92 protons → if it happens in rough proportion to their masses the nuclei formed are ⁹⁵₃₇Rb₅₈ and ¹⁴⁰₅₅Cs₈₅ → nuclei rich in neutrons
- These fission products have Z/A = 0.39 (i.e. same Z/A ratio as the initial nucleus ²³⁵U)
- The stable A = 95 isobar has Z = 42 and the stable A = 140 isobar has
 Z = 58 → neutron excess emits at the instant of fission
- The average number of prompt neutrons depends of the nature of the 2 fragments and of the energy of incident particle for induced fission

Number of emitted neutrons: prompt neutrons (2)

Distribution of fission neutrons \rightarrow the average number of neutrons changes with the fissioning nucleus but the distribution about the average is independent of the original nucleus²⁰ Number of emitted neutrons: delayed neutrons (1)

• Nuclei A_1 and A_2 are generally far from the stability valley $\rightarrow \beta^2$ decay

- Following this β⁻ decay → β-delayed nucleon emission (as explained in chapter V) → these neutrons are called delayed neutrons
- Nucleon emission occurs rapidly → nucleon emission occurs with a half-life characteristic of β⁻ decay → usually of the order of seconds

Number of emitted neutrons: delayed neutrons (2)

Number of emitted neutrons: delayed neutrons (3)

- The total intensity of delayed neutrons is \approx 1 per 100 fissions
- Delayed neutrons are essential for the control of nuclear reactors
- No mechanical system could respond rapidly enough to prevent important variations in the prompt neutrons
- On the contrary → possible to achieve control using the delayed neutrons

Radioactive decay processes

- Initial fission products are highly radioactive → they decay toward stable isobars by emitting many β and γ → these radiations contribute to the total energy release during fission
- Examples of decay chains \rightarrow

$${}^{93}\text{Rb} \xrightarrow{6 \text{ s}} {}^{93}\text{Sr} \xrightarrow{7 \text{ m}} {}^{93}\text{Y} \xrightarrow{10 \text{ h}} {}^{93}\text{Zr} \xrightarrow{10^6 \text{ y}} {}^{93}\text{Nb}$$

$${}^{141}\text{Cs} \xrightarrow{25 \text{ s}} {}^{141}\text{Ba} \xrightarrow{18 \text{ m}} {}^{141}\text{La} \xrightarrow{4 \text{ h}} {}^{141}\text{Ce} \xrightarrow{33 \text{ d}} {}^{141}\text{Pr}$$

- These radioactive products are the waste products of nuclear reactors
- Many decay very quickly ↔ others have long half-lives (especially near the stable members of the series)

Fission cross section: ²³⁵U

http://www.nndc.bnl.gov/exfor/endf00.jsp

Fission cross section: ²³⁸U

Fission cross section: Simple model

- Simple estimation of energy dependence is provided by the Ramsauer model
- The effective size of a neutron is \propto to its de Broglie wavelength ightarrow

$$\lambda(E) = \frac{1}{k} = \frac{h}{p} = \frac{h}{\sqrt{2mE}}$$

- *R* is the effective radius of the nucleus \rightarrow the cross section of interaction $\sigma(E) \propto \pi [R + \lambda(E)]^2 \times T$ (*T* is the transmission probability of crossing the barrier potential, written $4kK/(k + K)^2$ with $k = (2mE/\hbar^2)^{1/2}$ and $K = (2m(E + V_0)/\hbar^2)^{1/2}$ for a barrier of depth $-V_0$)
- For low energy neutron = large wavelength $\rightarrow R$ can be neglected, $E \ll V_0$ and $k \ll K \rightarrow \sigma \propto \lambda \rightarrow \sigma$ (E) is inversely proportional to neutron velocity
- For high energy neutron = small wavelength $\rightarrow \sigma(E) \propto R^2 \rightarrow \text{constant}$
- Attention → presence of resonances → precisely defined states of the composed nucleus

Fission cross section: For thermal neutrons

Nuclide	Cross Section (b)	A + 1 Activation Energy (MeV)	
²²⁷ ₉₀ Th ₁₃₇	200 ± 20		
$^{228}_{90}$ Th ₁₃₈	< 0.3		
$^{229}_{90}$ Th ₁₃₉	30 ± 3	8.3	
$^{230}_{90}$ Th ₁₄₀	< 0.001	8.3	
$^{230}_{91}$ Pa ₁₃₉	1500 ± 300	7.6	
$^{231}_{91}$ Pa ₁₄₀	0.019 ± 0.003	7.6	
$^{232}_{91}$ Pa ₁₄₁	700 ± 100	7.2	
$^{233}_{91}$ Pa ₁₄₂	< 0.1	7.1	
$^{231}_{92}$ U ₁₃₉	300 ± 300	6.8	
$^{232}_{92}U_{140}$	76 ± 4	6.9	
$^{233}_{92}U_{141}$	530 ± 5	6.5	
$^{234}_{92}U_{142}$	< 0.005	6.5	
²³⁵ ₉₂ U ₁₄₃	584 ± 1	6.2	
$^{238}_{92}\text{U}_{146}$	$(2.7 \pm 0.3) imes 10^{-6}$	6.6	
$^{234}_{93}$ Np ₁₄₁	1000 ± 400	5.9	
$^{236}_{93}$ Np ₁₄₃	3000 ± 600	5.9	
²³⁷ ₉₃ Np ₁₄₄	0.020 ± 0.005	6.2	
²³⁸ ₉₃ Np ₁₄₅	17 ± 1	6.0	
$^{239}_{93}$ Np ₁₄₆	< 0.001	6.3	
²³⁸ ₉₄ Pu ₁₄₄	17 ± 1	6.2	
²³⁹ ₉₄ Pu ₁₄₅	742 ± 3	6.0	
$^{240}_{94}$ Pu ₁₄₆	< 0.08	6.3	
$^{241}_{94}$ Pu ₁₄₇	1010 ± 10	6.0	
²⁴² ₉₄ Pu ₁₄₈	< 0.2	6.2	
$^{241}_{95}$ Am ₁₄₆	3.24 ± 0.15	6.5	
$^{242}_{95}$ Am ₁₄₇	$2100~\pm~200$	6.2	
$^{243}_{95}$ Am ₁₄₈	< 0.08	6.3	
$^{244}_{95}$ Am ₁₄₉	$2200~\pm~300$	6.0	
$^{243}_{96}$ Cm ₁₄₇	610 + 30	6.1	
$^{244}_{96}$ Cm ₁₄₈	1.0 ± 0.5	6.3	
²⁴⁵ ₉₆ Cm ₁₄₉	$2000~\pm~200$	5.9	
$^{246}_{96}$ Cm ₁₅₀	0.2 ± 0.1	6.0	

Energy in fission: Excitation energy (1)

- We consider ²³⁵U capturing a neutron \rightarrow compound state ²³⁶U*
- The excitation energy E_{ex} is

$$E_{ex} = [m(^{236}\mathrm{U}^*) - m(^{236}\mathrm{U})]c^2$$

 Energy of ²³⁶U* is given by (assuming a negligible kinetic energy for the incident neutron ↔ thermal neutron) →

 $m(^{236}\text{U}^*) = m(^{235}\text{U}) + m_n = 235.043924 \text{ u} + 1.008665 \text{ u}$ = 236.052589 u $E_{ex} = (236.052589 \text{ u} - 236.045563 \text{ u})931.502 \text{ MeV/u}$ = 6.5 MeV

Energy in fission: Excitation energy (2)

- The activation energy obtained for ²³⁶U is 6.2 MeV
- We have $E_{ex} > E_{act}$
- 235 U can be fissioned with \approx 0-energy neutrons
- For ²³⁸U + n \rightarrow ²³⁹U* \rightarrow E_{ex} = 4.8 MeV and E_{act} = 6.6 MeV \rightarrow neutrons of a few MeV are required for fission \rightarrow threshold in energy

Energy in fission: Excitation energy (3)

- The extreme differences in the fissionability of ²³⁵U and ²³⁸U is due to the difference between their excitation energies: 6.5 and 4.8 MeV
- This \neq in E_{ex} is explained by the pairing energy term $\delta = \pm 12A^{-1/2}$ in the Bethe-Weizsäcker formula \leftrightarrow only significant \neq between A and A+1

$$B(A,Z) = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_a \frac{(N-Z)^2}{A} + \delta^2 A^{1/3} - \delta^2 A^{1/3} - \delta^2 A^{1/3} + \delta^2 A^{1/3} - \delta^2 A^{1$$

- The role of δ in the excitation energy \rightarrow
 - ²³⁵U (*N*-odd *Z*-even $\rightarrow \delta = 0$) + n $\rightarrow {}^{236}$ U (*N*-even *Z*-even $\rightarrow \delta \approx +12/(235)^{1/2}$ = 0.78 MeV) \rightarrow gain of 1 $\delta \approx +0.78$ MeV
 - ²³⁸U (*N*-even *Z*-even → δ = 0. 78 MeV) + n → ²³⁹U (*N*-odd *Z*-even → $\delta \approx$ 0 MeV) → decrease of 1 $\delta \approx$ -0. 78 MeV
 - − The difference in excitation energy between 235 U + n and 238 U + n is therefore about $2\delta \approx +1.6$ MeV \rightarrow corresponds to observed difference

Energy in fission: Excitation energy (4)

AX			A+1X			ΔE_{X^*}
N	Z	$\delta(^A X)$	N		$\delta(^{A+1}X)$	
even	even	$+\delta$	odd	even	0	$-\delta$
even	odd	0	odd	odd	$-\delta$	$-\delta$
odd	even	0	even	even	$+\delta$	$+\delta$
odd	odd	$-\delta$	even	odd	0	$+\delta$

• In a general way \rightarrow if we call ΔE_{χ^*} the contribution to the excitation energy due to the pairing energy term $\delta \rightarrow$ if we consider the 4 possible case types \rightarrow we obtain (for initial N) \rightarrow

$$\Delta E_{X^*} \approx (-1)^{N+1} \delta$$

 The difference between nuclei with even neutrons and odd neutrons is 2δ → ≈ 1.6 MeV for A ≈ 240

Energy in fission: Released energy (1)

• We consider again the reaction \rightarrow

 ${}^{235}_{92}U_{143} + n \rightarrow {}^{93}_{37}Rb_{56} + {}^{141}_{55}Cs_{86} + 2n$

- Using the binding energy/nucleon (see for instance http://amdc.in2p3.fr/masstables/Ame2012/Ame2012b-v2.pdf) → Q ≈ 180 MeV → other final products gives energy releases of roughly the same magnitude → quite reasonable to take 200 MeV as an average value for the energy released for ²³⁵U fission
- Experiments allows obtaining the energy distribution of the two fission fragments → the 2 higher energies are at 66 MeV for heavy fragment and 98 MeV for light fragment

Energy in fission: Released energy (2)

• Conservation of momenta gives (neutrons carry very little momentum) $\rightarrow m_1 v_1 = m_2 v_2 \rightarrow$ ratio between kinetic energies is the inverse of the ratio of the masses \rightarrow

$$\frac{\frac{1}{2}m_1v_1^2}{\frac{1}{2}m_2v_2^2} = \frac{m_2}{m_1}$$

- The ratio of the energies 66 MeV / 98 MeV = 0.67 is consistent with the ratio of the masses 95 / 140 = 0.68
- The total energy carried by the 2 fragments = 164 MeV ≈ 80% of the total fission energy
- The average energy carried by 1 prompt neutron is about 2 MeV → with 2.5 neutrons per fission → the total average energy carried by the neutrons in fission is ≈ 5 MeV (3% of the fragments energy → can be neglected in the equation of momentum conservation)

Energy spectrum of prompt neutrons emitted during fission of ²³⁵U \rightarrow mean value \approx 2 MeV

Energy in fission: Released energy (4)

- Measurements allows identification of other released energy \rightarrow
 - prompt γ rays (at the instant of fission \rightarrow within 10⁻¹⁴ s) \rightarrow 8 MeV
 - β decays from radioactive fragments \rightarrow 19 MeV
 - γ decays from radioactive fragments \rightarrow 7 MeV
- Remark → the energy released during the β decay is shared between β particle and neutrino → about 30-40% is given to β particles → the remainder (≈ 12 MeV) goes to neutrinos → the neutrino energy is lost and have no contribution in practice

Nuclear structure (1)

- Previous results obtained from the liquid-drop model
- However shell effect (↔ shell model) also plays an important role
- Effect 1 \rightarrow mass distribution of fragments \rightarrow
- For heavy fragments → the mass distributions overlap quite well
- For lighter fragment → large variation

Nuclear structure (2)

- Comparing ²³⁶U and ²⁵⁶Fm \rightarrow Z, N and A \nearrow by \approx 8.5%
- If the liquid-drop model of fission is completely correct → shift of both the heavy and light fragment distributions by ≈ 8.5% between
 ²³⁶U and ²⁵⁶Fm → the average masses should go from ≈ 95 and 140 in
 ²³⁶U to about 103 and 152 in ²⁵⁶Fm
- Practically → the observed average masses in ²⁵⁶Fm are ≈ 114 and 141 → the 20 additional mass goes to the lighter fragment
- More generally → looking for the average masses of the light and heavy fragments over a mass range from 228 to 256 → for heavy fragment it stays constant at ≈ 140 ↔ for light fragment it ↗ linearly with A → the added nucleons all go to the lighter fragment

39

• This is in contradiction with the liquid-drop model for which the masses would be uniformly shared

Nuclear structure (3)

Nuclear structure (4)

- Difference can be explained with the shell model
- In previous figure are shown regions with fission fragments with shell-model magic numbers of protons or neutrons
- For heavy fragment \rightarrow presence of one of this regions \rightarrow especially presence of a double magic nucleus (Z = 50 and N = 82): $^{132}_{50}$ Sn₈₂
- This exceptionally stable configuration determines the low edge of the mass distribution of the heavier fragment
- No such effect occurs for the lighter fragment → unaffected by shell closures

Nuclear structure (5)

- Effect 2 \rightarrow modification of the fission barrier
- Very often → deformed nuclei are stable due to the presence of shells → introduction of a double-humped barrier

Nuclear structure (6)

- For these nuclei $\rightarrow E_{ex} \approx 2-3$ MeV (far below the barrier height of 6-7 MeV) \rightarrow but their half-lives for spontaneous fission are in the range of 10⁻⁶-10⁻⁹ s
- These isotopes have states in the intermediate potential well \rightarrow they could decay either by fission (through a relatively thin barrier) or by γ emission back to the ground state
- They are called fission isomers or shape isomers \leftrightarrow the word « isomer » is used because they have a long-life for γ decay
- Properties of the fission isomers controlled by the relative height of the 2 barriers →
 - − For U and Pu \rightarrow they are close
 - For Z < 93 (neptunium) \rightarrow the left barrier is the lowest $\rightarrow \gamma$ decay
 - − For Z > 97 (berkelium) \rightarrow the right barrier is the lowest \rightarrow rapid fission
- Moreover when energy states are closed in the 2 wells \rightarrow resonances

Applications

- Fission reactors \rightarrow see « Introduction to reactor physics » \rightarrow
 - Power reactors → extraction of the kinetic energy of the fission fragments as heat → conversion of that heat energy to electrical energy
 - Research reactors → production of neutrons for research (nuclear physics, solid-state physics,...) → particular case: MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) → nuclear reactor coupled to a proton accelerator (Accelerator-driven system or ADS)
- Fission explosives (no comment...)
- Neutron detectors based on fission reactions → Ionization chamber with fissile coating → see « Nuclear Metrology Techniques »