Chapter VI: Beta decay

Summary

- 1. General principles
- 2. Energy release in β decay
- 3. Fermi theory of β decay
- 4. Selections rules
- 5. Electron capture decay
- 6. Other β decays

General principles (1)

- The β decay is due to the weak interaction
- The most basic β process is the conversion of a proton to a neutron or of a neutron to a proton $\rightarrow Z \rightarrow Z \pm 1$ and $N \rightarrow N \mp 1$ $\rightarrow A = Z + N$ is constant
- β decay is a convenient way for unstable nuclei to slide down the mass parabola of constant A to reach the stable isobar
- The charge conservation implies the intervention in the process of a charged particle: electron or positron
- If an electron or positron is emitted (i.e. β⁻ or β⁺) → identical to « classical » electron or positron

General principles (2)

- A process of the type $n \rightarrow p + e^{-}$ is impossible for 3 reasons:
 - The emitted electron has a continuous distribution of energies (from 0 to an upper limit = to the energy difference between the initial and final states)
 - 2. There is no conservation of the lepton number
 - 3. There is no conservation of momentum and angular momentum in the process
- (Wolfgang) Pauli suggests (1930) that an extremely light neutral and highly penetrating particle (which he called neutron) is involved in the process and takes a part of the energy release → Enrico Fermi proposes a full theory (1934) involving this particle recalled neutrino (we use the term « neutrino » for both neutrino and antineutrino) → the existence of the neutrino was experimentally confirmed in 1956

General principles (3)

The possible weak processes are \rightarrow

$$\begin{split} n &\to p + e^- + \bar{\nu}_e & \beta^- \text{ decay} \\ p &\to n + e^+ + \nu_e & \beta^+ \text{ decay} \\ p + e^- &\to n + \nu_e & \text{ electron capture} \\ n + e^+ &\to p + \bar{\nu}_e & \text{ positron capture} \end{split}$$

- The positron capture is not experimentally observed because of the absence of free positrons is stable matter (possibly present in star explosion)
- The neutrino carries the « missing » energy and allow the conservation of electronic lepton number ($\ell_e(e) = +1$; $\ell_e(e^+) = -1$; $\boldsymbol{\ell}_{\boldsymbol{\rho}}(\boldsymbol{\nu}_{\boldsymbol{\rho}}) = +1; \, \boldsymbol{\ell}_{\boldsymbol{\rho}}(\boldsymbol{\overline{\nu}}_{\boldsymbol{\rho}}) = -1)$ 5

General principles (4)

• Remark: the β^+ decay and the electron capture occur only for protons bound in nuclei \rightarrow they are energetically forbidden for free protons or for protons in hydrogen atoms ($m_n - m_p = 1.3$ MeV \rightarrow free proton is stable)

General principles (5)

• Examples of decays:

Decay	Турс	Q (MeV)	t _{1/2}
23 Ne $\rightarrow ^{23}$ Na + e ⁻ + $\overline{\nu}$	β-	4.38	38 s
99 Tc \rightarrow 99 Ru + e ⁻ + $\bar{\nu}$	β^{-}	0.29	$2.1 \times 10^{5} \text{ y}$
$^{25}\text{Al} \rightarrow ^{25}\text{Mg} + e^+ + \nu$	β^+	3.26	7.2 s
124 I $\rightarrow ^{124}$ Te + e ⁺ + y	β^+	2.14	4.2 d
$^{15}\text{O} + e^- \rightarrow ^{15}\text{N} + \nu$	ε	2.75	1.22 s
${}^{41}\mathrm{Ca}+\mathrm{e}^-^{41}\mathrm{K}+\nu$	£	0.43	$1.0 imes10^{5}$ y

 Attention: the decay can populate several states → this is true for majority of decays →this fact is known as the branching in the decay →the relative population of the branches is called the branching ratio

Energy release in β decay: β decay (1)

• The β - disintegration to ground state of daughter nucleus is written:

$${}^{A}_{Z}X_{N} \xrightarrow{}^{\beta^{-}} {}^{A}_{Z+1}Y_{N-1} + e^{-} + \overline{\nu}_{e}$$

 The energy release (Q^N) when only nuclei are considered (no mass for neutrino) is →

$$Q_{\beta^{-}}^{N} = m(A, Z)c^{2} - m(A, Z+1)c^{2} - m_{e}c^{2}$$

• Considering $m(A,Z) = Zm_p + Nm_n - B(A,Z) \rightarrow$

$$Q_{\beta^{-}}^{N} = B(A, Z+1) - B(A, Z) + (m_{n} - m_{p} - m_{e})c^{2}$$

with $(m_n - m_p - m_e)c^2 \approx 0.782333$ MeV

 These expressions are valid in the absence of electrons (astrophysics)

Energy release in β decay: β decay (2)

 Considering now atoms and bound electrons (attention: if nuclei are in form of molecules or crystalline lattice → other corrections) with / the (positive) ionization energy of the atom:

$$Q_{\beta^{-}} = M(^{A}_{Z}X_{N})c^{2} - M(^{A}_{Z+1}Y^{+}_{N-1})c^{2} - m_{e}c^{2}$$
$$= M(^{A}_{Z}X_{N})c^{2} - M(^{A}_{Z+1}Y_{N-1})c^{2} - I$$

- Indeed an e⁻ is missing in the electron cloud of Y⁺ (positive ion)
 → the electron masses cancel except the value of I
- If / (a few eV) is neglected \rightarrow

$$Q_{\beta^{-}} \approx M(A,Z)c^2 - M(A,Z+1)c^2$$

 $\approx \Delta(A,Z) - \Delta(A,Z+1)$

with $\Delta(A, Z) = [M(A, Z) - A]uc^2$

Energy release in β decay: β decay (3)

• Atom decay is thus possible if \rightarrow

$$M(A,Z) > M(A,Z+1)$$

- Attention: if the daughter nucleus is in an excited state \rightarrow the excitation energy of the nucleus has to subtracted of Q_{β}
- If the differences of electron binding energies between the final and initial atomic systems (a few keV) can be neglected →

$$Q^N_{\beta^-} \approx Q_{\beta^-}$$

• In some cases this difference cannot be neglected: ¹⁸⁷Re \rightarrow ¹⁸⁷Os reaction $\Rightarrow Q_{\beta^-}^N = -2.54 \text{ keV} \Rightarrow$ forbidden transition for the ¹⁸⁷Re <u>nucleus</u> but if we consider a <u>neutral atom</u> of rhenium \Rightarrow $B_e(^{187}\text{Os}^+)$ - $B_e(^{187}\text{Re}) \approx 5.01 \text{ keV} \Rightarrow Q_{\beta^-} = 2.47 \text{ keV} \Rightarrow$ spontaneous decay \Rightarrow for neutral atom $\tau = 4.1 \times 10^{10}$ years (for ionized atom $\Rightarrow \tau$ depends on ionization degree)

Energy release in β decay: β ⁺ decay (1)

- The β^+ disintegration to ground state of daughter nucleus is written: $A_Z X_N \xrightarrow{\beta^+} A_{Z-1} Y_{N+1} + e^+ + \nu_e$
- Energy release for only nuclei (Q^N) is \rightarrow

$$Q_{\beta^+}^N = m(A, Z)c^2 - m(A, Z - 1)c^2 - m_e c^2$$

• Considering binding energies \rightarrow

 $Q_{\beta^+}^N = B(A, Z - 1) - B(A, Z) - (m_n - m_p + m_e)c^2$

with $(m_n - m_p + m_e)c^2 \approx 1.804331 \text{ MeV}$

Energy release in β decay: β ⁺ decay (2)

- Initially → formation of a negative ion → loss of an atomic electron
- For a neutral atom \rightarrow

$$Q_{\beta^+} = M(A, Z)c^2 - M(A, Z - 1)c^2 - 2m_e c^2$$

• Considering mass excess $\Delta \rightarrow$

$$Q_{\beta^+} = \Delta(A, Z) - \Delta(A, Z - 1) - 2m_e c^2$$

• Atom decay is thus possible if \rightarrow

$$M(A,Z) > M(A,Z-1) + 2m_e$$

• $Q_{\beta^+}^N$ and Q_{β^+} are generally very close

Conventional diagram

Energy release in β decay: electron capture (1)

• The electron capture ϵ is written:

$${}^{A}_{Z}X_{N} + e^{-} \stackrel{\epsilon}{\to} {}^{A}_{Z-1}Y^{*}_{N+1} + \nu_{e}$$

- The electron capture preferentially implies an inner-shell electron → presence of vacancy/hole → very excited final atomic state → final atomic mass > mass of the atom in its ground state → * notation
- Electron capture is obviously impossible for fully ionized atom
- Otherwise \rightarrow competition with β^{+} process
- Due to the vacancy in the inner-shell → reorganization of the electrons cloud → emission of X-rays or Auger electrons

Energy release in β decay: electron capture (2)

 The energy release is (often) written with atomic masses because the captured electron was one of the electrons cloud of the initial nucleus X →

$$Q_{\epsilon} = M(A, Z)c^2 - M(A, Z - 1)c^2 - \Delta E_{el}$$

- ΔE_{el} is the excitation energy of the Y* atom \rightarrow to a good approximation $\Delta E_{el} = B_i$ (binding energy of the electron captured by X \approx a few eV to a few tens of keV)
- The capture can spontaneously occurs if \rightarrow

$$M(A, Z) > M(A, Z - 1) + B_i/c^2$$

• Electron capture is thus possible in some cases for which β^+ is not possible \rightarrow transitions between isobars whose mass is nearly the same may therefore take place by ϵ when β^+ decay is excluded energetically

Energy release in β decay: electron capture (3)

Conventional diagram

Energy release in β decay: electron capture (4)

domain while $\beta^{\!\scriptscriptstyle +}\!$ is excluded

Energy release in β decay: summary (1)

• The decay threshold differs from $2m_ec^2$ between β^+ and ϵ

Energy release in β decay: summary (2)

Energy release in β decay: summary (3)

- For a nucleus at rest → the sum of the momenta of the emitted particles is zero

$$Q_{\beta} = T_e + T_{\nu}$$

- The energy of each of the particles may vary between 0 and Q_β
- In electron capture only the emitted neutrino takes the energy
 → the neutrino is monoenergetic →

$$Q_{\epsilon} = T_{\nu}$$

Fermi theory of β decay: principle

- β⁻ and β⁺ decays implies a completely different approach for the calculations of transition probabilities
- The electron and neutrino do not exist before the decay process (no preformation as in α decay)
- The electron and neutrino must be treated relativistically (small mass at rest for e⁻ and very small mass for ν)
- Fermi assumed β decay results from sort of interaction between the nucleons, the electron and the neutrino
- This interaction is expressed as a perturbation to the total Hamiltonian

Fermi theory of β decay: Fermi Golden Rule

• Decay probability per unit time is expressed by Fermi Golden Rule ightarrow

$$\lambda = \frac{2\pi}{\hbar} |V_{fi}|^2 \rho(E_f) \text{ where } V_{fi} = \int \psi_f^* V \psi_i d\boldsymbol{r}$$

- $\rho(E_f)$ is the density of final states = dn_f/dE_f
- The matrix element V_{fi} is the integral of the interaction V between the initial and final quasi-stationary states of the system $\rightarrow V_{fi}$ reflects the probability of going from state i ($\Psi_{i,N}$: nucleus) to state f ([$\Psi_{f,N} \Psi_e$ Ψ_{ν}] : [nucleus electron neutrino]) in β^2 decay
- Fermi did not know the mathematical form of V (weak interaction) \rightarrow he supposed an operator analog to the operators used for electromagnetic transitions: $V \rightarrow G_F O_\beta$ with G_F the coupling constant called the Fermi constant

Fermi theory of β decay: Fermi constant

- G_F has a role analog to the term $e^2/4\pi\epsilon_0$ in the electromagnetic processes
- $G_F = 1.41 \times 10^{-56}$ J cm³ (empiric determination) \rightarrow very small \rightarrow justify the use of the perturbation method
- G_{F} is sometimes replaced by a the dimensionless constant $G_{\beta} \rightarrow$

$$G_F = \frac{\hbar^3}{m_e^2 c} G_\beta$$

- $G_{\beta} = 3.002 \times 10^{-12}$
- G_{β} is a dimensionless constant characteristic of the beta interaction as the fine-structure constant α is characteristic of the Coulomb interaction
- The electroweak theory links together G_{β} and $\alpha \rightarrow G_{\beta} \approx 10.1 \alpha$ $\times (m_{e}/m_{w})^{2}$ 24

Fermi theory of β decay: shape of β spectrum (1)

- We will show that the density of final states determines the shape of the energy distribution → we need to know the number of final states accessible to the decay products
- We consider an electron (or positron) emitted with momentum
 p and a neutrino (or antineutrino) with momentum
- The locus of momenta points in the range dp at p is a spherical shell of radius p and thickness $dp \rightarrow$ volume = $4\pi p^2 dp$
- If the e⁻ is confined to a box of volume $V \rightarrow$ the number of final e⁻ states dn_e corresponding to momenta in [p, p + dp] in the phase space (six-dimensional space: x, y, z, p_x , p_y , p_z) is \rightarrow

$$dn_e = \frac{4\pi p^2 dp V}{\not \rightarrow h^3}$$

constant included to have a number = unit volume in phase space (with $\Delta p_i \Delta r_i = h$) ²⁵

Fermi theory of β decay: shape of β spectrum (2)

• Similarly the number of neutrino is \rightarrow

$$dn_{\nu} = \frac{4\pi q^2 dq V}{h^3}$$

Then the number of final states which have simultaneously an electron and a neutrino with proper momenta is →

$$dn^{2} = dn_{e}dn_{\nu} = \frac{(4\pi)^{2}p^{2}dpq^{2}dqV^{2}}{h^{6}}$$

Fermi theory of β decay: shape of β spectrum (3)

The e⁻ and
 ν wave functions have the usual free-particle form
 (normalized to V) →

$$\Psi_e(\mathbf{r}) = \frac{1}{\sqrt{V}} \exp\left(i\mathbf{p}\mathbf{r}/\hbar\right) \text{ and } \Psi_\nu(\mathbf{r}) = \frac{1}{\sqrt{V}} \exp\left(i\mathbf{q}\mathbf{r}/\hbar\right)$$

• Consider an e⁻ with typical kinetic energy $T_e = 1 \text{ MeV} \rightarrow E_e = m_e c^2 + T_e \approx 1.5 \text{ MeV} \rightarrow \text{as } E_e^2 = p^2 c^2 + (m_e c^2)^2 \rightarrow pc \approx 1.4 \text{ MeV} \rightarrow p/\hbar \approx 0.007 \text{ fm}^{-1} \rightarrow \text{over the nuclear volume: } pr \ll 1 \text{ (creation at } r = 0) \rightarrow$

$$\exp(i\mathbf{pr}/\hbar) = 1 + \frac{i\mathbf{pr}}{\hbar} + \dots \cong 1$$
$$\exp(i\mathbf{qr}/\hbar) = 1 + \frac{i\mathbf{qr}}{\hbar} + \dots \cong 1$$

• This approximation is called **allowed approximation**

Fermi theory of β decay: shape of β spectrum (4)

In the allowed approximation the partial decay rate can thus be written →

$$d\lambda = \frac{2\pi}{\hbar} G_F^2 |M_{fi}|^2 (4\pi)^2 \frac{p^2 dp q^2}{h^6} \frac{dq}{dE_f}$$

- $M_{fi} = \int \Psi_{f,N} O_{\beta} \Psi_{i,N} dr$ is the **nuclear matrix element** \rightarrow in the allowed approximation M_{fi} is assumed to be independent of p
- The final energy $E_f = E_e + E_\nu = E_e + qc \rightarrow dq/dE_f = 1/c$ at fixed E_e
- If only the shape of the distribution is concerned → previous equation may be written →

$$N(p)dp = Cp^2q^2dp$$

Fermi theory of β decay: shape of β spectrum (5)

• With Q the decay energy and neglecting the recoil energy \rightarrow

$$q = \frac{Q - T_e}{c} = \frac{Q - \sqrt{p^2 c^2 + m_e^2 c^4} + m_e c^2}{c}$$

• The spectrum is given by \rightarrow

$$N(p) = \frac{C}{c^2} p^2 (Q - T_e)^2$$

= $\frac{C}{c^2} p^2 \left[Q - \sqrt{p^2 c^2 + m_e^2 c^4} + m_e c^2 \right]^2$

- This function vanishes at p = 0 and when $T_e = Q$
- p²(Q T_e)² is called the statistical factor (associated with the density of final states)

Fermi theory of β decay: shape of β spectrum (6)

• For energy spectrum \rightarrow

$$E_e^2 = p^2 c^2 + m_e^2 c^4 = (T_e + m_e c^2)^2 = T_e^2 + 2m_e c^2 T_e + m_e^2 c^4$$

$$\rightarrow p^2 c^2 = T_e^2 + 2m_e c^2 T_e$$

$$\rightarrow c^2 p dp = (T_e + m_e c^2) dT_e$$

$$\rightarrow N(T_e) = \frac{C}{c^5} (T_e^2 + 2m_e c^2 T_e)^{1/2} (Q - T_e)^2 (T_e + m_e c^2)$$

• This function vanishes at $T_e = 0$ and at $T_e = Q$

Fermi theory of β decay: shape of β spectrum (7)

• Expected momentum and energy distribution For *Q* = 2.5 MeV

Shape of β spectrum: difference due to Fermi function (1)

- A difference arises from Coulomb interaction between β and daughter nucleus → simple point of view → Coulomb repulsion (→ acceleration) for β⁺ (giving fewer low-energy positrons) and Coulomb attraction for β⁻ (giving more low-energy electrons)
- More correctly \rightarrow due to Coulomb potential \rightarrow modification of the wave function of the electron/positron \rightarrow correction factor to be introduced in the equation: the **Fermi function** F(Z',p) or $F(Z',T_e)$ with Z' the atomic number of the daughter nucleus \rightarrow non-relativistic $(Q \ll m_e c^2)$ quantum calculations give for point nucleus \rightarrow

$$F(Z',p) = \frac{|\Psi_e(0)|^2}{|\Psi_{e,free}(0)|^2} \longrightarrow F(Z',p) = \frac{2\pi\eta}{\exp(2\pi\eta) - 1}$$

Shape of β spectrum: difference due to Fermi function (2)

- *F*(*Z*',*p*) is always > 0 , strongly dependent on *Z*
- $\beta^{-}: \eta < 0, F(Z',p) > 1 \rightarrow \text{attraction between nucleus and } e^{-}$
- $\beta^+: \eta > 0$, $F(Z',p) < 1 \rightarrow$ repulsion between nucleus and e^+
- For large p (or T_e) $\rightarrow \eta \rightarrow 0 \rightarrow F \rightarrow 1$
- For small p (or T_e) \rightarrow large difference between $\eta < 0$ or > 0 \rightarrow for $\beta^-: \eta < 0 \rightarrow F \rightarrow |2\pi\eta| \rightarrow T_e^{-1/2}$ 10 \rightarrow for $\beta^+: \eta > 0 \rightarrow F \rightarrow \exp(-2\pi\eta) \rightarrow 0$

33

Shape of β spectrum: difference due to Fermi function (3)

• Finally \rightarrow difference between β - and β + emission spectra \rightarrow

Shape of β spectrum: difference due to Fermi function (4)

• When relativistic calculations are made (with a non-zero extension for the nucleus) \rightarrow

$$F(Z',p) = 2(1+\gamma_0)(2p_e R/\hbar)^{-2(1-\gamma_0)}e^{-\pi\eta}\frac{|\Gamma(\gamma_0+i\eta)|^2}{\Gamma(2\gamma_0+1)^2}$$

• *R* is the nucleus radius and the dimensionless parameter γ_0 is given by $\rightarrow \sqrt{1 - 2(77 + 1)^2}$

$$\gamma_0 = \sqrt{1 - \alpha^2 (Z \pm 1)^2}$$

• If $(\alpha Z')^2$ can be neglected $\rightarrow \gamma_0 = 1$ and F(Z',p) takes its non-relativistic form

Shape of β spectrum: difference due to $|M_{fi}|^2$

- Up to now $\rightarrow M_{fi}$ was assumed to have no influence of the spectrum shape (allowed approximation) \rightarrow often very good but in some cases very bad
- In some cases $M_{fi} = 0$ in the allowed approximation \rightarrow no spectrum \rightarrow in such cases the next terms of the plane wave expansion have to be considered \rightarrow introduction of another momentum dependence \rightarrow introduction of a S(p,q) term (« shape factor »)
- Such cases are called (incorrectly) **forbidden** decays \rightarrow not forbidden but they occur less likely than allowed decays \rightarrow longer half-life
- The degree to which a transition is forbidden depends on how far the plane wave expansion to give first-forbidden decays is taken \rightarrow first term beyond the 1 ightarrow first-forbidden decay ightarrow the next term ightarrowsecond-forbidden ...
- Attention \rightarrow angular momentum and parity selections rules restrict the kinds of decay 36
Shape of β spectrum: real spectra

Shape of β spectrum: Fermi-Kurie plot (1)

• In the allowed approximation we write \rightarrow

$$(Q-T_e) \propto \sqrt{\frac{N(p)}{p^2 F(z',p)}}$$

- Plotting this square root as a function of $T_e \rightarrow$ straight line intercepting the x-axis at Q \rightarrow (Fermi-)Kurie plot
- If forbidden transition \rightarrow

$$(Q-T_e) \propto \sqrt{\frac{N(p)}{p^2 F(z',p) S(p,q)}}$$

- For first forbidden case $\rightarrow S(p,q) = p^2 + q^2$
- For second forbidden case $\rightarrow S(p,q) = p^4 + 10/3 p^2 q^2 + q^4$
- For third forbidden case $\rightarrow S(p,q) = p^6 + 7 p^4 q^2 + 7 p^2 q^4 + q^6$ 38

Shape of β spectrum: Fermi-Kurie plot (3)

Uncorrected and corrected Fermi-Kurie plots of first-forbidden $1/2^- \rightarrow 5/2^+ \beta^-$ decay of ⁹¹Y

Fermi theory of β decay: total decay rate (1)

• The integration of the partial decay rate gives \rightarrow

$$\lambda = \frac{G_F^2 |M_{fi}|^2}{2\pi^3 \hbar^7 c^3} \int_0^{p_{max}} F(Z', p) p^2 (Q - T_e)^2 dp$$

• We have a dependence on Z' and on the maximum electron total energy E_0 (since $cp_{max} = [E_0^2 - (m_e c^2)^2]^{1/2}) \rightarrow$ we represent it with the Fermi integral $f(Z', E_0)$ which is tabulated with the use of approximate forms for F(Z',p) for values of Z' and $E_0 \rightarrow$

$$f(Z', E_0) = \frac{1}{(m_e c)^3 (m_e c^2)^2} \int_0^{p_{max}} F(Z', p) p^2 (E_0 - E_e)^2 dp$$

To be dimensionless

Fermi theory of β decay: total decay rate (2)

Fermi integral with Z < 0for β^+ and Z > 0 for β^-

Fermi theory of β decay: total decay rate (3)

- With $\lambda = \ln 2/T_{1/2} \rightarrow$ $fT_{1/2} = \ln 2 \frac{2\pi^3 \hbar^7}{G_F^2 m_e^5 c^4 |M_{fi}|^2}$
- $fT_{1/2}$ is called the comparative half-life or ft value ($T_{1/2}$ is always in s)
- *ft* gives a way to compare the decay probabilities
- We can also write \rightarrow

$$ft = f(Q)\frac{T_{1/2}}{BR} = \frac{K}{G_F^2 |M_{fi}|^2}$$

- Measure gives access to Q (and thus to f(Q)), T_{1/2} and branching ratio (BR) → to the left-hand side of the equation
- If M_{fi} is known $\rightarrow G_F$ can be calculated \rightarrow determination of M_{fi} ?

Selections rules: Fermi decay (1)

- If exp(ipr/ħ) = 1 and exp(iqr/ħ) = 1 → allowed approximation → electron and neutrino are created at r = 0 → they cannot carry orbital angular momentum (ℓ = 0) → the only change in the nucleus angular momentum results from their spin (each of them s = 1/2)
- These two spins can be parallel (S = 1) or antiparallel (S = 0)
- If $S = 0 \rightarrow$ transition called **Fermi** (F) decay \rightarrow in that case the O_{β} (in $M_{fi} = \int \Psi_{f,N} O_{\beta} \Psi_{i,N}$) takes the form $\rightarrow A$

$$O_{\beta} = O_F = \sum_{i=1}^{n} t_{j\pm} = T_{\pm}$$

- Where t_{j_+} and t_{j_-} are respectively the raising and lowering isospin operators for nucleon $j \rightarrow$ they transform proton/neutron j into neutron/proton $\rightarrow t_{j_+}/t_{j_-}$ corresponds to β^+/β^-
- T_± correspond to raising and lowering operators of the total isospin

Selections rules: Fermi decay (2)

- For S = 0 → there is no change in the total angular momentum → *J_i* = *J_f* (Wigner-Eckart theorem for an irreducible tensor operator of rank 0 in position and spin space)
- As electron and neutrino carries no orbital angular momentum $(\ell = 0) \rightarrow$ the parities of initial and final states must be identical since the parity associated with orbital angular momentum is $(-1)^{\ell}$ $\rightarrow \pi_i = \pi_f$
- Finally due to the property of raising and lowering operators $\rightarrow \langle T'M'_T | T_{\pm} | TM_T \rangle = \sqrt{(T \mp M_T)(T \pm M_T + 1)} \delta_{T'T} \delta_{M'_T M_T \pm 1}$ $\rightarrow T_i = T_f$

$$J_i = J_f, \ \pi_i = \pi_f, \ T_i = T_f$$

Selections rules: Fermi decay (3)

The spin of the baryons to point in the same direction before and after the decay

Selections rules: Gamow-Teller decay (1)

If S = 1 → → transition called Gamow-Teller (GT) decay → in that case the O_β takes the form →_A

$$O_{\beta} = O_{GT} = \sum_{j=1}^{N} S_j t_{j\pm}$$

- S_j is the spin operator of nucleon j (irreducible tensor operator of rank 1 in position and spin space and in isospin space)
- For S = 1 → electron and neutrino carry a total angular momentum of 1 unit → J_i and J_f must be coupled through a vector of length 1 → J_i = J_f + 1 → only possible if ΔJ = 0 or 1 except for J_i = J_f = 0 in which case only Fermi transition can contribute (Wigner-Eckart theorem for an irreducible tensor operator of rank 1 in position and spin space)

$$|J_i - J_f| \le 1 \le J_i + J_f \tag{47}$$

Selections rules: Gamow-Teller decay (2)

- As for Fermi decay \rightarrow the parities of initial and final states must be identical $\rightarrow \pi_i = \pi_f$
- And finally from Wigner-Eckart theorem for an irreducible tensor operator of rank 1 in isospin space →

$$|T_i - T_f| \le 1 \le T_i + T_f$$

$$|J_i - J_f| \le 1 \le J_i + J_f, \ \pi_i = \pi_f, \ |T_i - T_f| \le 1 \le T_i + T_f$$

Selections rules: Gamow-Teller decay (3)

The spin of the baryons to point in the opposite direction before and after the decay \rightarrow the GT decay mode is sometimes called the spin-flip mode

Selections rules: Mixed F + GT decay

• When the rules:

$$J_i = J_f \neq 0, \ \pi_i = \pi_f, \ T_i = T_f \neq 0$$

are satisfied \rightarrow the 2 types of decay are simultaneously possible

• We have in this case a mixed Fermi-Gamow-Teller decay in which the exact proportion of F and GT are determined by the initial and final nuclear wave functions

Selections rules: examples of allowed decays

- Pure Fermi decays: ${}^{14}O \rightarrow {}^{14}N^* (0^+ \rightarrow 0^+)$, ${}^{34}CI \rightarrow {}^{34}S (0^+ \rightarrow 0^+)$, ${}^{10}C \rightarrow {}^{10}B^* (0^+ \rightarrow 0^+) (0^+ \rightarrow 0^+ \text{ cannot decay via GT transition}$ which must carry 1 unit of angular momentum)
- Pure GT decays: ⁶He \rightarrow ⁶Li (0⁺ \rightarrow 1⁺), ¹³B \rightarrow ¹³C (3/2⁻ \rightarrow 1/2⁻), ²³⁰Pa \rightarrow ²³⁰Th* (2⁻ \rightarrow 3⁻), ¹¹¹Sn \rightarrow ¹¹¹In (7/2⁺ \rightarrow 9/2⁺)
- Mixed F + GT (both F and Gt rules are satisfied): $n \rightarrow p$ (1/2⁺ \rightarrow 1/2⁺) (82% GT and 18% F), ³H \rightarrow ³He (1/2⁺ \rightarrow 1/2⁺) (81% GT and 19% F), ¹³N \rightarrow ¹³C (1/2⁻ \rightarrow 1/2⁻) (24% GT and 76% F)

Selections rules: forbidden decays (1)

- The designation «forbidden decay » is a misnomer → these decays are less probable than allowed decays but if the allowed *M_{fi}* matrix vanishes → only forbidden decays occur in that case
- When previous rules are not fulfilled (as a change in parity) → forbidden decays occur → conditions of the allowed approximation are not fulfilled →

$$\exp(i\boldsymbol{p}\boldsymbol{r}/\hbar) = 1 + \frac{i\boldsymbol{p}\boldsymbol{r}}{\hbar} + \frac{1}{2}(\frac{i\boldsymbol{p}\boldsymbol{r}}{\hbar})^2 + \dots \neq 1$$
$$\exp(i\boldsymbol{q}\boldsymbol{r}/\hbar) = 1 + \frac{i\boldsymbol{q}\boldsymbol{r}}{\hbar} + \frac{1}{2}(\frac{i\boldsymbol{q}\boldsymbol{r}}{\hbar})^2 + \dots \neq 1$$

Selections rules: forbidden decays (2)

- If we consider again an e⁻ with typical kinetic energy T_e = 1 MeV and a a typical nuclear radius of R ~ 6 fm → pR/ħ ≈ 0.04 → transition for ℓ = 1 has an intensity 0.04 smaller than ℓ = 0 and transitions for ℓ > 1 are even more unlikely
- If the first term in the development given a non-zero matrix element corresponds to ℓ = 1 → first-forbidden decay
- If the first term in the development given a non-zero matrix element corresponds to ℓ = 2 → second-forbidden decay
- If the first term in the development given a non-zero matrix element corresponds to ℓ = 3 → third-forbidden decay

Selections rules: first-forbidden decay

- As the allowed decays → they can be on Fermi type (electron an neutrino spins opposite → S = 0) and Gamow-Teller type (parallel spins → S = 1)
- The coupling of S = 0 with $\ell = 1$ for the Fermi decay gives total angular momentum of 1 unit carried by the beta decay \rightarrow $\Delta J = 0$ or 1 (but not $0 \rightarrow 0$)
- Coupling S = 1 with $\ell = 1$ for the Gamow-Teller decay gives 0, 1 or 2 units of total angular momentum $\rightarrow \Delta J = 0, 1$ or 2
- Selections rules for first-forbidden decay are \rightarrow

$$\Delta J = 0, 1, 2 \text{ and } \pi_i \neq \pi_f$$

Selections rules: examples of : first-forbidden decays

- ${}^{17}N \rightarrow {}^{17}O (1/2^{-} \rightarrow 5/2^{+})$
- $^{76}\mathrm{Br}
 ightarrow ^{76}\mathrm{Se} \ (1^{-}
 ightarrow 0^{+})$
- $^{122}\text{Sb} \rightarrow ^{122}\text{Sn*}$ (2⁻ \rightarrow 2⁺)

Selections rules: second-forbidden decay

- When S = 0 or 1 is coupled with ℓ = 2 → we can in principle have ΔJ = 0, 1, 2 or 3 but the ΔJ = 0, 1 cases fall within the selection rule for allowed decays (with no parity change) → the contribution of the second-forbidden term to those decays is negligible
- Excepting these cases the selections rules are \rightarrow

$$\Delta J = 2, 3 \text{ and } \pi_i = \pi_f$$

• Examples of second-forbidden decays are $^{22}Na \rightarrow ^{22}Ne (3^+ \rightarrow 0^+)$ or $^{137}Cs \rightarrow ^{137}Ba (7/2^+ \rightarrow 3/2^+)$

Selections rules: other forbidden decays

 Third-forbidden decay (ℓ = 3) → considering selections rules not satisfied by the first-forbidden decay →

$$\Delta J = 3, 4 \text{ and } \pi_i \neq \pi_f$$

- Examples of third-forbidden decay \rightarrow ⁸⁷Rb \rightarrow ⁸⁷Sr (3/2⁻ \rightarrow 9/2⁺) or ⁴⁰K \rightarrow ⁴⁰Ca (4⁻ \rightarrow 0⁺)
- In very unusual circumstances \rightarrow fourth-forbidden decay ($\ell = 4$) \rightarrow

$$\Delta J = 4, 5 \text{ and } \pi_i = \pi_f$$

• Example of fourth-forbidden decay \rightarrow ¹¹⁵In \rightarrow ¹¹⁵Sn (9/2⁺ \rightarrow 1/2⁺)

Selections rules: example of ¹³⁷Cs

Comparative half-lives

- β decay half-lives varies from the order of ms to about 10¹⁶ years
 → ft values from about 10³ to 10²⁰ s → one of the reasons is the difficulty to create β particle and neutrino with ℓ > 0
- The decays with shortest half-lives (log $ft \simeq$ 3-4) are called superallowed decays (particular case of allowed decays)
- Superallowed decays are pure Fermi transitions → they occur between analog isobaric states (AIS) i.e. states having the same isospin and configuration → the matrix element M_{fi} reaches its maximum values because the spatial component of the initial and final wave functions are strongly similar
- The energy difference between mother and daughter AIS is due to the difference of Coulomb energies between the 2 nuclei \rightarrow this kind of transition can only occur for neutron-deficient nuclei $\rightarrow \beta^+$ or electron capture

Comparative half-lives: superallowed decays (1)

 A particular case of superallowed decay has 0⁺ and T = 1 initial and final states (with M_T = - 1 and M'_T = 0) → for this case M_{fi} can be calculated easily →

$$M_{fi} = \langle T'M_T' | T_{\pm} | TM_T \rangle = \sqrt{(T \mp M_T)(T \pm M_T + 1)} \delta_{T'T} \delta_{M_T'M_T \pm 1}$$

$$M_{fi} = \langle T = 1, M_T = 0 | T_+ | T = 1, M_T = -1 \rangle = \sqrt{2}$$

- The *ft* values are identical for all $0^+ \rightarrow 0^+$ transitions $ft_{\rm theo}$ = 3073 s
- Moreover this transition gives the theoretical value of $G_F \rightarrow$ large success of the Fermi theory

Comparative half-lives: superallowed decays (2)

Decay	ft (s)		
${}^{10}C \rightarrow {}^{10}B$	3100 ± 31		
$^{14}O \rightarrow ^{14}N$	3092 ± 4		
18 Ne $\rightarrow ^{18}$ F	3084 ± 76		
²² Mg → ²² Na	3014 ± 78		
$^{26}Al \rightarrow ^{26}Mg$	3081 ± 4		
$^{26}Si \rightarrow ^{26}Al$	3052 ± 51		
${}^{30}S \rightarrow {}^{30}P$	3120 ± 82		
$^{34}Cl \rightarrow ^{34}S$	3087 ± 9		
³⁴ Ar → ³⁴ Cl	3101 ± 20		
$^{38}K \rightarrow ^{38}Ar$	3102 ± 8		
³⁸ Ca → ³⁸ K	3145 ± 138		
⁴² Sc → ⁴² Ca	3091 ± 7		
⁴² Ti → ⁴² Sc	3275 ± 1039		
⁴⁶ V → ⁴⁶ Ti	3082 ± 13		
⁴⁶ Cr → ⁴⁶ V	2834 ± 657		
⁵⁰ Mn → ⁵⁰ Cr	3086 ± 8		
54 Co \rightarrow 54 Fe	3091 ± 5		
⁶² Ga → ⁶² Zn	2549 ± 1280		

Comparative half-lives: calculation of ft (1)

• As written above \rightarrow

$$ft = f(Q)\frac{T_{1/2}}{BR}$$

- Example $1 \rightarrow \beta^2$ of ²⁰³Hg \rightarrow ²⁰³Tl (first-forbidden transition)
 - $T_{1/2}$ = 46.8 days = 4043520 s → $\log_{10} T_{1/2}$ = 6.6
 - − Q = 0.491 MeV but 100% of the decay goes to the 279 keV excited state of TI → T_{max} of β = 0.212 MeV → from Fermi integral figure → $\log_{10} f$ = -0.1
 - Finally $\log_{10} ft = \log_{10} f + \log_{10} T_{1/2} = -0.1 + 6.6 = 6.5$
- Example 2 $\rightarrow \beta^+$ of ²²Na \rightarrow ²²Ne (second-forbidden transition)
 - $T_{1/2}$ = 2.6 years → $\log_{10} T_{1/2}$ = 7.9
 - − Q = 1.8 MeV \rightarrow from Fermi integral figure $\rightarrow \log_{10} f$ = 1.6
 - − The branching ratio to the ground state is $0.06\% \rightarrow \log_{10} BR = -3.2$
 - Finally $\log_{10} ft = \log_{10} f + \log_{10} T_{1/2} \log_{10} BR = 7.9 + 1.6 + 3.2 = 12.7$

Comparative half-lives: calculation of ft (2)

Comparative half-lives: measurement of *ft*

Comparative half-lives: summary

Туре	$\log(ft)$	L	$\Delta \pi$	$\Delta \vec{J}$	
				$\vec{S} = \vec{0}$	$\vec{S} = \vec{1}$
				Fermi	Gam-Tel
super-allowed	2.9-3.7	0	+	0	0
allowed	4.4-6.0	0	+	0	0,1
first forbidden	6-10	1	-	0,1	0,1,2
second forbidden	10-13	2	+	1,2	1,2,3
third forbidden	> 15	3	-	2,3	2,3,4

Electron capture decay (1)

• In electron capture decay \rightarrow

$${}^{A}_{Z}X_{N} + e^{-} \stackrel{\epsilon}{\to} {}^{A}_{Z-1}Y^{*}_{N+1} + \nu_{e}$$

- Use of the Fermi Golden Rule as previously but now a bound electron is involved in the transition (large probability to have a K (1s) electron) → 2 main ≠ →
 - the phase-space volume is determined entirely by the energy of the emitted neutrino because the electron is in a definite quantum state before its capture
 - The wave function of the electron at the origin is given by

$$\varphi_K(0) = \frac{1}{\sqrt{\pi}} \left(\frac{Zm_e e^2}{4\pi\epsilon_0 \hbar^2} \right)^{3/2}$$

Electron capture decay (2)

• The decay probability becomes \rightarrow

$$\lambda_{\epsilon} = \frac{G_F^2 |M_{fi}|^2 T_{\nu}^2}{2\pi^2 c^3 \hbar^3} |\varphi_K(0)|^2$$

$$\propto G_F^2 Z^3 |M_{fi}|^2 T_{\nu}^2$$

- T_ν = Q_ε is the energy of the neutrino (the recoil energy is neglected)
- It is possible to compare the transition probabilities for β^+ and ϵ decay for $Q_{\epsilon} > 2m_ec^2$ (for $Q_{\epsilon} < 2m_ec^2$ only electron capture is possible) $\rightarrow \qquad \lambda_{\epsilon} \qquad Z^3 T_{\pm}^2$

$$\frac{\lambda_{\epsilon}}{\lambda_{\beta^+}} \propto \frac{Z \ I_{\nu}}{f(Z', E_0)}$$

Electron capture decay (3)

 E_T is the total energy available, Z corresponds to the target

Other processes: double- β decay (1)

 The double-β (ββ) decay corresponds to the transition in which two protons are simultaneously transformed into two neutrons, or vice versa, inside an atomic nucleus → emission of 2 β particles (e⁻ or e⁺)

- Direct process between 2 successive even-even nuclei (which are more stable due to spin-coupling) for which the β transitions with an intermediate odd-odd nucleus is either impossible either very unlikely
- Example 1: ⁴⁸Ca \rightarrow ⁴⁸Ti (0⁺ \rightarrow 0⁺) \rightarrow the *Q* value for the β decay to ⁴⁸Ti is 0.281 MeV but the only accessible states are 4⁺, 5⁺ and 6⁺ \rightarrow requiring fourth- or sixth forbidden decays \rightarrow enormous mean life time \rightarrow the $\beta\beta$ -decay is rare but more probable: 25% β ⁻ and 75% β β \rightarrow $T_{1/2} = 6.4 \times 10^{19}$ years (remark: double magic nucleus: 20 and 28)

Other processes: double- β decay (2)

• Example 2: ¹³⁰Te \rightarrow ¹³⁰Xe (0⁺ \rightarrow 0⁺) \rightarrow ¹³⁰Te cannot decay to ¹³⁰I because of negative Q value $\rightarrow \beta\beta$ -decay to ¹³⁰Xe ($T_{1/2}$ = 0.8 × 10²¹ years!)

Other processes: double- β decay (3)

One of the goals of this kind of experiments is to observe a decay without neutrino →

- In this process the two neutrinos annihilate each other or equivalently a nucleon absorbs the neutrino emitted by another nucleon
- Not observed yet
Other processes: neutrino capture

• Processes \rightarrow

$${}^{A}_{Z}X_{N} + \nu \rightarrow {}^{A}_{Z+1}Y_{N-1} + e^{-}$$

$${}^{A}_{Z}X_{N} + \nu \rightarrow {}^{A}_{Z-1}Y_{N+1} + e^{+}$$

- Small probability of occurrence because of very small cross sections
- Example: ³⁷Cl + ν → ³⁷Ar + e⁻ → ³⁷Ar is unstable (T_{1/2} = 37 days)
 → method used for the detection of solar neutrinos (big detector volume)

Other processes: β -delayed nucleon emission (1)

- Following β decay \rightarrow excited states \rightarrow generally γ decay
- Occasionally states are unstable against emission of one or more nucleons (proton, neutron, α)
- Nucleon emission occurs rapidly \rightarrow competition with γ decay \rightarrow nucleon emission occurs with a half-life characteristic of β decay
- Original β-decay parent is called precursor ↔ nucleon comes from the emitter ↔ final state is the daughter
- Interests in delayed emission
 - \rightarrow study of nuclei far from stability
 - \rightarrow importance of delayed neutrons in the control of nuclear reactors

Other processes: β -delayed nucleon emission (2)

Schemes of β -delayed proton and neutron emissions

Other processes: β -delayed nucleon emission (3)

- Calculation of energy spectra of emitted nucleon is complicate

 → requiring knowledge of the spectrum of excited state, probability of β-decay, probability of nucleon decay
 → in heavy nuclei → large density of excited states → broad distribution (~ continuous)
- One easy point \rightarrow the β -decay energy must be larger than the nucleon separation energy $\rightarrow Q_{\beta} > S_N$ (N for nucleon)
- No discussion of the theory of β -delayed nucleon emission \rightarrow only one example $\rightarrow \beta$ -delayed neutron emission from ¹⁷N

Other processes: β -delayed neutron emission from ¹⁷N (1)

Other processes: β -delayed neutron emission from ¹⁷N (2)

- 3 excited states of ¹⁷O are populated in the β⁻ decay from ¹⁷N and emit a neutron to form ¹⁶O → 3 neutron groups
- In this particular case (not true in general) → decay to the ground state of ¹⁶O ↔ first excited state of ¹⁶O at more than 6 MeV → impossible to reach this state before neutron emission
- Determination of the neutron separation energy of $^{17}{\rm O}$ \rightarrow

$$S_n = [m(^{16}O) - m(^{17}O) + m_n]c^2$$

- = (15.99491 u 16.99913 u + 1.00866 u)931.502 MeV/u
- = 4.144 MeV

Other processes: β -delayed neutron emission from ¹⁷N (3)

- E_x is the excited energy of ¹⁷O \rightarrow the initial energy is $m(^{17}\text{O})c^2 + E_x$
- The final energy is $m({}^{16}\text{O})c^2 + E'_x + m_pc^2 + T_p + T_R$ with E'_x a possible excitation energy (= 0 in this case), T_n the neutron kinetic energy and T_{R} the ¹⁶O recoil energy
- Energy conservation gives \rightarrow $m(^{17}O)c^2 + E_x = m(^{16}O)c^2 + E'_x + m_nc^2 + T_n + T_R$ $\Rightarrow E_x = E'_x + T_n + T_R + S_n$
- The recoil energy is obtained from the conservation of momentum \rightarrow $T_R = T_n(m_n/m_R) \approx T_n/(A-1) \rightarrow$ $E_x = E'_x + \frac{A}{A-1}T_n + S_n$
- Assuming $E'_x = 0 \rightarrow$ the 3 E_x are 4.551, 5.388 and 5.950 MeV (corresponding to experiment) $\leftrightarrow E'_{x} = 6.049$ MeV is impossible \rightarrow 6.049 MeV + 4.144 MeV > 8.680 MeV

Other processes: β -delayed nucleon emission from heavy nuclei

 In heavy nuclei → large density of excited states → broad distribution ↔ no individual peaks in the nucleon spectrum as for ¹⁷N

