Chapter V: Alpha decay

Summary

- 1. General principles
- 2. Energy and momentum conservations
- 3. Theory of α emission
- 4. Angular momentum and parity

General principles (1)

- The nucleus emit an α particle i.e. a nucleus of helium: ${}_{2}^{4}\text{He}_{2}$
- Alpha emission is a Coulomb repulsion effect → becomes important for heavy nuclei (Coulomb repulsion in heavy nuclei due to the larger number of protons present) → Bethe-Weizsäcker formula → Coulomb force ↗ with size at a faster rate (in ~ Z²) than does the specific nuclear binding force (in ~ A)
- The α emission is particularly favored (compared to other particles) due to
 - Its very stable and tightly bound structure
 - Its small mass
 - Its small charge
- Theoretically some heavier particles as ⁸Be or ¹²C may be emitted or the fission into equal daughter nuclides may happen → but very penalized

General principles (2)

- For a nucleus to be an α emitter → not enough for the α decay to be energetically possible → the disintegration constant must also not be too small → the α emission would occur so rarely that it may never be detected (T_½ < 10¹⁶ years)
- Moreover if β decay is present \rightarrow can mask the α decay
- Most nuclei with A > 190 and many with 150 < A < 190 are energetically possible emitters but ½ of them effectively meet the 2 other conditions

Energy conservation (1)

• The α emission process (between ground state levels) is:

$${}^{A}_{Z}X_{N} \rightarrow {}^{A-4}_{Z-2}X'_{N-2} + \alpha$$

- Rutherford shows in 1908 that the α particle is a nucleus of ⁴He \rightarrow constituted of 2 protons and 2 neutrons
- Energy conservation with the initial decaying nucleus X at rest \rightarrow

$$m_X c^2 = m_{X'} c^2 + T_{X'} + m_\alpha c^2 + T_\alpha$$

- Due to the linear momentum conservation → X' and α are in motion → T is the kinetic energy
- Equivalently we write \rightarrow

$$T_{X'} + T_{\alpha} = (m_X - m_{X'} - m_{\alpha})c^2$$

Energy conservation (2)

- Q = (m_X m_{X'} m_α)c² = the net energy released in the decay → the decay occurs spontaneously only if Q > 0
- Q can be calculated from atomic masses (even we discuss about nuclear processes) because the electron masses cancel in the subtraction
- For a typical α emitter (232-U) → Q may be calculated from the known masses for various emitted particles:

Emitted Particle	Energy Release (MeV)	Emitted Particle	Energy Release (MeV)
n	-7.26	⁴ He	+5.41
чн	- 6.12	⁵ He	-2.59
2 H	- 10.70	⁶ He	-6.19
зн	- 10.24	⁶ Li	- 3:79
³ He	-9.92	⁷ Li	-1.94

Energy conservation (3)

- Only α emission is possible in this case → α is very stable → α has a relatively small mass compared with the mass of its separate constituents
- The Q value is also the total kinetic energy given to the decay fragments $Q = T_{\chi'} + T_{\alpha}$
- For $Q > 0 \rightarrow$ we find back the condition $m_{\chi} > m_{\chi'} + m_{\alpha}$ of instability in particles
- Remark: α disintegration towards excited levels of X' are possible → the excitation energy of the nucleus X' has to be subtracted from Q

Linear momentum conservation

- As the original nucleus is at rest → X' and α move with equal and opposite momenta → p_α = p_{X'}
- As the α decay released typically 5 MeV \rightarrow we can use nonrelativistic kinematics $\rightarrow m_{\alpha}T_{\alpha} = m_{\chi'}T_{\chi'} \rightarrow$

$$T_{\alpha} = \frac{Q}{1 + m_{\alpha}/m_{X'}}$$

• As X' is a heavy nucleus \rightarrow A \gg 4 \rightarrow

$$T_{\alpha} = Q(1 - 4/A), \ T_{X'} = 4Q/A$$

• Typically the α carries 98% of the Q energy and X' carries 2% (recoil energy) corresponding for α = 5 MeV to T_{X'} = 100 keV

Released energy (1)

• Introducing the binding energies the energy released during the α decay may be written \rightarrow

$$Q = B(4,2) + B(A - 4, Z - 2) - B(A, Z)$$

• Thus Q > 0 becomes \rightarrow

$$B(4,2) > B(A,Z) - B(A-4,Z-2)$$

= $A \frac{B(A,Z)}{A} - (A-4) \frac{B(A-4,Z-2) - A}{A-4}$
= $4 \left(\frac{B(A,Z)}{A} \right)_m + (A-2)\Delta$

• $(B/A)_m$ is the mean binding energy by nucleon of parent and daughter nuclei and Δ is their difference (\approx 30 keV for heavy nuclei) ⁹

Released energy (2)

• As $B(4,2) \approx 28 \text{ MeV} \rightarrow \text{we have thus approximately} \rightarrow$

$$\left(\frac{B(A,Z)}{A}\right)_m < \frac{B(4,2)}{4} \approx 7 \text{ MeV}$$

- Du to the term $\Delta \rightarrow \alpha$ decay becomes frequent for nuclei with A > 200 for which B/A is < 7.8 MeV
- This also explains why the α emission is favored compared to other nuclei as deuteron (B(2,1)/2 ≈ 1.11 MeV) or tritium (B(3,1)/3 ≈ 2.83 MeV) → indeed the α particle has tightly bound structure → a pair of neutrons and a pair of protons inside a nucleus is favored to form an α-cluster

Theory of α emission (1)

- General features of α emission theory have been developed by Gamow, Gurney and Condon in 1928
- The α particle is assumed to move in a spherical region determined by the daughter nucleus \rightarrow one-body model
- The α particle is preformed inside the parent nucleus \rightarrow there is no proof that it is well the case but it works quite well
- Deeply inside the heavy nucleus \rightarrow attractive nuclear force dominates the Coulomb repulsion force
- Outside the nucleus \rightarrow only remains the Coulomb force
- Between the 2 (close to the nucleus surface) \rightarrow number of • neighbours \lor \rightarrow nuclear attractive force \lor \rightarrow equilibrium with repulsion force \rightarrow potential barrier
- To be emitted the α particle has to cross this potential barrier by tunnel effect 11

- The probability of disintegration per time unit W is supposed to be \propto to the probability of crossing the barrier $\rightarrow W \propto |T|^2$ with T the transmission coefficient
- The transmission probability is given by the WKB approximation

WKB approximation

- For decay between ground state levels (e.g. 0^+) \rightarrow we have to resolve $u''(r) - 2\mu/\hbar^2 (V(r) - E) u(r) = 0$ (with $\mu \approx m_{\alpha} m_{x'}/m_x$ the reduced mass of the α nucleus and the daughter nucleus)
- By choosing $u(r) = \exp(iS(r))$ with S(r) slowly varying \rightarrow

Theory of α emission (3)

• WKB approximation applied to α emission $\rightarrow r_1 = R$ (the radius of the nucleus), $r_2 = 2(Z-2)e^2/4\pi\epsilon_0 E$, with

$$V(r) = \begin{cases} 0 & r < R\\ 2(Z-2)e^2/4\pi\epsilon_0 r & r \ge R \end{cases}$$
$$T|^2 = \exp\left\{-2\left(\frac{2\mu E}{\hbar^2}\right)^{1/2} \int_R^{r_2} \left(\frac{r_2}{r} - 1\right)^{1/2} dr\right\}$$

• Transforming $r = r_2 cos^2 u \rightarrow$

$$\int_{R}^{r_2} \left(\frac{r_2}{r} - 1\right)^{1/2} dr = r_2 \left[\arccos\sqrt{\frac{R}{r_2}} - \sqrt{\frac{R}{r_2}}\sqrt{1 - \frac{R}{r_2}}\right]_{\frac{1}{2}}$$

Theory of α emission (4)

- For a heavy nucleus emitting 5 MeV $\alpha \rightarrow r_2 \approx 0.6 Z \text{ fm} > R \approx 1.25 A^{1/3} \text{ fm}$
- Assuming $R/r_2 \approx 0 \rightarrow$ we obtain the Gamow approximation \rightarrow $|T|^2 \approx \exp(-2\pi\eta)$

where η the Sommerfeld factor is (α = 1/137)

$$\eta = (Z-2)\alpha \sqrt{\frac{2\mu c^2}{E}}$$

• The mean lifetime $\tau = W^{-1}$ approximately follows \rightarrow

$$\log_{10} \tau \approx C_1 + C_2 \frac{Z - 2}{\sqrt{E}}$$

with $C_2 = 2\pi (\log_{10} e) \alpha \sqrt{2\mu c^2}$

Theory of α emission (5)

 ${\it E}_{\alpha}$ is the kinetic energy of the α particle in MeV

Theory of α emission (6)

- The α emitters with short mean lifetime have large disintegration energy (and conversely) ↔ observed in 1911: Geiger-Nutall rule
- Examples: 232-Th: $T_{\frac{1}{2}}$ = 1.4 × 10¹⁰ years, Q = 4.08 MeV and 218-Th: $T_{\frac{1}{2}}$ = 1.0 × 10⁻⁷ s, Q = 9.85 MeV
- A factor 2 in energy implies a factor 10²⁴ in half-life
- Correct tendency for all isotopes but very good only for Z and N both even nuclei

А	Q (MeV)	$t_{1/2}$ (8)	(s)
		Measured	Calculated
220	8.95	10~5	3.3×10^{-7}
222	8.13	2.8×10^{-3}	6.3×10^{-5}
224	7.31	1.04	3.3×10^{-2}
226	6.45	1854	6.0×10^{1}
228	5.52	6.0×10^{7}	2.4×10^{6}
230	4.77	2.5×10^{12}	$1.0 imes 10^{11}$
232	4.08	4.4×10^{17}	2.6×10^{16}

17

Theory of α emission (7)

Theory of α emission (8)

- When $A > 212 \rightarrow$ adding neutrons to a nucleus reduces the disintegration ۲ energy \rightarrow due to the Geiger-Nuttall rule \rightarrow increase of the half-life \rightarrow the nucleus becomes more stable
- The discontinuity near A = 212 occurs where $N = 126 \rightarrow$ another example of ٠ nuclear shell structure.

Theory of α emission (9)

- Geiger-Nutall rule enables us to understand why other decays into light particles are not commonly seen (even though they are allowed by the *Q* value)
- Example 1: the decay ²²⁰Th \rightarrow ¹²C + ²⁰⁸Po would have Q = 32.1MeV $\rightarrow T_{\frac{1}{2}} = 2.3 \times 10^{6} \text{ s} = 10^{13} \text{ longer than the } \alpha\text{-decay } \rightarrow \text{not}$ easily be observable
- Example 2: Normally 223-Ra decays by α emission with T_{γ_2} = 11.2 days but another process has been discovered: ²²³Ra \rightarrow ¹⁴C + ²⁰⁹Pb with a very small probability $\rightarrow \sim 10^{-9}$ relative to the α decay \rightarrow extremely complicated measurement

Theory of α emission (10)

- Geiger-Nutall rule is able to reproduce T_{1/2} within 1-2 orders of magnitude over a range of more than 20 orders
- Approximations in previous calculations:
- Initial and final wave functions (↔ Fermi Golden Rule) are not considered
- The nucleus is assumed to be spherical with R ≈ 1.25 A^{1/3} fm
 → heavy nuclei (specially with A ≥ 230) have strongly deformed shape
- 3. The angular momentum carried by the α particle is neglected

Angular momentum and parity (1)

- In previous calculations → transition between ground state levels (e.g. 0⁺) → but an initial state can populate different final states in the daughter nucleus → « fine structure » of α decay
- In that case we have to consider the angular momentum J_i and J_f of the of the initial and final nuclear state \rightarrow and consequently the angular momentum of the α particle ℓ_{α}
- Consequently $\rightarrow \alpha$ decay must follow the laws of the conservation of angular momentum and of parity

Angular momentum and parity (2)

• Definition of the total angular momentum **J** for *i* nucleons:

$$oldsymbol{J} = \sum_{i=1}^{A} (oldsymbol{L}_i + oldsymbol{S}_i)$$

with L_i and the orbital angular momentum operator and S_i the spin operator of the *i*th nucleon

• In the particular case of α decay \rightarrow this expression may be written (with I_{α} and \mathcal{E}_{α} the spin and angular momentum of the α particle and J_{i} and J_{f} written for initial and final nuclear states) \rightarrow

$$oldsymbol{J}_i = oldsymbol{J}_f + oldsymbol{I}_lpha + oldsymbol{\ell}_lpha$$

• The α particle wave function is then represented by a $Y_{\ell m}$ with $\ell = \ell_{\alpha}$

Angular momentum and parity (3)

- As the ⁴He nucleus consists of 2 protons and 2 neutrons all in 1s state → their spins coupled pairwise → I_α = 0
- The composition of the 3 remaining angular momenta leads to \Rightarrow $|J_i-J_f| \leq \ell_\alpha \leq J_i+J_f$
- The conservation of parity implies \rightarrow

$$\pi_i = \pi_f \pi_\alpha (-1)^{\ell_\alpha}$$

• Moreover as the parity π_{α} of α particle is + (even-even nucleus) \rightarrow the parity conservation rule becomes \rightarrow

$$(-1)^{\ell_{\alpha}} = \pi_i \pi_f$$

- If the initial and final parities are the same $\rightarrow \ell_{\alpha}$ must be even \leftrightarrow If the parities are different $\rightarrow \ell_{\alpha}$ must be odd
- In particular for an initial state 0⁺ (frequent case) $\rightarrow \ell_{lpha}$ = J_f 24

Angular momentum and parity (4)

- Another consequence of the introduction of $\ell_{\alpha} \rightarrow$ the barrier of potential is raised and becomes (particle in a well): $V(r) + \hbar^2 \ell_{\alpha} (\ell_{\alpha} + 1)/2mr^2$
- The additional term is always > 0 → ↗ of the barrier thickness
 → the probability transition ↘
- Moreover the Q value ≥ when the final state is not the ground state: Q → Q E_x with E_x the energy of the excited state → application of the Geiger-Nutall rule → a smaller Q value implies a large mean lifetime → a small transition probability → a small intensity in the decay branch
- These 2 reasons implies a ↘ of the probability transition when the final state is not the ground state

Angular momentum and parity (5)

The 3⁺ state is forbidden by the parity selection rule $\rightarrow 0 \rightarrow 3$ decay must have $\ell_{\alpha} = 3 \rightarrow$ the parity has to change

Angular momentum and parity (6)

