Chapter V:
 Alpha decay

Summary

1. General principles
2. Energy and momentum conservations
3. Theory of α emission
4. Angular momentum and parity

General principles (1)

- The nucleus emit an α particle i.e. a nucleus of helium: ${ }_{2}^{4} \mathrm{He}_{2}$
- Alpha emission is a Coulomb repulsion effect \rightarrow becomes important for heavy nuclei (Coulomb repulsion in heavy nuclei due to the larger number of protons present) \rightarrow Bethe-Weizsäcker formula \rightarrow Coulomb force 7 with size at a faster rate (in $\sim Z^{2}$) than does the specific nuclear binding force (in $\sim A$)
- The α emission is particularly favored (compared to other particles) due to
- Its very stable and tightly bound structure
- Its small mass
- Its small charge
- Theoretically some heavier particles as ${ }^{8} \mathrm{Be}$ or ${ }^{12} \mathrm{C}$ may be emitted or the fission into equal daughter nuclides may happen \rightarrow but very penalized

General principles (2)

- For a nucleus to be an α emitter \rightarrow not enough for the α decay to be energetically possible \rightarrow the disintegration constant must also not be too small \rightarrow the α emission would occur so rarely that it may never be detected ($T_{1 / 2}<10^{16}$ years)
- Moreover if β decay is present \rightarrow can mask the α decay
- Most nuclei with $A>190$ and many with $150<A<190$ are energetically possible emitters but $1 / 2$ of them effectively meet the 2 other conditions

Energy conservation (1)

- The α emission process (between ground state levels) is:

$$
{ }_{Z}^{A} X_{N} \rightarrow{ }_{Z-2}^{A-4} X_{N-2}^{\prime}+\alpha
$$

- Rutherford shows in 1908 that the α particle is a nucleus of ${ }^{4} \mathrm{He}$ \rightarrow constituted of 2 protons and 2 neutrons
- Energy conservation with the initial decaying nucleus X at rest \rightarrow

$$
m_{X} c^{2}=m_{X^{\prime}} c^{2}+T_{X^{\prime}}+m_{\alpha} c^{2}+T_{\alpha}
$$

- Due to the linear momentum conservation $\rightarrow X^{\prime}$ and α are in motion $\rightarrow T$ is the kinetic energy
- Equivalently we write \rightarrow

$$
T_{X^{\prime}}+T_{\alpha}=\left(m_{X}-m_{X^{\prime}}-m_{\alpha}\right) c^{2}
$$

Energy conservation (2)

- $Q=\left(m_{\mathrm{x}}-m_{\mathrm{x}^{\prime}}-\mathrm{m}_{\alpha}\right) \mathrm{c}^{2}=$ the net energy released in the decay \rightarrow the decay occurs spontaneously only if $Q>0$
- Q can be calculated from atomic masses (even we discuss about nuclear processes) because the electron masses cancel in the subtraction
- For a typical α emitter (232-U) \rightarrow Q may be calculated from the known masses for various emitted particles:

Emitited Particle	Energy Rclease (MeV)	Emitted Particle	Energy Refease (MeV)
n.	-7.26	${ }^{4} \mathrm{He}$	+5.41
${ }^{1} \mathrm{H}$	-6.12	${ }^{3} \mathrm{He}$	-2.59
${ }^{3} \mathrm{H}$	-10.70	${ }^{6} \mathrm{He}$	-619
${ }^{3} \mathrm{H}$	-1024	${ }^{6} \mathrm{Li}$	-379
${ }^{3} \mathrm{He}$	-9.92	${ }^{7} \mathrm{Li}$	-1.94

Energy conservation (3)

- Only α emission is possible in this case $\rightarrow \alpha$ is very stable $\rightarrow \alpha$ has a relatively small mass compared with the mass of its separate constituents
- The Q value is also the total kinetic energy given to the decay fragments $Q=T_{X^{\prime}}+T_{\alpha}$
- For $Q>0 \rightarrow$ we find back the condition $m_{\mathrm{X}}>m_{\mathrm{X}^{\prime}}+m_{\alpha}$ of instability in particles
- Remark: α disintegration towards excited levels of X^{\prime} are possible \rightarrow the excitation energy of the nucleus X^{\prime} has to be subtracted from Q

Linear momentum conservation

- As the original nucleus is at rest $\rightarrow \mathrm{X}^{\prime}$ and α move with equal and opposite momenta $\rightarrow p_{\alpha}=p_{X^{\prime}}$
- As the α decay released typically $5 \mathrm{MeV} \rightarrow$ we can use nonrelativistic kinematics $\rightarrow m_{\alpha} T_{\alpha}=m_{\mathrm{X}^{\prime}} T_{\mathrm{x}^{\prime}} \rightarrow$

$$
T_{\alpha}=\frac{Q}{1+m_{\alpha} / m_{X^{\prime}}}
$$

- As X^{\prime} is a heavy nucleus $\rightarrow \mathrm{A} \gg 4 \rightarrow$

$$
T_{\alpha}=Q(1-4 / A), T_{X^{\prime}}=4 Q / A
$$

- Typically the α carries 98% of the Q energy and X^{\prime} carries 2% (recoil energy) corresponding for $\alpha=5 \mathrm{MeV}$ to $\mathrm{T}_{\mathrm{x}^{\prime}}=100 \mathrm{keV}$

Released energy (1)

- Introducing the binding energies the energy released during the α decay may be written \rightarrow

$$
Q=B(4,2)+B(A-4, Z-2)-B(A, Z)
$$

- Thus $Q>0$ becomes \rightarrow

$$
\begin{aligned}
B(4,2) & >B(A, Z)-B(A-4, Z-2) \\
& =A \frac{B(A, Z)}{A}-(A-4) \frac{B(A-4, Z-2)-}{A-4} \\
& =4\left(\frac{B(A, Z)}{A}\right)_{m}+(A-2) \Delta
\end{aligned}
$$

- $(B / A)_{m}$ is the mean binding energy by nucleon of parent and daughter nuclei and Δ is their difference ($\approx 30 \mathrm{keV}$ for heavy nuclei)

Released energy (2)

- As $B(4,2) \approx 28 \mathrm{MeV} \rightarrow$ we have thus approximately \rightarrow

$$
\left(\frac{B(A, Z)}{A}\right)_{m}<\frac{B(4,2)}{4} \approx 7 \mathrm{MeV}
$$

- Du to the term $\Delta \rightarrow \alpha$ decay becomes frequent for nuclei with $A>200$ for which B / A is $<7.8 \mathrm{MeV}$
- This also explains why the α emission is favored compared to other nuclei as deuteron $(B(2,1) / 2 \approx 1.11 \mathrm{MeV})$ or tritium $(\mathrm{B}(3,1) / 3 \approx 2.83 \mathrm{MeV}) \rightarrow$ indeed the α particle has tightly bound structure \rightarrow a pair of neutrons and a pair of protons inside a nucleus is favored to form an α-cluster

Theory of α emission (1)

- General features of α emission theory have been developed by Gamow, Gurney and Condon in 1928
- The α particle is assumed to move in a spherical region determined by the daughter nucleus \rightarrow one-body model
- The α particle is preformed inside the parent nucleus \rightarrow there is no proof that it is well the case but it works quite well
- Deeply inside the heavy nucleus \rightarrow attractive nuclear force dominates the Coulomb repulsion force
- Outside the nucleus \rightarrow only remains the Coulomb force
- Between the 2 (close to the nucleus surface) \rightarrow number of neighbours $\searrow \rightarrow$ nuclear attractive force $\searrow \rightarrow$ equilibrium with repulsion force \rightarrow potential barrier
- To be emitted the α particle has to cross this potential barrier by tunnel effect

Theory of α emission (2)

- The probability of disintegration per time unit W is supposed to be \propto to the probability of crossing the barrier $\rightarrow W \propto|T|^{2}$ with T the transmission coefficient
- The transmission probability is given by the WKB approximation

WKB approximation

- For decay between ground state levels (e.g. $\left.0^{+}\right) \rightarrow$ we have to resolve $u^{\prime \prime}(r)-2 \mu / \hbar^{2}(V(r)-E) u(r)=0$ (with $\mu \approx \mathrm{m}_{\alpha} \mathrm{m}_{x^{\prime}} / \mathrm{m}_{\mathrm{x}}$ the reduced mass of the α nucleus and the daughter nucleus)
- By choosing $u(r)=\exp (\mathrm{i} S(r))$ with $S(r)$ slowly varying \rightarrow $S(r)^{2}=2 \mu / \hbar^{2}(E-V(r))$
- Si $E<V(r) \rightarrow u(r)=\exp \left\{-\int \sqrt{\frac{2 \mu}{\hbar^{2}}(V(r)-E)} d r\right\}$

$$
|T|^{2}=\left|\frac{u\left(r_{2}\right)}{u\left(r_{1}\right)}\right|^{2}=\exp \left\{-2 \int_{r_{1}}^{r_{2}} \sqrt{\frac{2 \mu}{\hbar^{2}}(V(r)-E)} d r\right\}=\exp (-2 G)
$$

Theory of α emission (3)

- WKB approximation applied to α emission $\rightarrow r_{1}=R$ (the radius of the nucleus), $r_{2}=2(Z-2) \mathrm{e}^{2} / 4 \pi \epsilon_{0} E$, with

$$
\begin{gathered}
V(r)= \begin{cases}0 & r<R \\
2(Z-2) e^{2} / 4 \pi \epsilon_{0} r & r \geq R\end{cases} \\
|T|^{2}=\exp \left\{-2\left(\frac{2 \mu E}{\hbar^{2}}\right)^{1 / 2} \int_{R}^{r_{2}}\left(\frac{r_{2}}{r}-1\right)^{1 / 2} d r\right\}
\end{gathered}
$$

- Transforming $r=r_{2} \cos ^{2} u \rightarrow$
$\int_{R}^{r_{2}}\left(\frac{r_{2}}{r}-1\right)^{1 / 2} d r=r_{2}\left[\arccos \sqrt{\frac{R}{r_{2}}}-\sqrt{\frac{R}{r_{2}}} \sqrt{1-\frac{R}{r_{2}}}\right]$

Theory of α emission (4)

- For a heavy nucleus emitting $5 \mathrm{MeV} \alpha \rightarrow r_{2} \approx 0.6 \mathrm{Zfm}>R \approx$ $1.25 A^{1 / 3} \mathrm{fm}$
- Assuming $R / r_{2} \approx 0 \rightarrow$ we obtain the Gamow approximation \rightarrow

$$
|T|^{2} \approx \exp (-2 \pi \eta)
$$

where η the Sommerfeld factor is ($\alpha=1 / 137$)

$$
\eta=(Z-2) \alpha \sqrt{\frac{2 \mu c^{2}}{E}}
$$

- The mean lifetime $\tau=W^{-1}$ approximately follows \rightarrow

$$
\begin{gathered}
\log _{10} \tau \approx C_{1}+C_{2} \frac{Z-2}{\sqrt{E}} \\
\text { with } C_{2}=2 \pi\left(\log _{10} e\right) \alpha \sqrt{2 \mu c^{2}}
\end{gathered}
$$

Theory of α emission (5)

E_{α} is the kinetic energy of the α particle in MeV

Theory of α emission (6)

- The α emitters with short mean lifetime have large disintegration energy (and conversely) \leftrightarrow observed in 1911: Geiger-Nutall rule
- Examples: 232-Th: $T_{1 / 2}=1.4 \times 10^{10}$ years, $Q=4.08 \mathrm{MeV}$ and 218 -Th: $T_{1 / 2}=1.0 \times 10^{-7} \mathrm{~s}, Q=9.85 \mathrm{MeV}$
- A factor 2 in energy implies a factor 10^{24} in half-life
- Correct tendency for all isotopes but very good only for Z and N both even nuclei

A	Q (MEN)	$t_{1 / 2}(5)$	
		Mrasured	Cakulawd
220	8.5	10^{-1}	33×10^{-1}
222	8.15	28×10^{-3}	63×10^{-1}
224	731	1.04	J3 510^{-2}
126	6.45	1854	60×10^{1}
228	5.52	60×10^{7}	24×10
240	4.77	2.5×10^{12}	1.0×10^{111}
232	4,08	4.4×10^{17}	26×10^{41}

Theory of α emission (7)

Theory of α emission (8)

- When $A>212 \rightarrow$ adding neutrons to a nucleus reduces the disintegration energy \rightarrow due to the Geiger-Nuttall rule \rightarrow increase of the half-life \rightarrow the nucleus becomes more stable
- The discontinuity near $A=212$ occurs where $N=126 \rightarrow$ another example of nuclear shell structure.

Theory of α emission (9)

- Geiger-Nutall rule enables us to understand why other decays into light particles are not commonly seen (even though they are allowed by the Q value)
- Example 1: the decay ${ }^{220} \mathrm{Th} \rightarrow{ }^{12} \mathrm{C}+{ }^{208}$ Po would have $Q=32.1$ $\mathrm{MeV} \rightarrow T_{1 / 2}=2.3 \times 10^{6} \mathrm{~s}=10^{13}$ longer than the α-decay \rightarrow not easily be observable
- Example 2: Normally 223-Ra decays by α emission with $T_{1 / 2}=$ 11.2 days but another process has been discovered: ${ }^{223} \mathrm{Ra} \rightarrow$ ${ }^{14} \mathrm{C}+{ }^{209} \mathrm{~Pb}$ with a very small probability $\rightarrow \sim 10^{-9}$ relative to the α decay \rightarrow extremely complicated measurement

Theory of α emission (10)

- Geiger-Nutall rule is able to reproduce $T_{1 / 2}$ within 1-2 orders of magnitude over a range of more than 20 orders
- Approximations in previous calculations:

1. Initial and final wave functions (\leftrightarrow Fermi Golden Rule) are not considered
2. The nucleus is assumed to be spherical with $R \approx 1.25 A^{1 / 3} \mathrm{fm}$ \rightarrow heavy nuclei (specially with $A \geq 230$) have strongly deformed shape
3. The angular momentum carried by the α particle is neglected

Angular momentum and parity (1)

- In previous calculations \rightarrow transition between ground state levels (e.g. 0^{+}) \rightarrow but an initial state can populate different final states in the daughter nucleus \rightarrow « fine structure » of α decay
- In that case we have to consider the angular momentum J_{i} and J_{f} of the of the initial and final nuclear state \rightarrow and consequently the angular momentum of the α particle ℓ_{α}
- Consequently $\rightarrow \alpha$ decay must follow the laws of the conservation of angular momentum and of parity

Angular momentum and parity (2)

- Definition of the total angular momentum J for i nucleons:

$$
\boldsymbol{J}=\sum_{i=1}^{A}\left(\boldsymbol{L}_{i}+\boldsymbol{S}_{i}\right)
$$

with L_{i} and the orbital angular momentum operator and S_{i} the spin operator of the $i^{\text {th }}$ nucleon

- In the particular case of α decay \rightarrow this expression may be written (with \boldsymbol{I}_{α} and $\boldsymbol{\ell}_{\alpha}$ the spin and angular momentum of the α particle and J_{i} and J_{f} written for initial and final nuclear states) \rightarrow

$$
\boldsymbol{J}_{i}=\boldsymbol{J}_{f}+\boldsymbol{I}_{\alpha}+\boldsymbol{\ell}_{\alpha}
$$

- The α particle wave function is then represented by a $Y_{\ell m}$ with $\ell=\ell_{\alpha}$

Angular momentum and parity (3)

- As the ${ }^{4} \mathrm{He}$ nucleus consists of 2 protons and 2 neutrons all in 1 s state \rightarrow their spins coupled pairwise $\rightarrow I_{\alpha}=0$
- The composition of the 3 remaining angular momenta leads to \rightarrow

$$
\left|J_{i}-J_{f}\right| \leq \ell_{\alpha} \leq J_{i}+J_{f}
$$

- The conservation of parity implies \rightarrow

$$
\pi_{i}=\pi_{f} \pi_{\alpha}(-1)^{\ell}
$$

- Moreover as the parity π_{α} of α particle is + (even-even nucleus) \rightarrow the parity conservation rule becomes \rightarrow

$$
(-1)^{\ell_{\alpha}}=\pi_{i} \pi_{f}
$$

- If the initial and final parities are the same $\rightarrow \ell_{\alpha}$ must be even \leftrightarrow If the parities are different $\rightarrow \ell_{\alpha}$ must be odd
- In particular for an initial state 0^{+}(frequent case) $\rightarrow \ell_{\alpha}=J_{f}$

Angular momentum and parity (4)

- Another consequence of the introduction of $\ell_{\alpha} \rightarrow$ the barrier of potential is raised and becomes (particle in a well):

$$
V(r)+\hbar^{2} \ell_{\alpha}\left(\ell_{\alpha}+1\right) / 2 m r^{2}
$$

- The additional term is always $>0 \rightarrow \lambda$ of the barrier thickness \rightarrow the probability transition \searrow
- Moreover the Q value \searrow when the final state is not the ground state: $Q \rightarrow Q-E_{x}$ with E_{x} the energy of the excited state \rightarrow application of the Geiger-Nutall rule \rightarrow a smaller Q value implies a large mean lifetime \rightarrow a small transition probability \rightarrow a small intensity in the decay branch
- These 2 reasons implies a \searrow of the probability transition when the final state is not the ground state

Angular momentum and parity (5)

Angular momentum and parity (6)

$\frac{13 / 2^{*}}{4(0.083), 6(0.0039), 8,10}$
$\xrightarrow{11 / 2^{+}} 2(0.88), 4(0.27), 6(0.0037), 8$
$\begin{aligned} & 9 / 2^{+}\end{aligned} 2(5,9), 4(0.33), 6(0.0014), 8$
$\frac{7 / 2^{+}}{249_{8 k}} 0(79.6), 2(10.0), 4(0.13), 6(0.0002)$
$t_{0}(\%)$

