Chapter IV: Radioactive decay

Summary

- 1. Law of radioactive decay
- 2. Decay chain/Radioactive filiation
- 3. Quantum description
- 4. Types of radioactive decay

History

- Radioactivity was discover in 1896 by Henri Becquerel while working on uranium salts
- On Earth some elements show « natural » radioactivity due to their lifetime comparable to the age of the Earth (principally uranium and thorium)
- Artificial radioactivity (artificial production radioactive elements) is possible with use of particles accelerators or nuclear reactors \rightarrow first time (Irène and Frédéric Jolliot-Curie):

$$
{}_{13}^{27}\text{Al} + {}_{2}^{4}\alpha \rightarrow +{}_{15}^{30}\text{P} + n
$$

$$
{}_{15}^{30}\text{P} \rightarrow +{}_{14}^{30}\text{Si} + \beta^{+} + \nu_{e}
$$

Law of radioactive decay (1)

- Radioactive decay has a statistical character \rightarrow impossible to precisely predict when a disintegration will happen \rightarrow only probabilities may be given
- If 4 conditions are fulfilled:
	- 1. atoms are identical
	- 2. they are independent
	- 3. their mean life is long
	- 4. their number is large
	- \rightarrow the Poisson statistic can be applied:

$$
P_x(T) = \frac{(\lambda T)^x}{x!}e^{-\lambda T}
$$

• *P^x* is the probability for *x* disintegrations in a time interval *T* and λ is the probability of disintegration per unit time = decay (desintegration) constant (independent of the nucleus age) ⁴

Law of radioactive decay (2)

- λ *dt* is the disintegration probability of a nucleus in the time interval *dt*
- The survival probability of a nucleus at time t (if existing in $t = 0$) \rightarrow

$$
P_0(t) = e^{-\lambda t}
$$

• If N ⁰ is the initial number (at $t = 0$) of nuclei \rightarrow the number of survival nuclei *N(t)* at time *t* is:

$$
N(t) = N_0 e^{-\lambda t}
$$

Half-life and activity (1)

• The half-life $T_{\frac{1}{2}}$ is time is time taken for half the radionuclide's atoms to decay \rightarrow

$$
N(T_{1/2}) = \frac{N_0}{2} = N_0 e^{-T_{1/2}\lambda}
$$

\n
$$
T_{1/2} = \frac{\ln 2}{\lambda}
$$

• The mean lifetime for decaying atoms τ is defined as the arithmetic mean of all the atoms' lifetimes \rightarrow

$$
\tau = \frac{\int_0^\infty t \left| \frac{dN}{dt} \right| dt}{\int_0^\infty \left| \frac{dN}{dt} \right| dt} = \frac{\int_0^\infty \lambda t e^{-\lambda t}}{\int_0^\infty \lambda e^{-\lambda t}} = \frac{1}{\lambda}
$$

Half-life and activity (2)

• Activity *A(t)* at time *t* is defined as the mean number of disintegrations per time unit \rightarrow

$$
A(t) \equiv \lambda N(t) = \left| \frac{dN}{dt} \right|
$$

• The activity unit is Becquerel (Bq) \rightarrow 1 Bq = 1 disintegration per second (old unit \rightarrow Curie (Ci) corresponding to the activity of 1 g of 226 Ra \rightarrow 1 Ci = 3.7 \times 10¹⁰ Bq)

Radioactive filiation (1)

• Simple case: Radioactive nucleus 1 (N ₀ at time t = 0) decays with decay constant λ_1 to stable nucleus 2 \rightarrow

Radioactive filiation (2)

- Two decay modes are sometimes possible $\rightarrow \lambda_a$ and λ_b
- Total decay rate:

$$
-\left(\frac{dN}{dt}\right) = -\left(\frac{dN}{dt}\right)_a - \left(\frac{dN}{dt}\right)_b = (\lambda_a + \lambda_b)N = \lambda_t N
$$

- The total decay constant is $\lambda_a + \lambda_b = \lambda_t$
- Practically $\lambda_{\sf t}$ is observed while $\lambda_{\sf a}$ and $\lambda_{\sf b}$ are determined by the final number of isotopes of each mode:

$$
N_1(t) = N_0 e^{-\lambda_t t}
$$

\n
$$
N_{2,a}(t) = \frac{\lambda_a}{\lambda_t} N_0 (1 - e^{-\lambda_t t})
$$

\n
$$
N_{2,b}(t) = \frac{\lambda_b}{\lambda_t} N_0 (1 - e^{-\lambda_t t})
$$

Radioactive filiation (3)

Measurement of the 2 γ rays of ⁵⁶Mn

Radioactive filiation (4)

- We suppose now $X_1 \stackrel{\lambda_1}{\rightarrow} X_2 \stackrel{\lambda_2}{\rightarrow} X_3$
- The number of *X¹* (« parent ») decreases following an exponential equation \rightarrow

$$
\frac{dN_1}{dt} = -\lambda_1 N_1 \rightarrow N_1(t) = N_1(0)e^{-\lambda_1 t}
$$

- The number of X_2 (« daughter ») increases due to disintegration of $X^{}_{1}$ and disintegrates with the disintegration constant $\lambda^{}_{2}$ \rightarrow
- The solution is \rightarrow

$$
N_2(t) = N_2(0)e^{-\lambda_2 t} + \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1(0) \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)
$$

Radioactive filiation (5)

• The number of X_3 changes as

$$
\frac{dN_3}{dt} = \lambda_2 N_2
$$

$$
N_3(t) = N_3(0) + N_2(0) (1 - e^{-\lambda_2 t}) + N_1(0) \left(1 - \frac{\lambda_2 e^{-\lambda_1 t} - \lambda_1 e^{-\lambda_2 t}}{\lambda_1 - \lambda_2}\right)
$$

• Practically \rightarrow measures of activities $A_1 = \lambda_1 N_1$ and $A_2 = \lambda_2 N_2 \rightarrow$ assuming $N_2(0) = N_3(0) = 0 \rightarrow$

 $A_1(t) = A_1(0)e^{-\lambda_1 t}$ and $A_2(t) = \frac{\lambda_2}{\lambda_2 - \lambda_1} A_1(0) (e^{-\lambda_1 t} - e^{-\lambda_2 t})$

Equilibria (1)

• We note that $A_1(t)$ is maximum at $t = 0$ and zero at $t = \infty$ and that $A_2(t)$ is zero at t = 0 and t = ∞ \rightarrow $A_2(t)$ has a maximum for *dA² (t)/dt =* 0 →

$$
\frac{d(A_2)}{dt} = 0 = -\lambda_1 e^{-\lambda_1 t_m} + \lambda_2 e^{-\lambda_2 t_m}
$$

$$
t_m = \frac{\ln \lambda_2 / \lambda_1}{\lambda_2 - \lambda_1}
$$

• This maximum happens when the activities of parent and daughter are equal \Rightarrow $A_1(t_m) = A_2(t_m)$

$$
e^{-\lambda_1 t_m} = \frac{\lambda_2}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 t_m} - e^{-\lambda_2 t_m} \right)
$$

$$
t_m = \frac{\ln \lambda_2 / \lambda_1}{\lambda_2 - \lambda_1}
$$

Equilibria (2)

- At $t_m \to$ we have « *ideal equilibrium*»
- The ratio of activities of X_2 and X_1 is \rightarrow

$$
\frac{A_2(t)}{A_1(t)} = \frac{\lambda_2}{\lambda_2 - \lambda_1} \left(1 - e^{-(\lambda_2 - \lambda_1)t} \right)
$$

- For $t < t_m \rightarrow a$ always $A_1 > A_2$
- For $t > t_m \rightarrow a$ lways $A_1 < A_2$
- The specific relation between parent and daughter depends on the relative values of their disintegration constants \rightarrow 3 cases \rightarrow
	- 1. $\lambda_2 < \lambda_1$
	- 2. $\lambda_2 > \lambda_1$
	- 3. $\lambda_2 \gg \lambda_1$

Non-equilibrium: $\lambda_2 < \lambda_1$

• X_1 isotopes disintegrate faster than filiation products $X_2 \to$ the ratio of activities increases without limit

Example with $\lambda_2 < \lambda_1$

• Disintegration of metastable tellurium \rightarrow

$$
^{131m}_{52}\text{Te} \stackrel{T_{1/2} = 30h}{\longrightarrow} \frac{131}{53} \text{I} \stackrel{T_{1/2} = 193h}{\longrightarrow} \frac{131}{54} \text{Xe}
$$

• We have thus $\to \lambda_1$ = 2.31 10⁻² h⁻¹ and λ_2 = 3.59 10⁻³ h⁻¹

Transient equilibrium: $\lambda_2 > \lambda_1$

• The activities ratio increases as a function of time and reaches a constant value \rightarrow for $t \rightarrow \infty$:

$$
\frac{A_2(t)}{A_1(t)} \simeq \frac{\lambda_2}{\lambda_2 - \lambda_1}
$$

• The daughter activity decreases at the same rate as that of the parent \rightarrow this equilibrium is called transient equilibrium

Secular equilibrium: $\lambda_2 \gg \lambda_1$

• The activities ratio increases as a function of the time and reaches 1 pour $t \to \infty$:

$$
\frac{A_2(t)}{A_1(t)} \simeq 1
$$

- The parent and daughter activities become equal \rightarrow secular equilibrium
- Example \rightarrow disintegration of radium \rightarrow

$$
^{226}_{88}\text{Ra} \stackrel{T_{1/2} = 1602 \text{ an}}{\longrightarrow} \quad ^{222}_{86}\text{Rn} \stackrel{T_{1/2} = 3.8 \text{ j}}{\longrightarrow} \quad ^{218}_{84}\text{Po}
$$

• We have $\rightarrow \lambda_{1}$ = 1.18 10⁻⁶ j⁻¹ and λ_{2} = 1.81 10⁻¹ j⁻¹

Bateman equations

- We consider $X_1 \stackrel{\lambda_1}{\rightarrow} X_2 \stackrel{\lambda_2}{\rightarrow} X_3 \rightarrow ...$
- Generalization of previous equations \rightarrow

$$
dN_i = \lambda_{i-1} N_{i-1} dt - \lambda_i N_i dt
$$

General solution for $N₀$ nuclei of type 1 and none for other types is given by the Bateman equations \rightarrow \boldsymbol{n}

$$
A_n = N_0 \sum_{i=1}^{n} c_i e^{-\lambda_i t}
$$

where $c_m = \frac{\prod_{i=1}^{n} \lambda_i}{\prod_{i=1}^{n} (\lambda_i - \lambda_m)}$

- means that term with $i = m$ is omitted
- Secular equilibrium is possible $(A_1 = A_2 = ...)$

ORIGEN

- Bateman formula can be implemented easily in computer code \rightarrow but if $\lambda_{\sf p} \approx \lambda_{\sf j}$ for some isotope pair $\bm{\rightarrow} \;$ cancellation can lead to computational errors \rightarrow other methods such as numerical integration or the matrix exponential method are in use
- ORIGEN (Oak Ridge Isotope GENeration in SCALE) code calculates the decay chains by the matrix exponential method
- ORIGEN was developed for the Nuclear Regulatory Commission and the Department of Energy (USA) \rightarrow easy-to-use standardized method of isotope depletion/decay analysis for spent fuel, fissile material and radioactive material
- It can be used to solve for spent fuel characterization, isotopic inventory, radiation source terms and decay heat

Application: Production of radioelements (1)

- Stable element placed into a reactor or an accelerator (such a $cyclotron$) \rightarrow nucleus captures a neutron or a charged particle \rightarrow possible production of a radioelement
- The production rate R (unit: $m^{-3}s^{-1}$) depends on the target atom density N_o (unit: m⁻³), on the density of current *J* of the beam (unit: $m^{-2}s^{-1}$) and on the reaction cross section σ unit: $(m^2) \rightarrow R = N_o \sigma J$
- As $\sigma \simeq 10^{-24}$ cm² and J $\simeq 10^{14}$ cm⁻²s⁻¹ \rightarrow the probability to convert a stable particle is \simeq 10⁻¹⁰ s⁻¹ \rightarrow the number of converted particle is small \rightarrow the number of target nuclei is constant \rightarrow *R* is constant

Application: Production of radioelements (2)

- We consider: $N_0 \stackrel{R}{\rightarrow} N_1 \stackrel{\lambda_1}{\rightarrow} N_2$
- We have thus:

 $dN_1 = Rdt - \lambda_1 N_1 dt \rightarrow N_1(t) = \frac{R}{\lambda_1} (1 - e^{-\lambda_1 t}) \rightarrow A_1 = R(1 - e^{-\lambda_1 t})$

- If the irradiation time $T \ll T_{1/2} \rightarrow A_1 = R \lambda_1 T$
- If the irradiation time $T \gg T_{\kappa} \rightarrow A_{\iota} = R$ (secular equilibrium)

Production 61 Cu (T_{γ} = 3.4 h) due to bombardment of ⁶¹Ni by deuteron \rightarrow use for positron emission tomography (PET)

Application: Carbon-14 dating

• Radiocarbon (14-C) is constantly being created in the atmosphere by the interaction of cosmic rays with atmosphere:

$$
{}^{14}_{7}\text{N} + {}^{1}_{0}n \rightarrow {}^{14}_{6}\text{C} + {}^{1}_{1}\text{H}
$$

- The resulting radiocarbon is incorporated into plants by photosynthesis \rightarrow into animals by eating the plants
- During its life \rightarrow a plant or animal is exchanging carbon with its surroundings \rightarrow same proportion of 14-C as the biosphere
- When dying \rightarrow no more 14-C acquiring and decay of 14-C in the organic sample
- The measurement of the ratio $^{14}C/C_{total}$ gives the sample age
- As T_{κ} = 5730 ± 40 years \rightarrow dating is possible for age between a few hundred years and about 50000 years

Quantum description of radioactive decays (1)

- Solving the Schrödinger equation for various time-independent potentials → energy levels are *stationary* states
- A system in a particular stationary state will remain in that state for all times \rightarrow no transition \rightarrow no decay
- If we assume one state being the mixture of two (or more) states $\rightarrow \psi = c_1 \psi_1 + c_2 \psi_2 \rightarrow$ probability $|c_1|^2$ to be found in 1 and $|c_2|^2$ to be found in 2 \rightarrow for time-independent potential \rightarrow *c*₁ and *c*₂ are independent on time \rightarrow \neq with observation
- We are forced to abandon the notion of pure states with welldefined wave-functions \rightarrow difficult interpretation of nuclear structure

Quantum description of radioactive decays (2)

- We assume a potential of the form *V + V*' where *V* is the nuclear potential that gives stationary states and *V'* is a very weak additional potential that causes the transition between the states
- Neglecting $V' \rightarrow$ we obtain the static nuclear wave functions
- These wave functions are used to calculate the transition probability between the « stationary states » under the influence of $V' \rightarrow$ this transition probability is λ
- Fermi Golden Rule \rightarrow

$$
\lambda = \frac{2\pi}{\hbar} |V'_{fi}|^2 \rho(E_f) \text{ where } V'_{fi} = \int \psi_f^* V' \psi_i d\mathbf{r}
$$

Quantum description of radioactive decays (3)

• The potential *V'* depends on the particular type of transition which is considered

• The transition probability is thus influenced by the density of final states $\rho(E_f) \rightarrow$ within an energy interval dE_f the number of states accessible to the system is $d n_f$ = $\rho (E_f) d E_f$ \rightarrow the transition probability is larger if the number of final states accessible for the decay is large

Width of the states (1)

• Solving the Schrödinger equation for time-independent potential $V \rightarrow$ stationary states of the nucleus ψ_i (**r**) \rightarrow the time-dependent wave function $\varPsi_{\sf i}({\bf r},{\sf t})$ is

$$
\Psi_i(\boldsymbol{r},t) = \psi_i(\boldsymbol{r})e^{-iE_i t/\hbar}
$$

where E_i is the energy of the state

- The probability of finding the system in the state is $|\Psi_i(\mathbf{r},t)|^2$ \rightarrow independent on time for stationary state
- To be consistent with the radioactive decay law we have to introduce the decrease with time exp(-t/ τ_{i}) with τ_{i} = 1/ λ_{i} \rightarrow

$$
|\Psi_i(t)|^2 = |\Psi_i(t=0)|^2 e^{-t/\tau_i}
$$

• The expression of $\mathit{\Psi}_{i}^{}(\mathsf{r},\mathsf{t})$ becomes \rightarrow

$$
\Psi_i(\bm{r},t)=\psi_i(\bm{r})e^{-iE_it/\hbar}e^{-t/2\tau_i}
$$

27

Width of the states (2)

• The resonant state (non-stationary state) can be written \rightarrow

$$
\Psi_i(\bm{r},t)=\psi_i(\bm{r})\exp\left(\frac{-it}{\hbar}(E_i-\frac{i\lambda\hbar}{2})\right)
$$

- Complex energy: $E_i i\lambda \hbar/2$
- Alternatively the state has no a definite energy \rightarrow the wave function is a superposition of components having different energies (with *A(E)* the probability amplitude to find the state at energy E) \rightarrow

$$
\exp\left(\frac{-it}{\hbar}(E_i - \frac{i\lambda\hbar}{2})\right) = \int A(E) \exp\left(\frac{itE}{\hbar}\right)
$$

Width of the states (3)

• The probability for finding the state at energy E_i is given by the absolute square of the amplitude \rightarrow

$$
A(E)|^2 = \frac{1}{4\pi^2} \frac{1}{(E - E_i)^2 + \Gamma_i^2/4}
$$

- The shape of such a distribution is *Lorentzian* and Γ _{*i*} = \hbar / τ _{*i*} is the width of the state $i \rightarrow$ full width at half maximum (FWHM) of such a distribution
- The width is the measure of our inability to determine precisely the energy of the state \rightarrow it is not a question of instrumental uncertainty

Width of the states (4)

- Another way to understand it $\rightarrow \Delta E \Delta t \geq \hbar/2 \rightarrow$ if $\Delta t \rightarrow \infty$ we can precisely determine the energy of the state because $\Delta E = 0$
- If the state lives on a average for a time $\tau \rightarrow \tau$ we cannot determine its energy except to within an uncertainty of $\Delta E \sim \hbar/\tau$

It is always possible to speak of transitions between distinct levels because the widths Γ of nuclear levels (typically Γ < 10⁻¹⁰ MeV) is small compared with their energy spacing $({\sim}10^{-3}$ MeV)

Types of radioactive decay

- There are 3 principal types of decay: α -, β and γ -decay processes
- In α and β processes \rightarrow an unstable nucleus emits an α or a β particle as it tries to become a more stable nucleus
- In γ -decay process \rightarrow an excited state decays toward the ground state without changing the nuclear species

α -decay

- The nucleus emit an α particle i.e. a nucleus of helium: ${}^{4}_{2}\text{He}_{2}$
- The ⁴He nucleus is a tightly bound system \rightarrow the kinetic energy released is maximized
- The decay process is

$$
^A_ZX_N \to \frac{A-4}{Z-2}X'_{N-2} + ^{4}_2\text{He}_2
$$

- The number of protons and neutrons are separately conserved
- Example (with T_{κ} = 1600 years and $E_{kin}(\alpha)$ = 4.8 MeV):

$$
{}^{226}_{88}Ra_{138} \rightarrow {}^{222}_{86}Rn_{136} + {}^{4}_{2}He_2
$$

β -decay (1)

- The nucleus can correct a proton or a neutron excess by directly converting a proton into a neutron or a neutron into a proton
- Three possible ways for this process \rightarrow each of them involves another charged particle to conserve electric charge and a (anti-)neutrino to conserve the electronic lepton number
	- $\;\;\beta$ decay: n \rightarrow p + e⁻ + $\overline{\nu}$
	- $\;\: \beta^{\texttt{+}}\, {\sf decay} \colon {\sf p} \to {\sf n} + {\sf e}^{\texttt{+}} + \nu$
	- $-$ electron capture (ϵ): $p + e^- \rightarrow n + \nu$
- For the electron capture \rightarrow an atomic electron too close to the nucleus is swallowed
- In all cases where β^* -decay is allowed energetically \rightarrow electron capture is allowed (competing process) but not the $opposite$ 33

β -decay (2)

- In β and β ⁺-decays \rightarrow a particle is created (electron « negatron » and positron, respectively) \rightarrow they did not exist inside the nucleus before the decay \rightarrow in contrast with α -decay in which the emitted nucleon were inside the nucleus before the decay
- We also note that the emitted β and β show an energy spectrum \rightarrow the total energy is shared between the 3 bodies
- In electron capture \rightarrow the neutrino energy is fixed
- Examples:

$$
{}_{53}^{131}\text{I}_{78} \rightarrow {}_{54}^{131}\text{Xe}_{77} + \beta^- + \overline{\nu}
$$

$$
{}_{13}^{25}\text{Al}_{12} \rightarrow {}_{12}^{25}\text{Mg}_{13} + \beta^+ + \nu
$$

$$
{}_{25}^{54}\text{Mn}_{29} + e^- \rightarrow {}_{24}^{54}\text{Cr}_{30} + \nu
$$

In these processes \rightarrow *Z* and *N* each change by one unit but *Z* + *N* = constant

γ -decay

- An excited state decays to a lower excited state or possibly the ground state by emission of a photon of γ radiation with energy equal to the difference between the nuclear states (less a usually negligible correction due to the recoil)
- γ -decay is observed in all nuclei that have excited bound states (A > 5) and generally follows an α - or β -decay (daughter nucleus in an excited state)
- T_{γ_2} is generally small (< 10^{-9} s) but sometimes can be \gg (isomeric or metastable states) \rightarrow no clear distinction between states which are isomeric or not $\rightarrow 10^{-6}$ s is isomeric and 10^{-12} s is not \rightarrow in between: fuzzy
- Competing process \rightarrow internal conversion: the energy is transferred to an atomic electron (no *Z* and *N* changes for the nucleus but the atom becomes ionized) and the state of the state of the state 35

Other processes

- **Spontaneous fission**: some nuclei spontaneously fission \rightarrow a heavy nucleus with an excess of neutrons splits roughly in half into two lighter nuclei \rightarrow the final nuclei are not rigidly determined but are statistically distributed over the entire range of medium-weight nuclei + neutrons + γ -rays +...(examples: ²⁵⁶Fm with T_{ν} = 2.6 h or ²⁵⁴Cf with T_{ν} = 60.5 days)
- **Nucleon emission**: As we move further and further from the stability valley \rightarrow the energy differences between neighboring isobars \overline{Z} \rightarrow can be larger than the nucleon binding energy (\approx 8 MeV) \rightarrow radioactive decay by nucleon emission \rightarrow occurs most frequently in fission products having a large neutron excess \rightarrow delayed neutrons \rightarrow very important in the control of nuclear power plants (ex: 138 Xe \rightarrow 137 Xe + n or 73 Br \rightarrow 72 Se + p)

Branching ratios (1)

- Often it exists several possible decay processes in competing mode \rightarrow the decay schemes may be very complicated
- We specify the relative intensities of the competing modes by their branching ratios \rightarrow example:

Branching ratios (2)

- Frequently \rightarrow branching ratio is specified by giving the partial decay constant or partial half- life
- For ²²⁶Ac \rightarrow $\lambda_t = \frac{0.693}{29h} = 0.024h^{-1} = 6.6 \times 10^{-6} s^{-1}$ λ_{β} = $0.83\lambda_t = 5.5 \times 10^{-6} s^{-1}$ $\lambda_{\epsilon} = 0.17\lambda_{t} = 1.1 \times 10^{-6} s^{-1}$ $\lambda_{\alpha} = 6 \times 10^{-5} \lambda_t = 4 \times 10^{-10} s^{-1}$
- Partial half-life ($T_{\frac{1}{2},1}$ = 0.693/ λ_i) are convenient to represent branching ratio → **but only total half-life has a sense**

interactive chart of nuclides

• All information \rightarrow interactive chart of nuclides: **http://www.nndc.bnl.gov/chart**

Summary of various decay processes

