Chapter II: General properties of nuclei

Summary

- 1. Notations, quantum numbers and spectra
- 2. Nuclear radius
- 3. Nuclear electromagnetic moments
- 4. Nuclear and atomic masses
- 5. Nuclei stability
- 6. Magic numbers
- 7. Particular types of nuclei

Notations: Nuclide

• A nuclear species – *nuclide* – is defined by the number of neutrons *N* and by the number of protons *Z* (called the atomic number \rightarrow charge in unit of *e*) \rightarrow the mass number *A* is the total number of nucleons (the integer closest to the mass of the nucleus in *u*) \rightarrow *A* = *N* + *Z* \rightarrow with *X* the chemical symbol \rightarrow

$$(A,Z) \leftrightarrow {}^{A}_{Z}X_{N} \leftrightarrow {}^{A}_{Z}X \leftrightarrow {}^{A}X$$

- Example: deuteron \rightarrow $(2,1) \leftrightarrow {}^2_1H_1 \leftrightarrow {}^2_1H \leftrightarrow {}^2_HH$
- Isotopes \rightarrow have same charge Z but different N: $^{235}_{92}$ U and $^{238}_{92}$ U
- Isobars \rightarrow have the same mass number $A \rightarrow {}_{2}^{3}\text{He and } {}_{1}^{3}\text{H}$
- *isotone* \rightarrow have the same *N* but different $Z \rightarrow {}^{14}_6C_8$ and ${}^{16}_8O_8$

Quantum numbers

- (A,Z) define a nuclear species → not the nuclear quantum state
- In atoms → individual electrons can move to higher energy orbits ↔ in nuclei → same for individual nucleons
- Nucleus (A,Z) has a rich spectrum of excited states (with few exceptions) which can decay to the ground state by emitting photons (γ-rays)
- Energy levels of a nucleus (including ground state) are characterized by good quantum numbers (integers or halfintegers) corresponding to eigenvalues of operators (called constants of motions) commuting with the Hamiltonian H of the nucleus
- Constants of motions are deduced from symmetries of dominating interactions of nucleus (strong + Coulomb)

Good quantum numbers

- Invariance under rotation → total angular momentum J = constant of motion
- Invariance under reflection (sometimes violated but weak violation in nuclei) \rightarrow parity Π = constant of motion
- Other good quantum number \rightarrow total angular momentum projection J_z
- Complete set of commuting observables \rightarrow {*H*, *J*, *J*_z, *I*}
- Nuclear levels are noted \rightarrow

$$J^{\pi} \leftrightarrow J^{\pi}, E_x$$

- J is the total angular momentum quantum number (spin), π is the parity quantum number and E_x is the excitation energy compared to the ground state
- Remark: E_x does not depend on the quantum number M associated to J_z (different energy states for same E_x and J)

Quantum numbers: Ground state (1)

- Among all states of the nuclei → the most important is the ground state → some simple rules exist to determine its quantum state
- To obtain ground state \rightarrow fill nucleons in lowest energy first
- To obtain ground state → pair up nucleons as you add them (« Katz's rule »)
- The ground state of all *N*-even and *Z*-even stable nuclei is characterized by the quantum numbers $0^+ \leftrightarrow$ identical nucleons tends to pair with another nucleon of the opposite angular ^{12}C momentum $\rightarrow J = 0$
- The parity is a statement about what the nuclear structure of the state would look like if the spatial coordinates of all the nucleons were reversed $\rightarrow \pi = +$ means the reversed state = the original \leftrightarrow if even-even nucleus $\rightarrow \pi = +$

Quantum numbers: Ground state (2)

- The ground state of odd-A nuclei (even number of a kind of nucleon and odd number of the other kind) is described by the spin and parity of that single odd nucleon
- Remark: Prediction is correct if we recognize that single hole in subshell gives the same J and π as single nucleon in same subshell

Quantum numbers: Ground state (3)

- For odd-proton/odd-neutron nucleus → rules of Brennan and Bernstein (based on the shell model) →
- Rule 1: when $j_1 = I_1 \pm \frac{1}{2}$ and $j_2 = I_2 \mp \frac{1}{2} \rightarrow J = |j_1 j_2|$
- Rule 2: when $j_1 = I_1 \pm \frac{1}{2}$ and $j_2 = I_2 \pm \frac{1}{2} \rightarrow J = |j_1 \pm j_2|$
- Rule 3: states that for configurations in which the odd nucleons are a combination of particles and holes \rightarrow J = j₁ + j₂ -1
- Parity is given by $\pi = -1 \begin{pmatrix} | 1_1 + | 2 \end{pmatrix}$

Quantum numbers: Ground state (4)

Examples of application of the rules of Brennan and Bernstein:

- ³⁸Cl: 17 protons and 21 neutrons \rightarrow the last proton is a d_{3/2} level and the last neutron in a f_{7/2} level \rightarrow $j_p = 2 - \frac{1}{2} / j_n = 3 + \frac{1}{2} \rightarrow J = |7/2 - 3/2| = 2 / \pi = -$
- ²⁶Al: 13 protons and 13 neutrons → the last proton and neutron are in d_{5/2} hole states →

 $j_p = j_n = 2 + \frac{1}{2} \rightarrow J = |5/2 + 5/2| = 5 / \pi = +$

• ⁵⁶Co: 27 protons and 29 neutrons \rightarrow the last proton is in a f_{7/2} hole state and the last neutron is in a p_{3/2} state \rightarrow

 $J = 7/2 + 3/2 - 1 = 4 / \pi = +$

Energy level pattern for nucleons

Ordering the nuclear orbitals

State Notation : $n\ell_j$

For shell model \rightarrow nucleon levels are characterized by 3 numbers:

- n: the principal number
- I: the orbital angular momentum quantum number
- j: the total angular momentum quantum number such as j = l $\pm \frac{1}{2}$

Approximated good quantum numbers (1)

- Strong nuclear interaction → charge independence → particles affected equally by the strong force but with different charges (protons and neutrons) can be treated as different states of the same particle: the nucleon with a particular quantum number: the isospin (isotopic/isobaric spin) → value related to the number of charge states
- For a nucleon: 2 states \rightarrow isospin quantum number $t = \frac{1}{2} \rightarrow 2$ projections of the isospin \rightarrow proton (p) has $m_t = -\frac{1}{2}$ and a neutron (n) has $m_t = +\frac{1}{2}$ (these projections are measured with respect to an arbitrary axis called the « 3-axis » in a system $1,2,3) \rightarrow t_3 = m_t \hbar$

Approximated good quantum numbers (2)

• Interpretation of isospin \rightarrow the operator

$$q = e(\frac{1}{2} - t_3)$$

gives the charge $e(1/2 - m_t)$ of the nucleon

• Definition of raising and lowering operators \rightarrow

$$t_{+} = t_{1} + it_{2}$$

$$t_{-} = t_{1} - it_{2}$$

$$t_{+} |p\rangle = |n\rangle$$

$$t_{+} |n\rangle = 0$$

$$t_{-} |n\rangle = |p\rangle$$

$$t_{-} |p\rangle = 0$$

Approximated good quantum numbers (3)

• We define the total isospin T of a nucleons system as \rightarrow

$$T = \sum_{j=1}^{A} t_j$$

- All properties of angular momentum can be applied to $T \rightarrow$ $T^2 |TM_T\rangle = T(T+1) |TM_T\rangle$ $T_3 |TM_T\rangle = M_T |TM_T\rangle$
- The total charge operator Q of the system can be written \rightarrow

$$Q = e(\frac{1}{2}A - T_3) \longrightarrow M_T = \frac{1}{2}A - Z = \frac{1}{2}(N - Z)$$

Approximated good quantum numbers (4)

- For a system of nucleons → isospin follows same rules than ordinary angular momentum vector → 2-nucleons system has total isospin T = 0 or 1 (corresponding to antiparallel or parallel orientations of the 2 isospins) → the 3-axis component of the total isospin vector T₃ is the sum of the 3-axis components of the individual nucleons
- For any nucleus \rightarrow

$$T_3 = \frac{1}{2}(N - Z) \leftrightarrow T \ge \frac{1}{2}|N - Z|$$

Example: 2-nucleons system → p-p: T₃ = -1 (T = 1), n-n: T₃ = +1 (T = 1), p-n: T₃ = 0 (T = 0 or T = 1)

Approximated good quantum numbers (5)

• If perfect charge independence (and electromagnetic interaction is not considered) \rightarrow the isospin quantum number T gives the number 2T + 1 of isobars with this particular level in their spectrum with same quantum numbers J and $\pi \rightarrow$

Spectrum: Nuclear levels (1)

- ≠ types of energy levels
- Some are bound states → no spontaneous dissociation → deexcitation to levels with smaller energy by emitting radiation
- Some are resonances → there are beyond the dissociation threshold → dissociation or de-excitation
- Lifetimes of nuclear excited states are typically in the range 10⁻¹⁵ – 10⁻¹⁴ s → with few exceptions only nuclei in the ground state are present on Earth.
- The rare excited states with large lifetimes (> 1 s) are called isomeric states (or isomers or metastable states) → isomeric state of nucleus ^AX is designed by ^{Am}X
- Isomer has generally J and π very different from states with smaller energy

Spectrum: Nuclear levels (2)

Spectrum: Nuclear levels (3)

long

Extreme example \rightarrow the first exited state of ¹⁸⁰Ta has a lifetime τ = 10¹⁵ years while the ground state β -decays with τ = 8 hours \rightarrow All ¹⁸⁰Ta present on Earth is therefore in the excited state

Nuclear radius (1)

• In chapter 1 \rightarrow definition of the charge radius \rightarrow

$$\langle r^2 \rangle_{ch}^{1/2} = \sqrt{\int r^2 \rho_{ch}(\boldsymbol{r}) d\boldsymbol{r}}$$

- The charge density of a nucleon is measured from the analysis of high energy electrons elastically scattered from it \leftrightarrow distance ≈ 0.1 fm \rightarrow reduced de Broglie wave length $\lambda/2\pi = \hbar/p \approx 0.1$ fm $\rightarrow E \approx pc \approx 2000$ MeV
- Initial electron wave function: exp(*ik_ir*) (free particle of momentum *p_i* = ħ*k_i*); scattered electron (also free particle with momentum *p_f* = ħ*k_f*): exp(*ik_fr*)
- As elastic collision $\rightarrow |\mathbf{p}_i| = |\mathbf{p}_f|$

Nuclear radius (2)

• According to the Fermi Golden Rule \rightarrow probability of transition is \propto to the square of *F* (with *F(0)* = 1) \rightarrow

$$F(\boldsymbol{k}_i, \boldsymbol{k}_f) = \int \psi_f^* V(r) \psi_i d\boldsymbol{r} \leftrightarrow F(\boldsymbol{q}) = \int e^{i\boldsymbol{q}\boldsymbol{r}} V(r) d\boldsymbol{r}$$

- $q = k_i k_f$ is the momentum change of scattered electron
- V(r) depends on the nuclear charge density $Ze \rho_{ch}(\mathbf{r}') \rightarrow D$

$$V(r) = -\frac{Ze^2}{4\pi\epsilon_0} \int \frac{\rho_{ch}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$

With *qr* = *qr*sinθ and integrating on *r* → normalized *F(q)* (called *form factor*) is:

$$F(\boldsymbol{q}) = \int e^{i\boldsymbol{q}\boldsymbol{r}} \rho_{ch}(\boldsymbol{r}') d\boldsymbol{r}'$$

20

Nuclear radius (3)

• If $\rho_{ch}(\mathbf{r'})$ depends only on $\mathbf{r'}$ (not on θ 'and ϕ ') \rightarrow

$$F(q) = \frac{4\pi}{q} \int \sin(qr')\rho_{ch}(r')r'dr'$$

• As $|\mathbf{p}_i| = |\mathbf{p}_f| \rightarrow q = f(\alpha)$ with α the angle between \mathbf{p}_i and $\mathbf{p}_f \rightarrow q = (2p/\hbar) \sin \alpha/2$ \rightarrow the measure of $\alpha \rightarrow \rho_{ch}$

- Result for various nuclei → the central nuclear charge density is nearly the same for all nuclei → nucleons do not congregate at the center → nucleons are piled up as spheres ↔ short range of nuclear force
- The number of nucleons by unit volume is roughly constant → with R the mean nuclear radius of a sphere of uniform density with the same charge radius as the nucleus →

$$\frac{A}{4/3\pi R^3} \sim \text{ constant} \leftrightarrow R = R_0 A^{1/3}$$

Nuclear radius (5)

We can also define the matter radius *r* that is the root mean square radius of the distribution of nucleons such as →

$$\langle r^2 \rangle^{1/2} = \sqrt{\int r^2 \rho(\mathbf{r}) d\mathbf{r}}$$

• For a sphere of constant density

$$\langle r^2 \rangle = \frac{\int r^2 \rho(\mathbf{r}) d\mathbf{r}}{\int \rho(\mathbf{r}) d\mathbf{r}} = \frac{\int_0^R r^4 dr}{\int_0^R r^2 dr} = \frac{3}{5}R^2$$

Nuclear radius (6)

• From experimental measurements of ρ_{ch} and considering that the charge radius also follows a law in $A^{1/3} \rightarrow$

Nuclear electromagnetic moments (1)

- Previous expressions are obtained for a sphere of constant density
- More precise calculations imply to consider a density obtained from the Wigner-Eckart theorem:

$$\rho(\boldsymbol{r}) = \sum_{\lambda \text{ pair}=0}^{2J} P_{\lambda}(\cos \theta_{r})\rho^{(\lambda)}(r)$$
$$^{(\lambda)}(r) = \frac{2\lambda + 1}{4\pi r^{2}} \langle \Psi^{JJ\pi} | \sum_{\rho=1}^{Z} \delta(r' - r) P_{\lambda}(\cos \theta') | \Psi^{JJ\pi} \rangle$$

• The charge density is pair and has a rotational symmetry about z-axis

• For
$$J = 0 \rightarrow \rho(\mathbf{r}) = \rho^{(0)}(\mathbf{r})$$

 ρ

Nuclear electromagnetic moments (2)

- For J ≠ 0 → there is a measurable quantity which gives the difference between a spherical charge distribution and the real charge distribution → the electric-quadrupole moment
- In a general way the electric-multipole moment is written:

$$Q^{(\lambda)} = 2e \int r^{\lambda} P_{\lambda}(\cos \theta_r) \rho(\mathbf{r}) d\mathbf{r} = \frac{8\pi e}{2\lambda + 1} \int_0^\infty r^{\lambda + 2} \rho^{(\lambda)}(r) dr$$

- Electric-multipole moments are the moments of the charge density → as charge density is pair → only pair moments exist
- For λ = 0 → we obtain the trivial value Q⁽⁰⁾ = 2Ze ∝ to the total charge

Nuclear electromagnetic moments (3)

- Due to the orthogonality of Legendre polynomials \rightarrow multipole moment is $\neq 0$ only if $J \ge \lambda/2$
- Moreover parity conservation implies \rightarrow even λ
- Only even multipole moments lower or equal to 2J give a nonzero value of $Q^{(\lambda)} \rightarrow$ in particular electric-dipole moment of a nucleus is zero (considering that the parity is a good quantum number)
- The first non-trivial moment is the electric-quadrupole moment (λ = 2)

Electric-quadrupole moment

• The electric-quadrupole moment can be written:

$$Q^{(2)} = 2e \int r^2 P_2(\cos\theta_r)\rho(\mathbf{r})d\mathbf{r}$$

• We can write

$$r^2 P_2(\cos \theta) = \frac{1}{2}(3z^2 - r^2) = \frac{1}{2}(2z^2 - x^2 - y^2)$$

- For Q⁽²⁾ > 0 → nucleus is deformed in the direction of z → rugby ball shape (prolate)
- For Q⁽²⁾ < 0 → nucleus is deformed in the plane ⊥ to z → cushion shape (oblate)
- For Q⁽²⁾ = 0 → no deformation of the nucleus → spherical shape

Nucleus deformation

Magnetic-dipole moment (1)

- Magnetic-multipole moments are other moments characteristic of magnetic properties of the nucleus
- They come from the magnetization density
- The most important is the magnetic-dipole moment (simply called magnetic moment)
- The operator magnetic-dipole moment is

$$\boldsymbol{M} = \sum_{i=1}^{A} (g_{li} \boldsymbol{L}'_i + g_{si} \boldsymbol{S}_i)$$

with $g_{ii} = 1$ for a proton and 0 for a neutron, and g_{si} are the gyromagnetic ratios ($g_{sp} = 5.5856947$ and $g_{sn} = -3.826085$)

Magnetic-dipole moment (2)

- This operator is a combination of the operators L'_i (orbital kinetic moment) and S_i (spin) of each nucleon
- The magnetic-dipole moment is defined by (with $\mu_{\rm N}$, the Bohr magneton):

$$\mu = \frac{\mu_N}{\hbar} \left\langle \Psi^{JJ\pi} \right| M_z \left| \Psi^{JJ\pi} \right\rangle$$

• From the Wigner-Eckart theorem \rightarrow the nucleus has a magnetic moment if $J \ge 1/2$

Atomic mass

- Mass is bound to energy conservation → important to define stability of nuclei
- We define the *atomic mass*: mass of a neutral atom in ground state $\rightarrow M(A,Z)$ or $M(^{A}X)$
- 1 unified *atomic* mass unit (u) = 1.6605390 × 10⁻²⁷ kg = 931.4940 MeV/c² = 1/12 of M(12,6) (*atom* of ¹²C)
- Example:
 - ➤ M(¹H) = 1.007825032 u
 - ➤ m_p = 1.007276467 u
 - \blacktriangleright m_e = 5.48579909 10⁻⁴ u
 - \rightarrow M(¹H) = m_p + m_e 1 Rydberg (electron binding energy must be considered)

Mass excess

 Mass atomic is often given in *mass excess* form: Δ(A,Z) (energy expressed in MeV) →

$$\Delta(A, Z) = [M(A, Z) - A]uc^2$$

∆ for isobar families (fixed A) as a function of Z varies only a little →

Parabolic in shape for odd-A and double parabola for even-A

Nuclear mass

- The *nuclear mass* is the mass of the nucleus of an isotope in ground state $\rightarrow m(A,Z)$ or $m(^{A}X)$
- We have \rightarrow

$$m(A,Z) = M(A,Z) - Zm_e + B_e(Z)/c^2$$

- The electron binding energy B_e decreases the total mass of the atom
- $B_e = \sum_i B_i$ with $B_i = a_i (Z c_i)^2$ (a_i and c_i are constant parameters for each electron shell
- B_e is generally neglected in the definition of nuclear mass (in first approximation) because it is quite smaller than usual nuclear energies ($B_e \sim 10-100 \text{ keV} \leftrightarrow M(A,Z) \sim A \times 1000 \text{ MeV}$)

Binding energy of a nucleus (1)

 The binding energy B of a nucleus is defined as the negative of the difference between the nuclear mass and the sum of the masses of the constituents →

$$B(A,Z) = [Nm_n + Zm_p - m(A,Z)]c^2$$

- B is positive for all nuclei (stable or unstable) → implies that the nucleus does not spontaneously break down into its all constituents (but does not imply that it is stable)
- We can write (¹H is the hydrogen atom and $B_e(1) = 13.6 \text{ eV}) \rightarrow$ $B(A, Z) = [Nm_n + ZM(^1H) - m(A, Z)]c^2 - B_e(Z)Z + B_e(1)$ $\simeq [Nm_n + ZM(^1H) - m(A, Z)]c^2$
- By adding and subtracting $A = N + Z \rightarrow$

$$B(A,Z) = N\Delta(^{1}n) + Z\Delta(^{1}H) - \Delta(A,Z)$$

Separation energy

 Analogous to ionization energy in atomic physics → definition of the neutron/proton separation energy = amount of energy that it is needed to remove a neutron/proton from a nucleus ^A_ZX_N

$$S_{n} = B({}^{A}_{Z}X_{N}) - B({}^{A-1}_{Z}X_{N-1})$$

$$\simeq [m({}^{A-1}_{Z}X_{N-1}) - m({}^{A}_{Z}X_{N}) + m_{n}]c^{2}$$

$$S_{p} = B({}^{A}_{Z}X_{N}) - B({}^{A-1}_{Z-1}X_{N})$$

$$\simeq [m({}^{A-1}_{Z-1}X_{N}) - m({}^{A}_{Z}X_{N}) + m({}^{1}H)]c^{2}$$

Nuclide	Δ (MeV)	S _n (MeV)	S _p (MeV)
¹⁶ O	- 4.737	15.66	12.13
¹⁷ O	-0.810	4.14	13.78
¹⁷ F	+1.952	16.81	0.60
⁴⁰ Ca	- 34.847	15.64	8.33
⁴¹ Ca	-35.138	8.36	8.89
41 Sc	-28.644	16.19	1.09
²⁰⁸ Pb	-21.759	7.37	8.01
²⁰⁹ Pb	-17.624	3.94	8.15
²⁰⁹ Bi	-18.268	7.46	3.80

Table 3.1 Some Mass Defects and Separation Energies

Binding energy of a nucleus (2)

• As first approximation for stable nuclei (with A \gtrsim 12) \rightarrow

$$\frac{B(A,Z)}{A} \approx (8.3 \pm 0.5) \text{ MeV}$$

B/A (MeV)

Binding energy of a nucleus (3)

- This property is explained by the short range of nuclear force
- Indeed for a long range force (as Coulomb force) \rightarrow the binding energy of a *n*-particles system is \propto to the number of particles pairs $\rightarrow B(n) = (1/2)n(n-1)$
- As the binding energy of a nucleus as not this trend → nuclear interaction has the *saturation* property → each nucleon may only interact with a limited number of close nucleons
- The binding energy by nucleon is fixed by the numbers of neighbours → independent on the size of the nucleus
- If the nuclei is too small \rightarrow saturation is not reached

Binding energy of a nucleus: Bethe-Weizsäcker formula

- Semi-empirical expression based on simplified physical arguments and on a fitting to data → valid for absolutely stable nuclei
- Physical model beyond it → liquid drop model → the nucleus is treated as a drop of incompressible nuclear fluid of very high density

$$B(A, Z) = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_a \frac{(N-Z)^2}{A} + \delta$$

$$a_v \simeq 15.56 \text{ MeV} \qquad a_c \simeq 0.72 \text{ MeV} \qquad a_a \simeq 23.285 \text{ MeV}$$

$$a_a \simeq 23.285 \text{ MeV}$$

Bethe-Weizsäcker formula (1)

- a_vA: Volume term → reflects the saturation property → each nucleon interacts only with nearest-neighbours → constant binding energy per nucleon B/A
- $-a_s A^{2/3}$: Surface term \rightarrow lowers the binding energy \rightarrow nucleons near the surface feel forces coming only from the inside of the nucleus \rightarrow their contribution in first term is overestimated $\rightarrow \propto$ to the area $4\pi R^2 \sim A^{2/3}$
- $-a_C Z(Z-1)A^{-1/3}$: Coulomb repulsion term \rightarrow long range force due to protons \rightarrow Coulomb energy E_C of a sphere of charge Ze and radius $R \rightarrow E_C = \frac{3}{5} \frac{Z^2 e^2}{4\pi\epsilon_0 R}$ \rightarrow as this energy is \propto to number of protons pairs $\rightarrow Z^2$ must be replaced by $Z(Z-1) \rightarrow a_C = 0.6e^2/4\pi\epsilon_0 R \approx 0.72$ MeV (with R = 1.24 fm) \rightarrow it favors a neutron excess over protons
- $-a_N(N-Z)^2 A^{-1}$: Asymmetry term \rightarrow due to Pauli principle (isospin) the minimum energy in a nucleus is reached for $N \approx Z$ (otherwise we could have Z = 2 and N = 100) \rightarrow if proton was not charged we would exactly N = Z but due Coulomb repulsion $N \ge Z \rightarrow$ for small $A \rightarrow N = Z$ and for large $A \rightarrow N > Z$ \rightarrow asymmetry term \propto to the difference between N and $Z \rightarrow$ Fermi model gives $(N-Z)^2/A$

Bethe-Weizsäcker formula (2)

- δ : Pairing term \rightarrow as seen before \rightarrow nucleons have tendency to couple pairwise to establish stable configuration \rightarrow
 - − Odd A: δ = 0 by definition → less favorable than N-even and Z-even but more favorable than N-odd and Z-odd
 - − Z-even/N-even: all nucleons may be paired → the bonding is favored (δ > 0) → empirical expression δ = +12 $A^{-1/2}$ MeV
 - − Z-odd/N-odd: one neutron and one proton cannot be paired → the binding energy is decreased (δ < 0) → empirical expression δ = -12A^{-1/2} MeV
- This pairing term has important consequences on the stability of nuclei → Among the 275 stable known nuclei → 166 are Z-even/N-even 55 are Z-even/N-odd 50 are Z-odd/N-even 4 are Z-odd/N-odd: ²H, ⁶Li, ¹⁰B, ¹⁴N (attention a lot of unstable Z-odd/N-odd nuclei exist)

16. • Surface 14. E (MeV) • 12. Coulomb 10. Asymmetry 8. 0 50 100 150 200 А

Bethe-Weizsäcker formula (3)

- The observed binding energies as a function of *A* and the predictions of the mass formula
- Only even–odd combinations of N and Z are considered → pairing term vanishes

Bethe-Weizsäcker formula (4)

 The Bethe-Weizsäcker formula explains the parabolic behaviour for the masses → for A = constant → second order polynomial in Z → stability valley

- The parabola is centered about the point where the equation $m(A, Z) \simeq Nm_n + ZM(^1H) - B(A, Z)/c^2$ reaches the minimum $\partial M/\partial Z = 0 \rightarrow$ $Z_{min} = \frac{[m_N - m(^1H)] + a_C A^{-1/3} + 4a_a}{2a_C A^{-1/3} + 8a_a A^{-1}} \simeq \frac{A}{2} \frac{1}{1 + 0.0078 A^{2/3}}$
- The splitting for even-A is due to pairing acting in opposite directions for even-even nuclei (lower parabola) and odd-odd nuclei (upper parabola)

- Production of an ion beam with thermal distribution of velocities
- A selector passes only ions with a particular velocity v
- Momentum selection by magnetic field B permits mass identification → r = mv/qB

Nuclei stability: Stability in particles

- Different notions of stability
- First definition: **stable in particles** → no possible dissociation in subsystems with smaller total energy
- We consider $(A,Z) \rightarrow (A_1,Z_1) + (A_2,Z_2)$ with $A = A_1 + A_2$ and $Z = Z_1 + Z_2$ \rightarrow stable if $(\forall A_1, Z_1)$:

 $m(A,Z) < m(A_1,Z_1) + m(A_2,Z_2)$ or $B(A,Z) > B(A_1,Z_1) + B(A_2,Z_2)$

- The nuclear mass can be replaced by the atomic mass except in some cases where the stability depends on the presence of the e⁻
- This case corresponds to a spontaneous fission, to the emission of α , neutron, proton,... \rightarrow instability in particles \rightarrow A changes \rightarrow lifetime generally very short $\sim 10^{-21}$ s

Nuclei stability: Absolute stability

• More generally \rightarrow a nucleus is **absolutely stable** if ($\forall m_i$):

$$m(A,Z) < \sum_{i} m_i$$

- The sum concerns all possible masses and all possible disintegration modes
- If absolute stability \rightarrow stability in particles

Nuclei stability: Instability by β emission

- Attention \rightarrow the previous definitions are not sufficient
- Other instabilities exist due to the weak force (β disintegration) \rightarrow instability by β emission
- If β emission \rightarrow A is constant but N and Z change
- Variable lifetime from 10⁻⁶ s to 10¹⁵ years

Nuclei stability: Examples (1)

- ¹²C: no possible splitting emitting energy from ground state, no β emission \rightarrow stable
- ⁸Be: can split into 2 ⁴He $\rightarrow M(8,4)$ 2 $M(4,2) \approx 0.092$ MeV \rightarrow unstable (lifetime $\approx 10^{-16}$ s)
- ³H: stable in particles but by β disintegration → ³He (lifetime ≈ 12.3 years)
- Information may be deduced from \rightarrow

$$B(A,Z) > B(A_1,Z_1) + B(A_2,Z_2)$$

$$\Leftrightarrow$$

$$A_1\left(\frac{B(A,Z)}{A} - \frac{B(A_1,Z_1)}{A_1}\right) + A_2\left(\frac{B(A,Z)}{A} - \frac{B(A_2,Z_2)}{A_2}\right) > 0$$

Nuclei stability: Examples (2)

- This relation is fulfilled for nucleus corresponding to the maximum (Fe) of the curve and for nuclei at the left of the maximum ↔ their fragments have smaller *B/A* ratios → some nuclei are certainly stable
- For heavy nuclei → completely ≠ → they are beyond the maximum → they provide energy during splitting → the 2 terms of previous equation are negative

Nuclei stability: Examples (3)

• ²⁰⁸Pb: various dissociations seems possible: 2 examples: $^{208}Pb \rightarrow \alpha + ^{204}Hg + 0.52 \text{ MeV}$ $^{208}Pb \rightarrow 2^{104}Zr + 110 \text{ MeV}$

- Practically → none of these processes is observed and ²⁰⁸Pb is stable (only one heavier nucleus is stable: ²⁰⁹Bi)
- The lifetime of ²⁰⁸Pb is so long → disintegrations can be considered as negligible → stable
- One of the reasons for this long lifetime is that the system of nucleons has to cross the potential barrier to split up → the probability of crossing may be so small that the lifetime is extremely long

Nuclei stability: Conventional stability

 Finally the convention is to consider that a nucleus is stable if its lifetime is larger than the age of Universe →

 $\tau \gg 1.5 \times 10^{10} \text{ years} \simeq 5 \times 10^{17} \text{ s}$

- Practical definition even though it is artificial
- Example: ²⁰⁹Bi has *τ* = 1.9 10¹⁹ years → stable but disintegration was observed:

$$^{209}Bi \rightarrow \alpha + {}^{205}Tl$$

Stable nuclei (1)

- For N and Z < 20 → stable nuclei close to the straight line N = Z (only ³He is upper)
- Tc (Z = 43) and Pm (Z = 61) have no stable isotope
- For N and Z > 20 \rightarrow stable isotopes move away from N = Z line \rightarrow increasing effect of Coulomb repulsion \rightarrow for last stable nuclei N/Z = 1.5 52

Stable nuclei (2)

N, Number of Neutrons

Stable nuclei (4)

- Nuclei with an excess of neutrons (below the β stable nucleus) decay via β ⁻ emission
- Nuclei with an excess of protons (above the β stable nucleus) decay via β^+ emission or electron capture
- The dashed lines show the predictions of the Bethe-Weizsäcker formula
- Note that for even-A → two stable isobars ¹¹²Sn and ¹¹²Cd

Magic numbers (1)

- In atomic physics → the ionization energy *I* (the energy needed to extract an electron from a neutral atom) shows discontinuities around *Z* = 2, 10, 18, 36, 54 and 86 (i.e. for noble gases) → these discontinuities are associated with closed electron shells
- An analogous phenomenon occurs in nuclear physics → there exist many experimental indications showing that atomic nuclei possess a shellstructure → they can be constructed (like atoms) by filling successive shells of an effective potential well (shell model)
- Separation energies present discontinuities at special values of N or Z → these numbers are called *magic numbers*
- These numbers are 2 8 20 28 50 82 126
- The discontinuity in the separation energies is due to the excess binding energy for magic nuclei as compared to that predicted by the Bethe-Weizsäcker formula

Magic numbers (2)

• For the same reason (shell effect not considered in the liquid drop model) \rightarrow the difference between the experimental binding energy B_{exp} and the binding energy B calculated from the Bethe-Weizsäcker formula is maximum for these N values

 $B_{exp} - B$ (MeV)

This difference is also observed as a function of *Z*

Magic numbers (3)

- Equivalent variations or discontinuities appear for other quantities as radius, electric and magnetic moments,...
- Nuclei with magic numbers of neutrons or protons have a closed shell that encourages a spherical shape
- Nuclei having both magic neutrons and protons are particularly stable → they are called *doubly magic* nuclei → ⁴He (Z = 2), ¹⁶O (Z = 8), ⁴⁰Ca (Z = 20), ²⁰⁸Pb (Z = 82)
- Some nuclei having magic number can be instable → but generally with a radioactivity smaller than waited → ²⁸O (Z = 8), ⁴⁸Ni, ⁵⁶Ni, ⁷⁸Ni (Z = 28), ¹⁰⁰Sn, ¹³²Sn (Z = 50)
- The following magic number (not observed) could be 184

Magic numbers (4)

Particular types of nuclei (1)

- Exotic nuclei: Instable nuclei characterized by a number of neutrons or protons vary far from the stability valley (examples: ²⁴O,...)
- Halo nuclei: Exotic nuclei with a radius appreciably larger than that predicted by the rule $R = R_0 A^{-1/3} \rightarrow$ they are characterized by a core nucleus (with normal radius) surrounded by a halo of orbiting protons or neutrons \rightarrow they have necessarily very weak separation energy (examples: ⁸He, ²²C ...)
- Transuranium nuclei (also called transuranic nuclei) nuclei with atomic number greater than 92 (*Z* of uranium, last natural element):

Particular types of nuclei (2)

Example of halo nuclei: ¹¹Li

Particular types of nuclei (3)

Periodic table of the elements

*Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC).

© Encyclopædia Britannica, Inc.

 Superheavy nuclei: Hypothetic nuclei with life time larger than the last transuranium nuclei due to the proximity of the next magic number (126) → island of stability