Introductory Nuclear, Atomic and Molecular Physics

PHYS-H-405

Teachers: Raúl García-Patrón Sánchez and Nicolas Pauly
Course organization

• Theory:
 – 3 ECTS
 – 1.5 ECTS for nuclear physics (45% of the final note) and 1.5 ECTS for atomic and molecular physics (45% of the final note)
 – Slides for nuclear physics part available on
 http://metronu.ulb.ac.be/pauly_cours.html

• Exercises:
 – 1 ECTS (0.5 ECTS for each part)

• Laboratories:
 – 1 ECTS
 – Organization: E. Gnacadja (Eustache.Gnacadja@ulb.ac.be)
 – 10% of final note → Participation note + Laboratory reports
References:

• K.S. Krane : Introductory Nuclear Physics (Wiley, 1988)
• K. Heyde : Basic Ideas and Concepts in Nuclear Physics (Institute of Physics, 1994)
• B.R. Judd, Operator Techniques in Atomic Spectroscopy (Princeton Landmarks in Physics, 1998)
Contents

Part I: Nuclear Physics

1. Introduction
2. General properties of nuclei
3. Nuclear models
4. Radioactive decay
5. Alpha decay
6. Beta decay
7. Gamma decay
8. Nuclear Fission
9. Nuclear Fusion
Part I:
Nuclear Physics
Chapter I: Introduction
Summary

1. Definition
2. Brief history
3. Units and dimensions
4. Structure of nuclei
5. Types of forces
6. Conservation laws
7. Origin of nuclei
Definition

• Nuclear physics = study of atomic nuclei →
 – Theoretical model of atomic nucleus
 – Interaction of particles with nucleus
 – Mechanisms of nuclear reactions

• Applications:
 – Medicine (nuclear medicine: application of radioactive substances in the diagnosis and treatment of disease)
 – Energy production (fission, fusion)
 – Military applications
 – Food-processing (sterilization of food by irradiation)
 – Astrophysics
 – ...

Brief history (1)

1895: Discovery of X-rays by Röntgen
1896: Discovery of radioactivity from uranium by Becquerel
1897: Discovery of the electron by Thomson
1898: Pierre and Marie Curie → other materials are radioactive → discovery of Ra and Po
1899: Discovery of \(\alpha \) and \(\beta \) rays by Rutherford
1900: Discovery of \(\gamma \) rays by Villard
1903: Discovery of the law of radioactive decay by Rutherford and Soddy
1905: \(E = mc^2 \) by Einstein
1908: Discovery of the nucleus by Rutherford
1909: \(\alpha \) is a helium nucleus and \(\beta \) is an electron (Rutherford)
Brief history (2)

1912: X rays and γ rays are electromagnetic waves (von Laue)
1913: Discovery of the notion of isotope (Soddy and Richards)
1923: Use of radioactive tracers in biology by von Hevesy
1928: Theory of decay based on tunnel effect by Gamow
1929: Invention of the cyclotron by Lawrence and Livingston
1930: Pauli predicts the existence of the neutrino / Dirac predicts antimatter
1932: Discovery of neutron by Chadwick / Discovery of positron by Andersen
1934: Fermi theory for β decay
1936: Strong force occurs through meson exchange (Yukawa)
1936: Lawrence treats leukemia with 32P
Brief history (3)

1938: Hahn, Strassman, Meitner and Frisch discover the fission
1939: Bethe discovers the nuclear fusion in stars
1942: First fission reactor (Fermi)
1945: First atomic bomb at Hiroshima
1948: Big Bang nucleosynthesis (Alpher, “Bethe”, Gamow)
1951: First nuclear reactor producing electricity (EBR-1, Idaho)
1952: First hydrogen bomb (Teller, Ulam) / Decision for creation of the CEAN (future SCK-CEN) in Belgium
1954: Protontherapy at Berkeley
1956: First reactor at critical state in Belgium (BR-1)
1961: First PET scan at Brookhaven
1964: Gell-Mann and Zweig propose the model of quarks
1964: Theory of Brout-Engler-Higgs boson
Mid-1970s: Standard model
1975: First nuclear reactor producing electricity in Belgium (Doel-1)
1979: Three Mile Island accident (INES 5)
1986: Tchernobyl accident (INES 7)
2011: Fukushima accident (INES 7)
2013: Experimental evidence of BEH boson (CERN)
2019 (?): First protontherapy center in Belgium
2025 (?): First fusion reactor ITER
20???: MIRRHA in Belgium: First accelerator-driven system
Units and dimensions: Typical values

• Size of the atom ≈ 10^{-10} m
• Size of the nucleus ≈ 10^{-15} m = 1 femtometer (fm) = fermi → all nuclei have radius = 2-8 fm
• Typical β or γ decay energy in the range of 1 MeV (megaelectron-volt) = 10^6 eV = 1.6021765 \times 10^{-13} J (1 eV = energy gained by a single unit of charge when accelerated through a potential difference of 1 V)
• Unit of mass → 1 unified atomic mass unit (u) = 1.6605390 \times 10^{-27} kg → 1/12 of the mass of an unbound neutral atom of ^{12}\text{C} (in ground state and at rest)
• Practically → use of mass energy rather than mass → multiplication by c^2 (c = 299 792 485 ms^{-1} ≈ 3 \times 10^8 ms^{-1}) → 1 u = 931.502 MeV
• Unit of charge → elementary charge (e) = 1.6021766209 C (proton: e, electron: -e)
• Mean lifetime \(\tau = 1/\lambda \) with \(\lambda = \) probability of disintegration per unit time → can be 10^{-21} or 10^{19} s
Units and dimensions: Multiplication by a power of c

- Mass $m \rightarrow mc^2$ (energy)
- Momentum $p \rightarrow pc$ (energy)
- Time $t \rightarrow tc$ (length)

- Physical constants:
 - Planck constant: $\hbar = 1.05 \times 10^{-34}$ Js $\rightarrow \hbar c = 197.33$ MeVfm
 - Proton mass: $m_p = 1.6726 \times 10^{-27}$ kg $\rightarrow m_p = 938.27$ MeV/c²
 - Neutron mass: $m_n = 1.6749 \times 10^{-27}$ kg $\rightarrow m_n = 939.57$ MeV/c²
 - Electron mass: $m_e = 9.1094 \times 10^{-31}$ kg $\rightarrow m_e = 0.511$ MeV/c² $\approx m_p/1836$
Structure of nuclei: Nucleons

- Atomic nuclei are quantum bound states of particles called nucleons.
- Two types of nucleons → positively charged proton and uncharged neutron.
- The mass difference between proton and neutron is known with a huge precision: $m_n - m_p = 1.293332\text{ MeV}/c^2$.
- Nucleons are fermions (spin $\frac{1}{2}$).
- Nucleon is not an elementary particle → an elementary particle has its root mean square (rms) radius = 0.
Root mean square radius of proton and neutron (1)

- The rms radius (r_{rms}) of a particle (or charge radius) is defined as the radius of the charge distribution inside the particle \rightarrow

$$\langle r^2 \rangle_{ch}^{1/2} = \sqrt{\int r^2 \rho_{ch}(r) \, dr}$$

For a proton \rightarrow

$$\langle r^2 \rangle_{ch,p}^{1/2} \approx 0.87 \text{ fm}$$

with

$$\int \rho_{ch,p}(r) \, dr = 1$$

For a neutron \rightarrow

$$\langle r^2 \rangle_{ch,n} \approx -0.12 \text{ fm}^2$$

with

$$\int \rho_{ch,n}(r) \, dr = 0$$
Root mean square radius of proton and neutron (2)

- The charge density of a nucleon is measured from the analysis of high energy electrons scattered from it.
- Practically → measurement of charge density is made through their Fourier transform $F(q)$ such as

$$F(q) = \frac{1}{Z} \int e^{iqr} \rho(r) dr$$
Structure of nuclei: Magnetic moment

• The spin magnetic moment is the magnetic moment induced by the spin of elementary particles:

\[M = g \frac{q}{2m} S \]

with \(S \): the spin, \(q \): the charge, \(m \): the mass, \(g \): the gyromagnetic ratio

• From Dirac theory → for charged fermion: \(g = 2 \), for neutral fermion: \(g = 0 \) (small corrections from quantum electrodynamics - QED)

• Nucleon is not an elementary particle → \(g_p = 5.5856947 \) and \(g_n = -3.826085 \)
Structure of nuclei: Quarks (1)

• Nucleons are composed of 3 elementary particles: the quarks

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Spin</th>
<th>Charge</th>
<th>Flavor</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>1/2</td>
<td>+2/3</td>
<td>Up</td>
</tr>
<tr>
<td>d</td>
<td>1/2</td>
<td>-1/3</td>
<td>Down</td>
</tr>
<tr>
<td>c</td>
<td>1/2</td>
<td>+2/3</td>
<td>Charm</td>
</tr>
<tr>
<td>s</td>
<td>1/2</td>
<td>-1/3</td>
<td>Strange</td>
</tr>
<tr>
<td>t</td>
<td>1/2</td>
<td>+2/3</td>
<td>Top</td>
</tr>
<tr>
<td>b</td>
<td>1/2</td>
<td>-1/3</td>
<td>Bottom</td>
</tr>
</tbody>
</table>

+ anti-quarks

• Quarks have supplementary quantum number: color charge (red, blue, green)
• Anti-quarks have anticolor (antired, antiblue, antigreen)
• Due to the phenomenon of color confinement → quarks are never directly observed or found in isolation
• Quarks combine to form hadrons
Structure of nuclei: Quarks (2)

• Theory to be applied to systems of quarks → quantum chromodynamics (QCD)
• Combination of 2 quarks (quark + anti-quark) → meson (pion, kaon,...)
• Combination of 3 quarks with different colors → baryon (proton, neutron, hyperon,...)
• Formation of tetraquarks and pentaquarks seems possible (seems to be observed at the CERN)
• Proton → p = u + u + d
• Neutron → n = u + d + d
• Spin of the nucleon (1/2) results from the coupling of 3 spins 1/2
Lepton

• Lepton is an elementary particle

• Spin = 1/2

• Examples:
 – Electron: charge e, mass ≈ 0.5109989 MeV/c² ≈ 511 keV/c²
 – Positron: charge -e, mass ≈ 511 keV/c²
 – Muon (« heavy electron »): charge -e, m_μ ≈ 209 m_e.
 – Neutrino: charge 0, mass ≈ 0 but not 0 → m_ν < 3 eV/c², 3 flavors (electron, muon, tau), negative helicity (projection of spin onto the direction of momentum)
 – Antineutrino: same charge and mass than neutrino → really different? → not clear but all experiments have shown positive helicity
Types of forces

<table>
<thead>
<tr>
<th>Force</th>
<th>Amplitude</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong nuclear interaction</td>
<td>~ 1</td>
<td>$\sim \text{fm}$</td>
</tr>
<tr>
<td>Coulomb interaction (or electromagnetic)</td>
<td>$\sim 1/137$</td>
<td>Infinite</td>
</tr>
<tr>
<td>Weak nuclear interaction</td>
<td>$\sim 10^{-5}$</td>
<td>$\sim 10^{-3} \text{ fm}$</td>
</tr>
<tr>
<td>Gravitation interaction</td>
<td>$\sim 10^{-39}$</td>
<td>infinite</td>
</tr>
</tbody>
</table>

- Gravitational interaction is negligible compared to the other ones → but for systems with a huge number of particles → becomes dominating because of the weak total charge of macroscopic systems
- In nuclei → Coulomb interaction is not negligible → becomes very important when the number of protons →
Strong nuclear interaction (1)

- During interactions → exchange of virtual particles between particles (Coulomb interaction → exchange of photons)
- For strong nuclear interaction between nucleons → exchange of mass virtual particles (Yukawa theory) → pions (or pi mesons) \(\Pi^+, \Pi^- \) and \(\Pi^0 \) (index = charge)
- Due to time-energy uncertainty relation → \(\Delta t \Delta E \approx \hbar \)
- The energy fluctuation \(\Delta E \) necessary to have a possible reaction is \(\Delta E \approx m_\Pi c^2 \)
- In the time interval \(\Delta t \) the pion car travel a distance \(\sim c \Delta t \approx \hbar / (m_\Pi c) \) with \(\hbar / mc \) the reduced Compton wavelength
- This distance gives the range of the nuclear force
 \[
 m_{\Pi^+} \approx 139.570 \text{ MeV}/c^2 \quad \Rightarrow \quad \lambda_{\Pi^+} \approx 1.414 \text{ fm}
 \]
 \[
 m_{\Pi^0} \approx 134.977 \text{ MeV}/c^2 \quad \Rightarrow \quad \lambda_{\Pi^0} \approx 1.462 \text{ fm}
 \]
Strong nuclear interaction (2)

Feynmann diagrams for n/p interactions
Strong nuclear interaction (3)

• Same physical mechanism for interaction between 2 protons, 2 neutrons and 1 proton/1 neutron → exchange of same type particle → very similar interactions → property of *charge independence*

• The strength of the strong interaction between any pair of nucleons is the same independently of the nucleon type (protons or neutrons)

• Charge independence is not perfect because Π^0 is necessary exchanged for nn and pp interactions and np interactions can be done with various Π → as potentials are not exactly the same → not perfect charge independence
Weak nuclear interaction (1)

- Weak nuclear interaction always neglected in all calculations of nuclear structure
- This effect only appears in processes forbidden to strong nuclear interactions → β disintegration
- Yukawa theory can be adapted to weak interaction → weak gauge bosons (W^+, W^-, Z^0) mediate the weak interactions

\[m_W \approx 80.4 \text{ GeV}/c^2 \quad \Rightarrow \quad \lambda_W \approx 0.00246 \text{ fm} \]
\[m_Z \approx 91.19 \text{ GeV}/c^2 \quad \Rightarrow \quad \lambda_Z \approx 0.00217 \text{ fm} \]
- Short range → weakness of the interaction
The electroweak theory unifies weak interaction and electromagnetic interaction

This theory shows that at high energy \((E > m_Z c^2)\) → the 2 interactions have the same order of magnitude
Conservation laws (1)

• A conservation law states that a particular physical quantity does not changed (is conserved) during a physical process
• A conservation law is exact if it was never contradicted
• A conservation law is approximated if the considered quantity is conserved in certain classes of physics processes but not in all (e.g. conservation of parity)
• Principals conservation laws are:
 – conservation of energy and momentum (exact)
 – conservation of angular momentum (exact)
 – conservation of electric charge (exact)
 – conservation of baryon number (approximated)
 – conservation of lepton number (approximated)
 – ...
Conservation laws (2)

- Conservation of baryon number \rightarrow conservation of the total number of nucleons (neutrons and protons) minus the total number of anti-nucleons (antiprotons and antineutrons) $\rightarrow p + d \leftrightarrow p + p + \gamma$ is not allowed (charge YES, baryon number No) $\rightarrow \gamma + d \rightarrow p + n$ is allowed

- Conservation of electronic lepton number (L_e) \rightarrow conservation of the difference between the total number of [electrons and electron neutrinos] and the total number of [positrons and electronic antineutrinos] \rightarrow

$$L_e \equiv N(e^-) + N(\nu_e) - N(e^+) - N(\bar{\nu}_e)$$

$\rightarrow \nu_e + n \leftrightarrow e^- + p$ is NOT allowed but $\rightarrow \bar{\nu}_e + n \rightarrow e^+ + n$ YES

- Remark 1: it exists two other types of charged leptons $\rightarrow \mu^\pm$ and τ^\pm \rightarrow similar conservation laws with L_μ and L_τ
Conservation laws (3)

• Remark 2: some recent experiments on neutrino oscillations shows that the only truly conserved number is the sum of the 3 lepton numbers: \(L = L_e + L_\mu + L_\tau \)

• Remark 3: \(p \rightarrow e^+ + \gamma \) is not possible (conservation of baryon and lepton number) but a « possible » theory predicts the disintegration of proton (with a characteristic lifetime \(\tau_p \approx 10^{29} \) years \(\approx 10^{19} \) times the age of Universe)

• Remark 4: neutron is instable \(\rightarrow n \rightarrow p + e^- + \bar{\nu}_e \) (with \(Q = (m_n - m_p - m_e)^2 \approx 0.782 \) MeV and \(\tau_n \approx 885.7 \) s)
Conservation laws: Stability of nuclei

- Conservation of energy → 1 particle of mass m and charge q can spontaneously decay into i particles only if (with Q the liberated energy):

 $$m > \sum_i m_i \text{ or equivalently } \rightarrow Q = mc^2 - \sum_i m_i c^2 > 0$$

- Conservation of charge → $q = \sum_i q_i$

- These laws implies that electron and positron are stable (no particle of same charge but of smaller mass)
Origin of nuclei

• Nuclei in nature were built by nuclear reactions since the « Big Bang »

• Begin not well known → system at very high T → free quarks and gluons (bosons mediating between quarks) = quark-gluon plasma

• Time t ↗ → T ↘ → quarks and gluons combine to form hadrons and nucleons → proton → neutron and neutron → proton → but as $m_p < m_n$ → system with smallest mass is favored

• t ↗ more → T ↘ → collisions → apparition of bounded systems (with $A \leq 7$) → fixed situation = 87% of protons and 13% neutrons

• Abundance: 74% H + 23-25% He ($4p \rightarrow ^4\text{He} + 2e^+ + 2\nu_e + n\gamma$) + ...

• Other nuclei are formed during star explosion: supernova → a lot of nuclei are unstable and decay into other nuclei → process of formation + decay is called nucleosynthesis