Introductory Nuclear, Atomic and Molecular Physics

PHYS-H-405

Teachers: Jérémy Dohet-Eraly and Nicolas Pauly

Course organization

Theory:

- 3 ECTS
- 1.5 ECTS for nuclear physics (45% of the final note) and 1.5 ECTS for atomic and molecular physics (45% of the final note)
- Slides for nuclear physics part available on http://metronu.ulb.ac.be/pauly cours.html

Exercises:

1 ECTS (0.5 ECTS for each part)

Laboratories:

- 1 FCTS
- Organization: M. Ciccarelli (Maureen.Ciccarelli@ulb.be)
- 10% of final note → Laboratory reports

References:

- K.S. Krane: Introductory Nuclear Physics (Wiley, 1988)
- K. Heyde: Basic Ideas and Concepts in Nuclear Physics (Institute of Physics, 1994)
- S.S.M. Wong: Introductory Nuclear Physics (Wiley, 1998)
- B.H. Bransden and C.J. Joachain, Physics of Atoms and Molecules (Prentice Hall, 2003)
- B.R. Judd, Operator Techniques in Atomic Spectroscopy (Princeton Landmarks in Physics, 1998)
- W.R. Johnson, Atomic Structure Theory (Lectures on Atomic Physics, Springer, 1998)
- R.D. Cowan, The Theory of Atomic Structure and Spectra (Los Alamos Series in Basic and Applied Sciences, 1981)

Contents

Part I: Nuclear Physics

- 1. Introduction
- 2. General properties of nuclei
- 3. Nuclear models
- 4. Radioactive decay
- 5. Alpha decay
- 6. Beta decay
- 7. Gamma decay
- 8. Nuclear Fission
- 9. Nuclear Fusion

Part I: Nuclear Physics

Chapter I: Introduction

Summary

- 1. Definition
- 2. Brief history
- 3. Units and dimensions
- 4. Structure of nuclei
- 5. Types of forces
- 6. Conservation laws
- 7. Origin of nuclei

Definition

- Nuclear physics = study of atomic nuclei →
 - Theoretical model of atomic nucleus
 - Interaction of particles with nucleus
 - Mechanisms of nuclear reactions

Applications:

- Medicine (nuclear medicine: application of radioactive substances in the diagnosis and treatment of disease)
- Energy production (fission, fusion)
- Military applications
- Food-processing (sterilization of food by irradiation)
- Astrophysics
- **—** ...

Brief history (1)

- 1895: Discovery of X-rays by Röntgen
- 1896: Discovery of radioactivity from uranium by Becquerel
- 1897: Discovery of the electron by Thomson
- 1898: Pierre and Marie Curie → other materials are radioactive → discovery of Ra and Po
- 1899: Discovery of α and β rays by Rutherford
- 1900: Discovery of γ rays by Villard
- 1903: Discovery of the law of radioactive decay by Rutherford and Soddy
- 1905: $E = mc^2$ by Einstein
- 1908: Discovery of the nucleus by Rutherford
- 1909: α is a helium nucleus and β is an electron (Rutherford)

Brief history (2)

- 1912: X rays and γ rays are electromagnetic waves (von Laue)
- 1913: Discovery of the notion of isotope (Soddy and Richards)
- 1923: Use of radioactive tracers in biology by von Hevesy
- 1928: Theory of decay based on tunnel effect by Gamow
- 1929: Invention of the cyclotron by Lawrence and Livingston
- 1930: Pauli predicts the existence of the neutrino / Dirac predicts antimatter
- 1932: Discovery of neutron by Chadwick / Discovery of positron by Andersen
- 1934: Fermi theory for β decay
- 1936: Strong force occurs through meson exchange (Yukawa)
- 1936: Lawrence treats leukemia with ³²P

Brief history (3)

- 1938: Hahn, Strassman, Meitner and Frisch discover the fission
- 1939: Bethe discovers the nuclear fusion in stars
- 1942: First fission reactor (Fermi)
- 1945: First atomic bomb at Hiroshima
- 1948: Big Bang nucleosynthesis (Alpher, "Bethe", Gamow)
- 1951: First nuclear reactor producing electricity (EBR-1, Idaho)
- 1952: First hydrogen bomb (Teller, Ulam) / Decision for creation of the CEAN (future SCK-CEN) in Belgium
- 1954: Protontherapy at Berkeley
- 1956: First reactor at critical state in Belgium (BR-1)
- 1961: First PET scan at Brookhaven
- 1964: Gell-Mann and Zweig propose the model of quarks

Brief history (4)

1964: Theory of Brout-Engler-Higgs boson

Mid-1970s: Standard model

1975: First nuclear reactor producing electricity in Belgium (Doel-1)

1979: Three Mile Island accident (INES 5)

1986: Tchernobyl accident (INES 7)

2011: Fukushima accident (INES 7)

2013: Experimental evidence of BEH boson (CERN)

2020: First protontherapy center in Belgium

2035 (?): First fusion reactor ITER

20??: MIRRHA in Belgium: First accelerator-driven system

20??: SMR in Belgium

Units and dimensions: Typical values

- Size of the atom $\approx 10^{-10}$ m
- Size of the nucleus $\approx 10^{-15}$ m = 1 femtometer (fm) = fermi \rightarrow all nuclei have radius = 2-8 fm
- Typical β or γ decay energy in the range of 1 MeV (megaelectron-volt) = 10^6 eV = $1.6021765 \times 10^{-13}$ J (1 eV = energy gained by a single unit of charge when accelerated through a potential difference of 1 V)
- Unit of mass \rightarrow 1 unified atomic mass unit (u) = 1.6605390 \times 10⁻²⁷ kg \rightarrow 1/12 of the mass of an unbound neutral atom of ¹²C (in ground state and at rest)
- Practically \rightarrow use of mass energy rather than mass \rightarrow multiplication by c² (c = 299 792 485 ms⁻¹ \approx 3 \times 10⁸ ms⁻¹) \rightarrow 1 u = 931.502 MeV
- Unit of charge \rightarrow elementary charge (e) = 1.6021766209 \times 10⁻¹⁹ C (proton: e, electron: -e)
- Mean lifetime $\tau = 1/\lambda$ with λ = probability of disintegration per unit time \rightarrow can be 10^{-21} or 10^{19} s

Units and dimensions: Multiplication by a power of c

- Mass m \rightarrow mc² (energy)
- Momentum p → pc (energy)
- Time t → tc (length)

Physical constants:

- Planck constant: $\hbar = 1.05 \times 10^{-34} \text{ Js} \rightarrow \hbar c = 197.33 \text{ MeVfm}$
- Proton mass: $m_p = 1.6726 \times 10^{-27} \text{ kg}$ → $m_p = 938.27 \text{ MeV/c}^2$
- Neutron mass: $m_n = 1.6749 \times 10^{-27} \text{ kg}$ → $m_n = 939.57 \text{ MeV/c}^2$
- -~ Electron mass: $\rm m_e$ = 9.1094 $\times~10^{\text{-}31}~kg$ $\rightarrow~$ $\rm m_e$ = 0.511 MeV/c² $\approx~m_p/1836$

Structure of nuclei: Nucleons

- Atomic nuclei are quantum bound states of particles called nucleons
- Two types of nucleons → positively charged proton and uncharged neutron
- The mass difference between proton and neutron is known with a huge precision: $m_n m_p = 1.293 332 \text{ MeV/c}^2$
- Nucleons are fermions (spin ½)
- Nucleon is not an elementary particle → an elementary particle has its root mean square (rms) radius = 0

Root mean square radius of proton and neutron (1)

• The rms radius (r_{rms}) of a particle (or charge radius) is defined as the radius of the charge distribution inside the particle \rightarrow

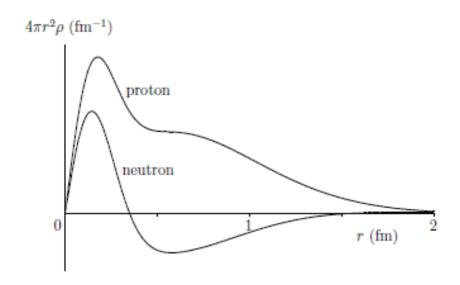
$$\langle r^2 \rangle_{ch}^{1/2} = \sqrt{\int r^2 \rho_{ch}(\mathbf{r}) d\mathbf{r}}$$

For a proton \rightarrow

ton
$$\rightarrow$$
 For a neutron \rightarrow

$$\langle r^2 \rangle_{ch,p}^{1/2} \approx 0.87 \text{ fm}$$

$$\langle r^2 \rangle_{ch,n} \approx -0.12 \text{ fm}^2$$


with

$$\int \rho_{ch,n}(\boldsymbol{r})d\boldsymbol{r} = 0$$

with

$$\int \rho_{ch,p}(\boldsymbol{r})d\boldsymbol{r} = 1$$

Root mean square radius of proton and neutron (2)

- The charge density of a nucleon is measured from the analysis of high energy electrons scattered from it
- Practically → measurement of charge density is made through their Fourier transform F(q) such as

$$F(\boldsymbol{q}) = \frac{1}{Z} \int e^{i\boldsymbol{q}\boldsymbol{r}} \rho(\boldsymbol{r}) d\boldsymbol{r}$$

Structure of nuclei: Magnetic moment

 The spin magnetic moment is the magnetic moment induced by the spin of elementary particles:

$$\mathbf{M} = g \frac{q}{2m} \mathbf{S}$$

with S: the spin, q: the charge, m: the mass, g: the gyromagnetic ratio

- From Dirac theory \rightarrow for charged fermion: g = 2, for neutral fermion: g = 0 (small corrections from quantum electrodynamics QED)
- Nucleon is not an elementary particle \Rightarrow g_p = 5.5856947 and g_n = -3.826085

Structure of nuclei: Quarks (1)

Nucleons are composed of 3 elementary particles: the quarks

Symbol	Spin	Charge	Flavor
u	1/2	+2/3	Up
d	1/2	-1/3	Down
С	1/2	+2/3	Charm
S	1/2	-1/3	Strange
t	1/2	+2/3	Тор
b	1/2	-1/3	Bottom

+ anti-quarks

- Quarks have supplementary quantum number: color charge (red, blue, green)
- Anti-quarks have anticolor (antired, antiblue, antigreen)
- Due to the phenomenon of color confinement → quarks are never directly observed or found in isolation
- Quarks combine to form hadrons

Structure of nuclei: Quarks (2)

- Theory to be applied to systems of quarks → quantum chromodynamics (QCD)
- Combination of 2 quarks (quark + anti-quark) → meson (pion, kaon,...)
- Combination of 3 quarks with different colors → baryon (proton, neutron, hyperon,...)
- Formation of tetraquarks and pentaquarks seems possible (seems to be observed at the CERN)
- Proton \rightarrow p = u + u + d
- Neutron \rightarrow n = u + d + d
- Spin of the nucleon (1/2) results from the coupling of 3 spins 1/2

Lepton

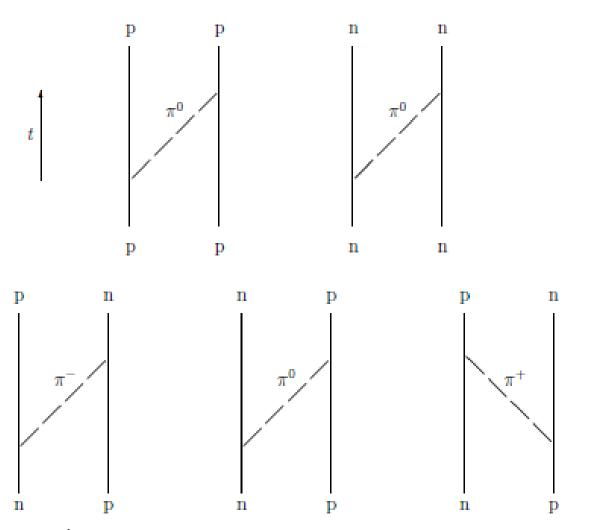
- Lepton is an elementary particle
- Spin = 1/2

Examples:

- Electron: charge -e, mass ≈ 0.5109989 MeV/c² ≈ 511 keV/c²
- Positron: charge +e, mass ≈ 511 keV/c²
- Muon (« heavy electron »): charge –e, m_{μ} ≈ 209 m_{e} .)
- Neutrino: charge 0, mass ≈ 0 but not 0 → m_{\(\nu\)} < 3 eV/c², 3 flavors (electron, muon, tau), negative helicity (projection of spin onto the direction of momentum)
- Antineutrino: same charge and mass than neutrino → really different?
 → not clear but all experiments have shown positive helicity

Types of forces

Force	Amplitude	Range
Strong nuclear interaction	\sim 1	\sim fm
Coulomb interaction (or electromagnetic)	\sim 1/137	Infinite
Weak nuclear interaction	\sim 10 ⁻⁵	\sim 10 ⁻³ fm
Gravitation interaction	\sim 10 ⁻³⁹	infinite


- Gravitational interaction is negligible compared to the other ones → but for systems with a huge number of particles → becomes dominating because of the weak total charge of macroscopic systems
- In nuclei → Coulomb interaction is not negligible → becomes very important when the number of protons

Strong nuclear interaction (1)

- During interactions → exchange of virtual particles between particles (Coulomb interaction → exchange of photons)
- For strong nuclear interaction between nucleons \rightarrow exchange of mass virtual particles (Yukawa theory) \rightarrow pions (or pi mesons) Π^+ , Π^- and Π^0 (index = charge)
- Due to time-energy uncertainty relation $\rightarrow \Delta t \Delta E \simeq \hbar$
- The energy fluctuation ΔE necessary to have a possible reaction is $\Delta E \sim m_{TT}c^2$
- In the time interval Δt the pion car travel a distance $\sim c \Delta t \sim \hbar/(m_{T}c)$ with \hbar/mc the reduced Compton wavelength
- This distance gives the range of the nuclear force

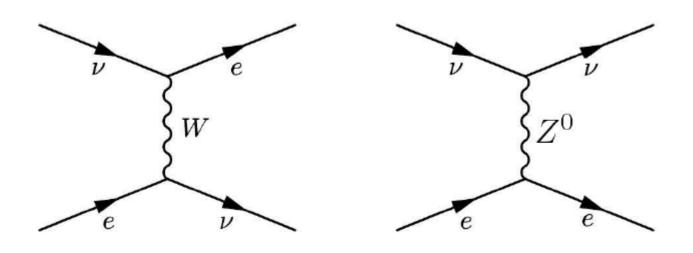
$$m_{\Pi^+} \simeq 139.570 \text{ MeV/c}^2 \quad \Rightarrow \quad \lambda_{\Pi^+} \simeq 1.414 \text{ fm}$$

 $m_{\Pi^0} \simeq 134.977 \text{ MeV/c}^2 \quad \Rightarrow \quad \lambda_{\Pi^0} \simeq 1.462 \text{ fm}$

Strong nuclear interaction (2)

Strong nuclear interaction (3)

- Same physical mechanism for interaction between 2 protons,
 2 neutrons and 1 proton/1 neutron → exchange of same type particle → very similar interactions → property of *charge* independence
- The strength of the strong interaction between any pair of nucleons is the same independently of the nucleon type (protons or neutrons)
- Charge independence is not perfect because Π^0 is necessary exchanged for nn and pp interactions and np interactions can be done with various $\Pi \to$ as potentials are not exactly the same \to not perfect charge independence


Weak nuclear interaction (1)

- Weak nuclear interaction always neglected in all calculations of nuclear structure
- This effect only appears in processes forbidden to strong nuclear interactions $\rightarrow \beta$ disintegration
- Yukawa theory can be adapted to weak interaction \rightarrow weak gauge bosons (W^+ , W^- , Z^0) mediate the weak interactions

$$m_W \simeq 80.4 \text{ GeV/c}^2 \quad \Rightarrow \quad \lambda_W \simeq 0.00246 \text{ fm}$$

 $m_Z \simeq 91.19 \text{ GeV/c}^2 \quad \Rightarrow \quad \lambda_Z \simeq 0.00217 \text{ fm}$

Short range → weakness of the interaction

Weak nuclear interaction (2)

- The electroweak theory unifies weak interaction and electromagnetic interaction
- This theory shows that at high energy $(E > m_Z c^2) \rightarrow$ the 2 interactions have the same order of magnitude

Conservation laws (1)

- A conservation law states that a particular physical quantity does not changed (is conserved) during a physical process
- A conservation law is exact if it was never contradicted
- A conservation law is approximated if the considered quantity is conserved in certain classes of physics processes but not in all (e.g. conservation of parity)
- Principals conservation laws are:
 - conservation of energy and momentum (exact)
 - conservation of angular momentum (exact)
 - conservation of electric charge (exact)
 - conservation of baryon number (approximated)
 - conservation of lepton number (approximated)

– ...

Conservation laws (2)

- Conservation of baryon number → conservation of the total number of nucleons (neutrons and protons) minus the total number of anti-nucleons (antiprotons and antineutrons) → p + d → p + p + γ is not allowed (charge YES, baryon number No) → γ + d → p + n is allowed
- Conservation of electronic lepton number $(L_e) \rightarrow$ conservation of the difference between the total number of [electrons and electron neutrinos] and the total number of [positrons and electronic antineutrinos] \rightarrow

$$L_e \equiv N(e^-) + N(\nu_e) - N(e^+) - N(\bar{\nu}_e)$$
 $\rightarrow \bar{\nu}_e + n \rightarrow e^- + p \text{ is NOT allowed but } \rightarrow \bar{\nu}_e + n \rightarrow e^+ + n \text{ YES}$

• Remark 1: it exists two other types of charged leptons $\rightarrow \mu^{\pm}$ and $\tau^{\pm} \rightarrow$ similar conservation laws with L_{μ} and L_{τ}

Conservation laws (3)

- Remark 2: some recent experiments on neutrino oscillations shows that the only truly conserved number is the sum of the 3 lepton numbers: $L = L_e + L_u + L_\tau$
- Remark 3: p \rightarrow e⁺ + γ is not possible (conservation of baryon and lepton number) but a « possible » theory predicts the disintegration of proton (with a characteristic lifetime $\tau_p \approx 10^{29}$ years $\approx 10^{19}$ times the age of Universe)
- Remark 4: neutron is instable \rightarrow n \rightarrow p + e⁻ + $\overline{\nu}_e$ (with $Q = (m_n m_p m_e)^2 \approx 0.782$ MeV and $\tau_n \approx 885.7$ s)

Conservation laws: Stability of nuclei

 Conservation of energy → 1 particle of mass m and charge q can spontaneously decay into i particles only if (with Q the liberated energy):

$$m>\sum_i m_i$$
 or equivalently $\to Q=mc^2-\sum_i m_ic^2>0$
• Conservation of charge $\to q=\sum_i q_i$

- These laws implies that electron and positron are stable (no particle of same charge but of smaller mass)

Origin of nuclei

- Nuclei in nature were built by nuclear reactions since the « Big Bang »
- Begin not well known \rightarrow system at very high T \rightarrow free quarks and gluons (bosons mediating between quarks) = quark-gluon plasma
- Time t $\nearrow \rightarrow T \searrow \rightarrow$ quarks and gluons combine to form hadrons and nucleons \rightarrow proton \rightarrow neutron and neutron \rightarrow proton \rightarrow but as $m_p < m_n \rightarrow$ system with smallest mass is favored
- t \nearrow more \rightarrow T \searrow \rightarrow collisions \rightarrow apparition of bounded systems (with A \leq 7) \rightarrow fixed situation = 87% of protons and 13% neutrons
- Abundance: 74% H + 23-25% He (4p ightarrow ⁴He + 2e⁺ + 2 $u_{
 m e}$ + n γ) + ...
- Other nuclei are formed during star explosion: supernova → a lot of nuclei are unstable and decay into other nuclei → process of formation + decay is called *nucleosynthesis*