Introductory Nuclear, Atomic and Molecular Physics

PHYS-H-405

Teachers: Jérémy Dohet-Eraly and Nicolas Pauly

Course organization

- Theory:
	- 3 ECTS
	- 1.5 ECTS for nuclear physics (45% of the final note) and 1.5 ECTS for atomic and molecular physics (45% of the final note)
	- Slides for nuclear physics part available on http://metronu.ulb.ac.be/pauly_cours.html
- Exercises:
	- 1 ECTS (0.5 ECTS for each part)
- Laboratories:
	- 1 ECTS
	- Organization: M. Ciccarelli (Maureen.Ciccarelli@ulb.be)
	- -10% of final note \rightarrow Laboratory reports

References:

- K.S. Krane : Introductory Nuclear Physics (Wiley, 1988)
- K. Heyde : Basic Ideas and Concepts in Nuclear Physics (Institute of Physics, 1994)
- S.S.M. Wong : Introductory Nuclear Physics (Wiley, 1998)
- B.H. Bransden and C.J. Joachain, Physics of Atoms and Molecules (Prentice Hall, 2003)
- B.R. Judd, Operator Techniques in Atomic Spectroscopy (Princeton Landmarks in Physics, 1998)
- W.R. Johnson, Atomic Structure Theory (Lectures on Atomic Physics, Springer, 1998)
- R.D. Cowan, The Theory of Atomic Structure and Spectra (Los Alamos Series in Basic and Applied Sciences, 1981)

Contents

Part I: Nuclear Physics

- 1. Introduction
- 2. General properties of nuclei
- 3. Nuclear models
- 4. Radioactive decay
- 5. Alpha decay
- 6. Beta decay
- 7. Gamma decay
- 8. Nuclear Fission
- 9. Nuclear Fusion

Part I: Nuclear Physics

Chapter I: Introduction

Summary

- 1. Definition
- 2. Brief history
- 3. Units and dimensions
- 4. Structure of nuclei
- 5. Types of forces
- 6. Conservation laws
- 7. Origin of nuclei

Definition

- Nuclear physics = study of atomic nuclei \rightarrow
	- Theoretical model of atomic nucleus
	- Interaction of particles with nucleus
	- Mechanisms of nuclear reactions
- Applications:
	- Medicine (nuclear medicine: application of radioactive substances in the diagnosis and treatment of disease)
	- Energy production (fission, fusion)
	- Military applications
	- Food-processing (sterilization of food by irradiation)
	- Astrophysics

– …

Brief history (1)

- 1895: Discovery of X-rays by Röntgen
- 1896: Discovery of radioactivity from uranium by Becquerel
- 1897: Discovery of the electron by Thomson
- 1898: Pierre and Marie Curie \rightarrow other materials are radioactive \rightarrow discovery of Ra and Po
- 1899: Discovery of α and β rays by Rutherford
- 1900: Discovery of γ rays by Villard
- 1903: Discovery of the law of radioactive decay by Rutherford and Soddy
- 1905: *E* = *mc*² by Einstein
- 1908: Discovery of the nucleus by Rutherford
- 1909: α is a helium nucleus and β is an electron (Rutherford) \Box

Brief history (2)

- 1912: X rays and γ rays are electromagnetic waves (von Laue)
- 1913: Discovery of the notion of isotope (Soddy and Richards)
- 1923: Use of radioactive tracers in biology by von Hevesy
- 1928: Theory of decay based on tunnel effect by Gamow
- 1929: Invention of the cyclotron by Lawrence and Livingston
- 1930: Pauli predicts the existence of the neutrino / Dirac predicts antimatter
- 1932: Discovery of neutron by Chadwick / Discovery of positron by Andersen
- 1934: Fermi theory for β decay

1936: Strong force occurs through meson exchange (Yukawa)

1936: Lawrence treats leukemia with $32P$ 1936: Lawrence treats leukemia with $32P$

Brief history (3)

- 1938: Hahn, Strassman, Meitner and Frisch discover the fission
- 1939: Bethe discovers the nuclear fusion in stars
- 1942: First fission reactor (Fermi)
- 1945: First atomic bomb at Hiroshima
- 1948: Big Bang nucleosynthesis (Alpher, "Bethe", Gamow)
- 1951: First nuclear reactor producing electricity (EBR-1, Idaho)
- 1952: First hydrogen bomb (Teller, Ulam) / Decision for creation of the CEAN (future SCK-CEN) in Belgium
- 1954: Protontherapy at Berkeley
- 1956: First reactor at critical state in Belgium (BR-1)
- 1961: First PET scan at Brookhaven
- 1964: Gell-Mann and Zweig propose the model of quarks 11

Brief history (4)

- 1964: Theory of Brout-Engler-Higgs boson
- Mid-1970s: Standard model
- 1975: First nuclear reactor producing electricity in Belgium (Doel-1)
- 1979: Three Mile Island accident (INES 5)
- 1986: Tchernobyl accident (INES 7)
- 2011: Fukushima accident (INES 7)
- 2013: Experimental evidence of BEH boson (CERN)
- 2019: First protontherapy center in Belgium
- 2025-2030 (?): First fusion reactor ITER
- 20??: MIRRHA in Belgium: First accelerator-driven system

Units and dimensions: Typical values

- Size of the atom $\approx 10^{-10}$ m
- Size of the nucleus $\approx 10^{-15}$ m = 1 femtometer (fm) = fermi \rightarrow all nuclei have radius = 2-8 fm
- Typical β or γ decay energy in the range of 1 MeV (megaelectronvolt) = 10^6 eV = 1.6021765 \times 10⁻¹³ J (1 eV = energy gained by a single unit of charge when accelerated through a potential difference of 1 V)
- Unit of mass \rightarrow 1 unified atomic mass unit (u) = 1.6605390 \times 10⁻²⁷ $kg \rightarrow 1/12$ of the mass of an unbound neutral atom of ¹²C (in ground state and at rest)
- Practically \rightarrow use of mass energy rather than mass \rightarrow multiplication by c 2 (c = 299 792 485 ms $^{-1}$ \approx 3 \times $\,10^8\,{\rm ms}^{-1}) \rightarrow$ 1 u = 931.502 MeV
- Unit of charge \rightarrow elementary charge (e) = 1.6021766209 C (proton: e, electron: -e)
- Mean lifetime $\tau = 1/\lambda$ with λ = probability of disintegration per unit time \rightarrow can be 10⁻²¹ or 10¹⁹ s

Units and dimensions: Multiplication by a power of c

- Mass $m \to mc^2$ (energy)
- Momentum $p \rightarrow pc$ (energy)
- Time $t \to tc$ (length)
- Physical constants:
	- Planck constant: $\hbar = 1.05 \times 10^{-34}$ Js $\rightarrow \hbar c = 197.33$ MeVfm
	- Proton mass: m_p = 1.6726 \times 10⁻²⁷ kg → m_p = 938.27 MeV/c²
	- Neutron mass: m_n = 1.6749 \times 10⁻²⁷ kg → m_n = 939.57 MeV/c²
	- $-$ Electron mass: m $_{\rm e}$ = 9.1094 \times 10⁻³¹ kg \rightarrow m $_{\rm e}$ = 0.511 MeV/c² ≈ m $_{\rm p}$ /1836

Structure of nuclei: Nucleons

- Atomic nuclei are quantum bound states of particles called *nucleons*
- Two types of nucleons \rightarrow positively charged proton and uncharged neutron
- The mass difference between proton and neutron is known with a huge precision: $m_n - m_p = 1.293$ 332 MeV/c²
- Nucleons are fermions (spin $\frac{1}{2}$)
- Nucleon is not an elementary particle \rightarrow an elementary particle has its root mean square (rms) radius = 0

Root mean square radius of proton and neutron (1)

• The rms radius (r_{rms}) of a particle (or charge radius) is defined as the radius of the charge distribution inside the particle \rightarrow

$$
\langle r^2\rangle^{1/2}_{ch}=\sqrt{\int r^2\rho_{ch}(\bm{r})d\bm{r}}
$$

For a proton \rightarrow

 $\langle r^2 \rangle_{ch,p}^{1/2} \approx 0.87$ fm

For a neutron \rightarrow

$$
\langle r^2\rangle_{ch,n}\approx -0.12~\mathrm{fm}^2
$$

with

$$
\int \rho_{ch,p}(\bm{r})d\bm{r}=1
$$

with

$$
\int \rho_{ch,n}(\boldsymbol{r})d\boldsymbol{r}=0
$$

Root mean square radius of proton and neutron (2)

- The charge density of a nucleon is measured from the analysis of high energy electrons scattered from it
- Practically \rightarrow measurement of charge density is made through their Fourier transform *F(q)* such as

$$
F(\boldsymbol{q})=\frac{1}{Z}\int e^{i\boldsymbol{q}\boldsymbol{r}}\rho(\boldsymbol{r})d\boldsymbol{r}
$$

Structure of nuclei: Magnetic moment

• The spin magnetic moment is the magnetic moment induced by the spin of elementary particles:

$$
\bm{M}=g\frac{q}{2m}\bm{S}
$$

with *S*: the spin, *q*: the charge, *m*: the mass, *g*: the gyromagnetic ratio

- From Dirac theory \rightarrow for charged fermion: $g = 2$, for neutral fermion: *g = 0* (small corrections from quantum electrodynamics - QED)
- Nucleon is not an elementary particle \rightarrow g_{p} = 5.5856947 and *gn =* -3.826085

Structure of nuclei: Quarks (1)

• Nucleons are composed of 3 elementary particles: the quarks

- Quarks have supplementary quantum number: color charge (red, blue, green)
- Anti-quarks have anticolor (antired, antiblue, antigreen)
- Due to the phenomenon of *color confinement* → quarks are never directly observed or found in isolation
- Quarks combine to form hadrons **1986** Combine to the manner of the set of the

Structure of nuclei: Quarks (2)

- Theory to be applied to systems of quarks \rightarrow quantum chromodynamics (QCD)
- Combination of 2 quarks (quark + anti-quark) \rightarrow meson (pion, kaon,…)
- Combination of 3 quarks with different colors \rightarrow baryon (proton, neutron, hyperon,…)
- Formation of tetraquarks and pentaquarks seems possible (seems to be observed at the CERN)
- Proton $\rightarrow p = u + u + d$
- Neutron \rightarrow n = u + d + d
- Spin of the nucleon $(1/2)$ results from the coupling of 3 spins $1/2$

Lepton

- Lepton is an elementary particle
- Spin = $1/2$
- Examples:
	- Electron: charge -e, mass ≈ 0.5109989 MeV/c² ≈ 511 keV/c²
	- $-$ Positron: charge +e, mass ≈ 511 keV/c²
	- $-$ Muon (« heavy electron »): charge –e, m $_{\mu}$ \approx 209 m_e.)
	- $-$ Neutrino: charge 0, mass ≈ 0 but not 0 \rightarrow m $_{\nu}$ < 3 eV/c², 3 flavors (electron, muon, tau), negative helicity (projection of spin onto the direction of momentum)
	- $-$ Antineutrino: same charge and mass than neutrino \rightarrow really different? \rightarrow not clear but all experiments have shown positive helicity

Types of forces

- Gravitational interaction is negligible compared to the other ones \rightarrow but for systems with a huge number of particles \rightarrow becomes dominating because of the weak total charge of macroscopic systems
- In nuclei \rightarrow Coulomb interaction is not negligible \rightarrow becomes very important when the number of protons λ

Strong nuclear interaction (1)

- During interactions \rightarrow exchange of virtual particles between particles (Coulomb interaction \rightarrow exchange of photons)
- For strong nuclear interaction between nucleons \rightarrow exchange of mass virtual particles (Yukawa theory) \rightarrow pions (or pi mesons) Π^{+} , Π^{-} and Π^{0} (index = charge)
- Due to time-energy uncertainty relation $\rightarrow \, \Delta t \Delta E \simeq \hbar$
- The energy fluctuation ΔE necessary to have a possible reaction is $\varDelta E\sim m_{\varPi}c^{2}$
- In the time interval \varDelta t the pion car travel a distance \sim $c\varDelta t$ \sim $\hbar/(m_{\overline{I}}c)$ with \hbar/mc the reduced Compton wavelength
- This distance gives the range of the nuclear force $m_{\Pi^+} \simeq 139.570 \text{ MeV}/c^2 \Rightarrow \lambda_{\Pi^+} \simeq 1.414 \text{ fm}$ $m_{\Pi^0} \simeq 134.977 \text{ MeV}/c^2 \Rightarrow \lambda_{\Pi^0} \simeq 1.462 \text{ fm}$

23

Strong nuclear interaction (2)

Feynmann diagrams for n/p interactions 24

Strong nuclear interaction (3)

- Same physical mechanism for interaction between 2 protons, 2 neutrons and 1 proton/1 neutron \rightarrow exchange of same type particle → very similar interactions → property of *charge independence*
- The strength of the strong interaction between any pair of nucleons is the same independently of the nucleon type (protons or neutrons)
- Charge independence is not perfect because Π^0 is necessary exchanged for nn and pp interactions and np interactions can be done with various $\Pi \rightarrow$ as potentials are not exactly the same \rightarrow not perfect charge independence

Weak nuclear interaction (1)

- Weak nuclear interaction always neglected in all calculations of nuclear structure
- This effect only appears in processes forbidden to strong nuclear interactions $\rightarrow \beta$ disintegration
- Yukawa theory can be adapted to weak interaction \rightarrow weak gauge bosons (*W⁺* , *W-* , *Z 0*) mediate the weak interactions

$$
m_W \simeq 80.4 \text{ GeV}/c^2 \Rightarrow \lambda_W \simeq 0.00246 \text{ fm}
$$

$$
m_Z \simeq 91.19 \text{ GeV}/c^2 \Rightarrow \lambda_Z \simeq 0.00217 \text{ fm}
$$

• Short range \rightarrow weakness of the interaction

Weak nuclear interaction (2)

- The electroweak theory unifies weak interaction and electromagnetic interaction
- This theory shows that at high energy $(E > m_Z c^2) \rightarrow$ the 2 interactions have the same order of magnitude

Conservation laws (1)

- A *conservation law* states that a particular physical quantity does not changed (is conserved) during a physical process
- A conservation law is *exact* if it was never contradicted
- A conservation law *is approximated* if the considered quantity is conserved in certain classes of physics processes but not in all (e.g. conservation of parity)
- Principals conservation laws are:

– …

- conservation of energy and momentum (exact)
- conservation of angular momentum (exact)
- conservation of electric charge (exact)
- conservation of baryon number (approximated)
- conservation of lepton number (approximated)

Conservation laws (2)

- Conservation of baryon number \rightarrow conservation of the total number of nucleons (neutrons and protons) minus the total number of anti-nucleons (antiprotons and antineutrons) \rightarrow $p + d \rightarrow p + p + \gamma$ is not allowed (charge YES, baryon number No) $\rightarrow \gamma + d \rightarrow p + n$ is allowed
- Conservation of electronic lepton number (L_e) → conservation of the difference between the total number of [electrons and electron neutrinos] and the total number of [positrons and electronic antineutrinos] \rightarrow

$$
L_e \equiv N(e^-) + N(\nu_e) - N(e^+) - N(\bar{\nu}_e)
$$

 \rightarrow $\overline{\nu}_\mathrm{e}$ + n \nrightarrow e⁻ + p is NOT allowed but \rightarrow $\overline{\nu}_\mathrm{e}$ + n \rightarrow e⁺ + n YES

• Remark 1: it exists two other types of charged leptons $\rightarrow \mu^{\pm}$ and τ [±] → similar conservation laws with *L^μ* and *L^τ*

Conservation laws (3)

- Remark 2: some recent experiments on neutrino oscillations shows that the only truly conserved number is the sum of the 3 lepton numbers: $L = L_e + L_u + L_t$
- Remark 3: $p \nrightarrow e^+ + \gamma$ is not possible (conservation of baryon and lepton number) but a « possible » theory predicts the disintegration of proton (with a characteristic lifetime $\tau_p \approx 10^{29}$ years $\approx 10^{19}$ times the age of Universe)
- Remark 4: neutron is instable \rightarrow n \rightarrow p + e⁻ + $\overline{\nu}_{e}$ (with $Q = (m_n 1)$ m_{p} *- m_e*)² ≈ 0.782 MeV and τ_{n} ≈ 885.7 s)

Conservation laws: Stability of nuclei

• Conservation of energy → 1 particle of mass *m* and charge *q* can spontaneously decay into *i* particles only if (with *Q* the liberated energy):

$$
m > \sum_{i} m_i
$$
 or equivalently $\rightarrow Q = mc^2 - \sum_{i} m_i c^2 > 0$

- Conservation of charge \rightarrow $\frac{4}{3}$ \rightarrow $\frac{4}{3}$
- These laws implies that electron and positron are stable (no particle of same charge but of smaller mass)

Origin of nuclei

- Nuclei in nature were built by nuclear reactions since the « Big Bang »
- Begin not well known \rightarrow system at very high T \rightarrow free quarks and gluons (bosons mediating between quarks) = quark-gluon plasma
- Time $t \nearrow \rightarrow T \searrow \rightarrow$ quarks and gluons combine to form hadrons and nucleons \rightarrow proton \rightarrow neutron and neutron \rightarrow proton \rightarrow but as $m_p < m_n \rightarrow$ system with smallest mass is favored
- t \overline{Z} more \rightarrow T \overline{Z} \rightarrow collisions \rightarrow apparition of bounded systems (with $A \le 7$) \rightarrow fixed situation = 87% of protons and 13% neutrons
- Abundance: 74% H + 23-25% He (4p \rightarrow ⁴He + 2e⁺ + 2 ν_e + n γ) + ...
- Other nuclei are formed during star explosion: supernova \rightarrow a lot of nuclei are unstable and decay into other nuclei \rightarrow process of formation + decay is called *nucleosynthesis*