Chapter IV: Interactions of photons with matter

# Contents of the chapter

- Introduction
- Compton effect
- Photoelectric effect
- Pair creation
- Attenuation coefficient

## Basic considerations

- Photons are classified according to their mode of origin:
  - $\gamma$  rays accompany nuclear transitions  $E_{\gamma} = h\nu = E_i E_f$  ( $E_{\gamma} > 100$  keV)
  - Bremsstrahlung (continuous X rays) result from a charged particle acceleration
  - Characteristic X rays are emitted in atomic transitions of bound electrons between the K, L, M, ... shells in atoms ( $E_X$  < 100 keV)
- Momentum  $\overrightarrow{p} = \hbar \overrightarrow{k}$  with  $p = E_{\gamma}/c = \hbar k$  and k the wavenumber
- Photons interact with matter in a single event → between two events they have no interaction with matter (unlike the charged particles via the Coulomb force)
- Photons are indirectly ionizing radiations

## Different interactions of $\gamma$ with matter (1)

For 1 keV <  $E_{\gamma}$  < 1 GeV  $\rightarrow$  Classification of Fano: 4 types of interactions and 3 consequences of the interaction  $\rightarrow$  12 theoretical processes are possible (even if a few of them are extremely rare or were never observed)

| Type of interaction                                     | Effect of the interaction |  |  |  |
|---------------------------------------------------------|---------------------------|--|--|--|
| 1: Atomic electron                                      | A: Coherent diffusion     |  |  |  |
| 2: Atomic nucleus                                       | B: Incoherent diffusion   |  |  |  |
| 3: Electric field of the nuclei<br>and atomic electrons | C:Ttotal absorption       |  |  |  |
| 4: Mesonic field of atomic nuclei                       |                           |  |  |  |

# Different interactions of $\gamma$ with matter (2)

- Only 3 effects are dominating  $\rightarrow$ 
  - Compton Effect (1B): the photon is scattered by a free or weakly bound electron → the sum of the scattered photon energy and of the electron kinetic energy is equal to the energy of the incident photon
  - Photoelectric effect (1C): The photon is absorbed by the electronic system (atom) → it gives all his energy → an atomic electron is emitted out of the atom with a kinetic energy equal to the energy of the photon minus the binding energy of the atomic electron
  - 3. Pair creation (3C): In the electric field of a nucleus or of an electron  $\rightarrow$  the photon disappears and an electron-positron pair appears
- 2 other processes can also play a role  $\rightarrow$ 
  - 1. Rayleigh scattering (1A): the photon is scattered without energy loss by an electronic system (atom)
  - 2. Photodisintegration of the nucleus (2C): the photon is absorbed by the nucleus and a particle is emitted ( $\gamma$ ,  $\alpha$ , p, n, ...)

## Correspondence atomic shell $\leftrightarrow$ electronic configuration

| Couche atomique  | Configuration e <sup>-</sup> |
|------------------|------------------------------|
| K                | 1s (j = 1/2)                 |
| L                | 2s (j = 1/2)                 |
| L                | 2p (j = l - s = 1/2)         |
| L                | 2p (j = l + s = 3/2)         |
| M                | 3s (j = 1/2)                 |
| M <sub>II</sub>  | 3p (j = l - s = 1/2)         |
| M <sub>III</sub> | 3p (j = l + s = 3/2)         |
| $M_{\rm IV}$     | 3d (j = l - s = 3/2)         |
| M∨               | 3d (j = l + s = 5/2)         |
| Nı               | 4s (j = 1/2)                 |
| N <sub>II</sub>  | 4p (j = l - s = 1/2)         |
| N <sub>III</sub> | 4p (j = l + s = 3/2)         |
| N <sub>IV</sub>  | 4d (j = l - s = 3/2)         |
| N <sub>V</sub>   | 4d (j = l + s = 5/2)         |
| N <sub>VI</sub>  | 4f (j = l - s = 5/2)         |
| N <sub>VII</sub> | 4f (j = l + s = 7/2)         |

### Examples of binding energies

| Ζ    | Élément | K      | LI     | LII    | LIII   | MI    | MII    | MIII  | MIV    | MV    |
|------|---------|--------|--------|--------|--------|-------|--------|-------|--------|-------|
| 1    | Н       | 0.014  |        |        |        |       |        |       |        |       |
| 2    | He      | 0.025  | 0.001  |        |        |       |        |       |        |       |
| 3    | Li      | 0.055  | 0.003  | 0.001  | 0.001  |       |        |       |        |       |
| 4    | Be      | 0.111  | 0.006  | 0.002  | 0.002  |       |        |       |        |       |
| 5    | В       | 0.188  | 0.009  | 0.004  | 0.004  |       |        |       |        |       |
| 6    | С       | 0.284  | 0.013  | 0.005  | 0.005  |       |        |       |        |       |
| 7    | N       | 0.4    | 0.018  | 0.007  | 0.007  |       |        |       |        |       |
| 8    | 0       | 0.533  | 0.024  | 0.009  | 0.009  |       |        |       |        |       |
| 9    | F       | 0.687  | 0.032  | 0.012  | 0.012  |       |        |       |        |       |
| 10   | Ne      | 0.867  | 0.045  | 0.018  | 0.018  | 0.001 |        |       |        |       |
| 11   | Na      | 1.0721 | 0.063  | 0.032  | 0.032  | 0.002 |        |       |        |       |
| 12   | Mg      | 1.305  | 0.088  | 0.05   | 0.05   | 0.003 |        |       |        |       |
| 13   | Al      | 1.5596 | 0.118  | 0.073  | 0.073  | 0.005 |        |       |        |       |
| 14   | Si      | 1.8389 | 0.151  | 0.099  | 0.1    | 0.007 | 0.0011 | 0.001 |        |       |
| 15   | Р       | 2.1455 | 0.188  | 0.1301 | 0.13   | 0.01  | 0.0021 | 0.002 |        |       |
| 16   | S       | 2.472  | 0.227  | 0.1651 | 0.165  | 0.014 | 0.0041 | 0.004 |        |       |
| 17   | Cl      | 2.8224 | 0.27   | 0.203  | 0.202  | 0.018 | 0.0071 | 0.007 |        |       |
| 18   | Ar      | 3.2029 | 0.32   | 0.247  | 0.245  | 0.025 | 0.0121 | 0.012 |        |       |
| 19   | K       | 3.6074 | 0.377  | 0.296  | 0.294  | 0.034 | 0.0181 | 0.018 |        |       |
| 20   | Ca      | 4.0381 | 0.438  | 0.35   | 0.346  | 0.044 | 0.0251 | 0.025 |        |       |
| 21   | Sc      | 4.4928 | 0.5    | 0.406  | 0.401  | 0.053 | 0.0321 | 0.032 |        |       |
| 22   | Ti      | 4.9664 | 0.563  | 0.462  | 0.456  | 0.06  | 0.0351 | 0.035 |        |       |
| 23   | v       | 5.4651 | 0.628  | 0.521  | 0.513  | 0.066 | 0.0381 | 0.038 |        |       |
| 24   | Cr      | 5.9892 | 0.696  | 0.584  | 0.575  | 0.074 | 0.0421 | 0.042 | 0.0011 | 0.001 |
| 25   | Mn      | 6.539  | 0.769  | 0.651  | 0.64   | 0.084 | 0.0471 | 0.047 | 0.0021 | 0.002 |
| 26   | Fe      | 7.112  | 0.846  | 0.721  | 0.708  | 0.093 | 0.0531 | 0.053 | 0.0031 | 0.003 |
| 27   | Co      | 7.7089 | 0.926  | 0.794  | 0.779  | 0.101 | 0.0601 | 0.06  | 0.0041 | 0.004 |
| 28   | Ni      | 8.3328 | 1.0081 | 0.871  | 0.845  | 0.111 | 0.0671 | 0.067 | 0.0051 | 0.005 |
| 29   | Cu      | 8.9789 | 1.0961 | 0.953  | 0.933  | 0.122 | 0.0741 | 0.074 | 0.0071 | 0.007 |
| 30   | Zn      | 9.6586 | 1.1936 | 1.0428 | 1.0197 | 0.138 | 0.0881 | 0.087 | 0.0101 | 0.01  |
| 31   | Ga      | 10.367 | 1.2977 | 1.1423 | 1.1154 | 0.158 | 0.106  | 0.103 | 0.0171 | 0.017 |
| 32   | Ge      | 11.103 | 1.4143 | 1.2478 | 1.2167 | 0.18  | 0.126  | 0.121 | 0.0281 | 0.028 |
| - 33 | As      | 11.867 | 1.5265 | 1.3586 | 1.3231 | 0.204 | 0.146  | 0.14  | 0.0411 | 0.041 |

# Remark

- Photon cannot be absorbed by free electron (and then gives it all its energy)
- Conservation of the energy and of the momentum with  $h\nu_0$  the energy of the photon and m, E et p, the mass, the total energy and the momentum of the electron  $\rightarrow$

$$h\nu_0 + mc^2 = E$$
$$\frac{h\nu_0}{c} = p$$

• This implies  $E = pc+mc^2$  and by definition  $\rightarrow E^2 = p^2c^2+m^2c^4 \rightarrow$ only possible for  $p = h\nu_0 = 0 \rightarrow$  must be rejetcted

## Compton effect

- Scattering by a free electron (in the range of energy where Compton effect occurs → electrons are considered as free → when this approximation is no more true → photoelectric effect is dominating)
- The photon gives a part of its energy to an electron



# History of Compton effect: Thomson

- Thomson classically calculates (1906) the scattering cross section of an electromagnetic wave by a free electron
- Hypothese: Due to the force caused by the electric field of the wave → oscillation of the electron → this oscillation has same frequency as the wave and has the same direction as the electric field → electric dipole → the electron irradiate → diffusion of the incident wave <u>in a</u> <u>continuous way</u>
- For a non-polarized incident wave  $\rightarrow$  Thomson calculates the diffusion cross section  $d\sigma_0$  in solid angle  $d\Omega$  (with  $\theta$  the angle formed with the direction of the incident wave)  $\rightarrow$

$$\frac{d\sigma_0}{d\Omega} = \frac{r_e^2}{2}(1 + \cos^2\theta)$$

with  $r_e = e^2/4\pi\epsilon_0 mc^2 = 2.8 \ 10^{-15} m$ , the classique radius of the electron

## Demonstration of Thomson (1)

 Let's consider an electromagnetic wave with frequency ν that interacts with a free electron (mass m, charge -e) → the electron undergoes a force F due to the incident electric field:

$$\overrightarrow{E} = E_0 \exp\left(i\overrightarrow{k}\overrightarrow{r} - i\nu t\right)\overrightarrow{1_E}$$

with  $\overrightarrow{1_E}$  the direction of polarization

• The motion equation of the electron is  $\rightarrow$ 

$$m\frac{d^2\overrightarrow{r}}{dt^2} = -e\overrightarrow{E}$$

• In the dipolar approximation the emitted power per unit of solid angle is (differential equation of Larmor - see electromagnetism teaching)  $\rightarrow \frac{dP}{d\Omega} = \frac{e^2}{16\pi^2\epsilon_0c^3} \langle a^2 \rangle \sin^2\Theta$ 

with  $\Theta$  the angle between the polarization direction and the observer

### Demonstration of Thomson (2)

From equation of motion we directly obtain ⟨ a<sup>2</sup> ⟩, the mean square acceleration →

$$\langle a^2 \rangle = \frac{e^2}{2m^2} |E_0|^2$$

• The differential power becomes  $\rightarrow$ 

$$\frac{dP}{d\Omega} = r_e^2 \frac{\epsilon_0 c |E_0|^2}{2} \sin^2 \Theta$$

 We consider now the modulus of the Poynting vector that is for the energy flux by second (see you know what...) →

$$I = \epsilon_0 c \frac{|E_0|^2}{2}$$

## Demonstration of Thomson (3)

• The differential cross section is obtained with  $\rightarrow$ 

$$\frac{d\sigma_0}{d\Omega} = \frac{dP/d\Omega}{I} = r_e^2 \sin^2 \Theta$$

• If we consider an non-polarized incident wave  $\rightarrow$  we have to work out the average of  $\varTheta$ 

$$\overline{\sin^2 \Theta} = \frac{1}{2} (1 + \cos^2 \theta)$$

with  $\theta$ , the scattering angle

• We thus obtain the equation of Thomson  $\rightarrow$ 

$$\frac{d\sigma_0}{d\Omega} = \frac{r_e^2}{2}(1 + \cos^2\theta)$$

### Total cross section of Thomson

 By integration over angles → total scattering cross section of Thomson →

$$\sigma_0 = \frac{8\pi}{3} r_e^2 = 0.665 \times 10^{-28} \text{ m}^2 \approx \frac{2}{3} \text{ barn/electron}$$

In his demonstration → the incident wave is scattered in a continuous way

### History of Compton effect: Compton

 Measurement of Compton (1922) → the scattered wave has not a continuum spectrum but follows the relation →

$$\lambda_1 - \lambda_0 = \frac{h}{mc}(1 - \cos\theta)$$

with  $\lambda_0$  and  $\lambda_1$  the wavelengths of incident and scattered photons and  $h/mc = \lambda_c$ , the wavelength of Compton

 This expression shows that the wavelength displacement does not depend on Z and on the incident wavelength and that the energy and momentum lost by the photon goes to only one electron

## Demonstration of the expression of Compton (1)

 In the laboratory frame → conservation law of the four-vector energy-momentum before and after the scattering →

photon before 
$$\rightarrow \left(\frac{h\nu_0}{c}, \frac{h\nu_0}{c} \overrightarrow{n_0}\right)$$
  
photon after  $\rightarrow \left(\frac{h\nu_1}{c}, \frac{h\nu_1}{c} \overrightarrow{n_1}\right)$   
electron before  $\rightarrow \left(\frac{mc^2}{c}, 0\right)$   
electron after  $\rightarrow \left(\frac{E}{c}, \overrightarrow{p}\right)$ 

#### Demonstration of the expression of Compton (2)

• Conservation laws  $\rightarrow$  $h\nu_0 + mc^2 = h\nu_1 + E$  $h\nu_0 \overrightarrow{n_0} = h\nu_1 \overrightarrow{n_1} + \overrightarrow{p}c$ 

• With 
$$E^2 = p^2 c^2 + m^2 c^4 \rightarrow$$

$$(h(\nu_0 - \nu_1) + mc^2)^2 = h^2(\nu_0 \overrightarrow{n_0} - \nu_1 \overrightarrow{n_1})^2 + m^2c^4$$

• And with:  $\overrightarrow{n_0}\overrightarrow{n_1} = \cos\theta$ 

$$h\nu_0\nu_1(1-\cos\theta) = mc^2(\nu_0-\nu_1) \Rightarrow \frac{hc^2}{\lambda_0\lambda_1}(1-\cos\theta) = mc^3\left(\frac{1}{\lambda_0}-\frac{1}{\lambda_1}\right)$$

$$\lambda_1 - \lambda_0 = \frac{n}{mc}(1 - \cos\theta)$$

#### Relations between energies and angles (1)

• We consider  $E_0$  = the incident photon energy,  $E_1$  = the scattered photon energy,  $T = E_0$ -  $E_1$  = the kinetic energy given to the electron,  $\theta$  = the photon diffusion angle,  $\phi$  = the angle between the trajectory of the electron and the photon initial direction and  $\alpha = E_0/mc^2$  = the ratio between incident photon energy et the electron mass energy  $\rightarrow$ 

$$E_{1} = E_{0} \frac{1}{1 + \alpha(1 - \cos \theta)}$$

$$T = E_{0} \frac{2\alpha \cos^{2} \phi}{(1 + \alpha)^{2} - \alpha^{2} \cos^{2} \phi} = E_{0} \frac{\alpha(1 - \cos \theta)}{1 + \alpha(1 - \cos \theta)}$$

$$\cot \phi = (1 + \alpha) \tan \frac{\theta}{2}$$



### Relations between energies and angles (3)



# Remarks on the energy of the scattered photon

- The energy modification for the photon depends on the incident photon energy
- For small  $E_0 \rightarrow$  small energy loss for the photon (for any  $\theta$ )
- For  $E_0 \nearrow \rightarrow$  the variation of the energy of the scattered photon as a function of the angle becomes important
- For 90°  $\rightarrow E_1$  always < 511 keV (=  $mc^2$ )
- For  $180^{\circ} \rightarrow E_1$  always < 255 keV (=  $mc^2/2$ )  $\rightarrow$  backscattered photon  $\rightarrow$  backscattering peak in  $\gamma$  spectra

## Relations between energies and angles (4)





• For large  $E_0 \rightarrow T_{max} \approx E_0$  - 255 keV (backscattered photon)

### Relations between energies and angles (5)



Angular-differential cross section for Compton effect (1)

- Equation of Klein-Nishina (quantum electrodynamics): valid for free electrons at rest
- The angular-differential scattering cross section of a nonpolarized photon in the solid angle  $d\Omega$  around the direction making an angle  $\theta$  with the initial direction of the photon is given by  $\rightarrow$

$$\frac{d\sigma}{d\Omega} = \frac{r_e^2}{2} \left(\frac{\nu'}{\nu_0}\right) \left(\frac{\nu_0}{\nu'} + \frac{\nu'}{\nu_0} - \sin^2\theta\right)$$

with  $r_e$ , the classical radius of the electron

• Remark  $\rightarrow$  no dependence on Z



For  $\alpha \ll \Rightarrow E_1 \approx E_0 \Rightarrow d\sigma \approx d\sigma_0 \Rightarrow$  we obtain the Thomson cross section

### Angular-differential cross section (3)



#### Energy-differential cross section (1)

 From the angular-differential cross section → Energydifferential cross sections →

$$\frac{d\sigma}{dE_1} = \frac{\pi r_e^2}{\alpha^2 m_e c^2} \left\{ 2 + \left(\frac{E_0 - E_1}{E_1}\right)^2 \left[\frac{1}{\alpha^2} + \frac{E_1}{E_0} - \frac{2}{\alpha} \left(\frac{E_1}{E_0 - E_1}\right)\right] \right\}$$

$$\frac{d\sigma}{dT} = \frac{\pi r_e^2}{\alpha^2 m_e c^2} \left\{ 2 + \left(\frac{T}{E_0 - T}\right)^2 \left[\frac{1}{\alpha^2} + \frac{E_0 - T}{E_0} - \frac{2}{\alpha} \left(\frac{E_0 - T}{T}\right)\right] \right\}$$



### Total cross section for the Compton effect (1)

- After integration of the Klein-Nishina cross section over angles  $\rightarrow$  $\sigma = 2\pi r_e^2 \left\{ \frac{1+\alpha}{\alpha^2} \left[ \frac{2(1+\alpha)}{1+2\alpha} - \frac{\ln(1+2\alpha)}{\alpha} \right] + \frac{\ln(1+2\alpha)}{2\alpha} - \frac{1+3\alpha}{(1+2\alpha)^2} \right\}$ 
  - For  $\alpha \ll \Rightarrow \sigma \approx \sigma_0 = 8\pi r_e^2/3$  (Thomson cross section)



Total cross section for the Compton effect (2)

- For α ≫ → σ → (In α)/α → Compton cross section ↘ when photon energy ↗
- Indeed we observe for α ≫ → angular distribution predominant in θ = 0 → no diffusion → no energy transfer → no effect

• The <u>atomic</u> cross section  $_a\sigma = Z\sigma$  is thus  $\propto Z$ 

### Collision = Scattering + Absorption

- The cross section σ represents the scattering probability → a part of the energy is scattered and the other one is given to the e<sup>-</sup> (absorbed)
- To characterize this aspect  $\rightarrow$  we define a scattered cross section  $\sigma_s$ and an absorption cross section  $\sigma_a$  with  $\sigma = \sigma_s + \sigma_a$



# Coherent and incoherent scattering (1)

- For  $E_0 \ll \rightarrow$  we cannot consider that  $e^-$  are free and at rest  $\rightarrow$  scattering by the whole electronic system (atom)
- If the atom stays in its initial state → the energy of the photon does not change but it changes its direction (the atom takes the momentum difference) → Rayleigh scattering (coherent scattering)
- If the atom changes its state → the photon loss energy → incoherent scattering
- For large energies  $\rightarrow$  incoherent scattering = Compton scattering

## Coherent and incoherent scattering (2)

Approximation for coherent scattering → the electronic system corresponds to a system with charge Ze and mass Zm → the Rayleigh scattering cross section is →

$$_a\sigma_{coh} = Z^2\sigma_0$$

• In reality  $\rightarrow$  the structure of the electronic cloud implies a decrease of the scattering  $\rightarrow$  introduction of the factor of atomic structure  $F \rightarrow$ 

$$_a\sigma_{coh} = F^2\sigma_0$$

## Coherent and incoherent scattering (3)

For incoherent scattering → modification of the Klein-Nishina cross section by the function of incoherent scattering S → S considers the fact that the electrons of the atom are bonded → the photon can be incapable of ejecting an electron from the atom →

$$_a\sigma_{incoh} = Z\sigma S$$

• For large energies  $\rightarrow S \rightarrow 1 \rightarrow$  Compton cross section



Remark  $\rightarrow$  coherent scattering  $\nearrow$  for Z  $\nearrow$ 

#### **Comparison incoherent - Compton**


# Photoelectric effect

- The photoelectric effect is a process in which an incident photon interacts with an atom and an electron is emitted (process correctly explained by Einstein in 1905)
- This process of photon capture by an atom with an electron excited in a continuous state is the inverse process of spontaneous emission of a photon by an excited atom



### Energy conservation

There are absorption of a photon with energy hν<sub>0</sub> that is completely absorbed by an atom and consequent emission of an electron (called photoelectron) with a kinetic energy *T* out of an atomic shell characterized by a binding energy B<sub>i</sub> (i = K, L<sub>I</sub>, L<sub>II</sub>, L<sub>III</sub>, ...) → by neglecting the recoil energy of the nucleus (due to ≠ of mass) →

$$h\nu_0 = T + B_i$$

- The energy conservation implies  $h\nu_0 > B_i$
- When hv<sub>0</sub> 
   ¬ the probability of photoelectric effect 
   since the behaviour of the electron more and more approaches the one of a free electron (and the absorption by a free e<sup>-</sup> is impossible)
- The more bound electrons (shell K) have the largest probability to absorb the photon (with always the condition  $h\nu_0 > B_K$ ) 38



Atomic number Z

For Z > 30  $\rightarrow$  binding energies approximatively follow  $B_i = a_i(Z - c_i)^2$  (with  $a_i$  and  $c_i$  constant for each shell)

# Cross section (1)

The cross section per atom <sub>a</sub>τ can be decomposed into a sum of partial cross sections (<sub>a</sub>τ<sub>i</sub>) corresponding to the emission of an electron from a given shell *i* →

$$_{a}\tau = \sum_{i} _{a}\tau_{i}$$

- The calculation of  $_{a}\tau_{\kappa}$  has been done for a hydrogen-like atom in the Born approximation using a plane wave as wave function for the emitted electron
- We suppose  $h\nu_0 \ll mc^2$  (non-relativistic approximation) and  $h\nu_0 \gg B_{\kappa}$  (interaction between the nucleus and the electron neglected)

#### Cross section (2)

• We find (with  $\alpha$ , the fine structure constant and  $\sigma_0$ , the Thomson cross section)  $\rightarrow$ 

$${}_{a}\tau_{K} = \frac{8\pi r_{e}^{2}}{3} Z^{5} \alpha^{4} 2^{5/2} \left(\frac{mc^{2}}{h\nu_{0}}\right)^{7/2}$$
$$= \sigma_{0} Z^{5} \alpha^{4} 2^{5/2} \left(\frac{mc^{2}}{h\nu_{0}}\right)^{7/2}$$

• As  $r_e/a_0 = \alpha^2$  (with  $a_0$ , the Bohr radius)  $\rightarrow$ 

$$_{a}\tau_{K} = \frac{8\pi}{3} \left(\frac{a_{0}}{Z}\right)^{2} Z^{7} \alpha^{8} 2^{5/2} \left(\frac{mc^{2}}{h\nu_{0}}\right)^{7/2}$$

• And as, for a hydrogen-like atom,  $B_{\kappa} = \alpha^2 Z^2 mec^2/2 \rightarrow$ 

$$_{a}\tau_{K} = \frac{8\pi}{3} \left(\frac{a_{0}}{Z}\right)^{2} 32\alpha \left(\frac{B_{K}}{h\nu_{0}}\right)^{7/2}$$

### Cross section (3)

- Factor  $a_0/Z \rightarrow$  approximatively = to the atom size
- Variation with  $h\nu_0^{-7/2}$  for the energy
- When  $h\nu_0 \approx B_{\kappa} \rightarrow$  Born approximation no more valid  $\rightarrow$  introduction of a correction term  $f(\xi) \rightarrow$

$$f(\xi) = 2\pi \left(\frac{B_K}{h\nu_0}\right)^{1/2} \frac{e^{-4\xi \operatorname{arccot}\xi}}{1 - e^{-2\pi\xi}} \quad \text{with} \quad \xi = \left(\frac{B_K}{h\nu_0 - B_K}\right)^{1/2}$$

- For  $\xi \to 0$  (i.e.  $h\nu_0 \gg B_{\kappa} \to f(\xi) \to 1 \to previous situation$
- For  $\xi \to \infty$  (i.e.  $h\nu_0 \approx B_K \to f(\xi) \to f(\xi)$

$$f(\xi) \approx 2\pi e^4 \left(\frac{B_K}{h\nu_0}\right)^{-5/6}$$
 and  $_a\tau_K \approx \frac{6.28 \times 10^6}{Z^2} \left(\frac{B_K}{h\nu_0}\right)^{8/3}_{_{42}}$ 

### Cross section (4)

• The other partial cross sections have the same behaviour as  $_{a}\tau_{\kappa}$  $\rightarrow$  we generally write the total cross section as  $\rightarrow$ 

$$_{a}\tau = C\frac{Z^{n}}{(h\nu_{0})^{k}}$$

with *n* varying between 4 and 4.6 and *k* varying between 1 and 3 (*C* is a constant)

- For  $h\nu_0 \lesssim 0.1$  MeV (most important energy range for the photoelectric effect)  $\rightarrow$  n  $\approx$  4 and k  $\approx$  3
- For  $h\nu_0 \gtrsim 1 \text{ MeV} \rightarrow n \approx 4.5 \text{ and } k \approx 1$

# Variation of $_{a}\tau$ with $h\nu_{0}$



### Variation of $_{a}\tau$ with Z



Photon energy /MeV

#### Cross section: Example (1)



46

For  $E > 88 \text{ keV} \rightarrow \text{the 2 e}^-$  of the K shell contribute for 3/4 of the cross section (by comparison to the 80 other e<sup>-</sup>)  $\leftrightarrow$  large importance of  $B_i$  in  $_a\tau$ 

#### Cross section: Example (2)



Comparison theory  $\leftrightarrow$  experiment

Angular distribution of the photoelectrons (1)

• In non-relativistic case  $\rightarrow$  the differential cross section  $d_a \tau / d\Omega$  is  $\propto f(\theta) \rightarrow$ 

$$f(\theta) = \frac{\sin^2 \theta}{(1 - \beta \cos \theta)^4}$$

with  $\beta = v/c$ , the relative velocity of the photoelectron and  $\theta$ , the emission angle of the photoelectron relatively to the initial direction of the photon

- Cross section = 0 in the direction of the incident photon ( $\theta$  = 0)  $\rightarrow$  the electron aims to be emitted in the direction of the electric field of the electromagnetic wave

#### Angular distribution of the photoelectrons (2)

• In the relativistic case  $\rightarrow$ 

$$f(\theta) = \frac{\sin^2 \theta}{(1 - \beta \cos \theta)^4} + \frac{3(1 - \sqrt{1 - \beta^2}) - 2\beta^2}{2(1 - \beta^2)^{3/2}} \times \frac{\sin^2 \theta}{(1 - \beta \cos \theta)^3}$$

 In both cases → For photons energy ¬ → more and more electrons are ejected in the forward direction





# **Bipartition angle**

• Bipartition angle  $\theta_b$ : angle for which 1/2 of the photoelectrons are emitted in the forward direction inside a cone with half-angle smaller than  $\theta_b$ 



• For instance  $\rightarrow$  for  $h\nu_0 = 0.5$  MeV  $\rightarrow 1/2$  of the photoelectrons are emitted inside a cone with half-angle  $\simeq 30^{\circ}$ 

### Consecutive phenomena

After a photoelectric effect  $\rightarrow$  hole in an inner-shell  $\rightarrow$ electronic rearrangement  $\rightarrow$  emission of a X-ray (fluorescence) or an Auger electron  $\rightarrow$  definition of the fluorescence yield  $\omega$ i (photon emission probability after a transition to the shell i) Auger electron



#### K-shell fluorescence yield



# Pair production

• The photon is completely absorbed and its place appears a electron-positron pair. This process only takes place in the field of a nucleus or of an electron (more rarely)



- For the pair production in the electric field of an atomic electron → triplet production (a part of the energy is transferred to the initial electron)
- What is the minimal energy of the incident photon to have pair production?

### Conservation laws (1)

 We work initially in the frame of the « target » particle with mass M → this particle is at rest →

photon before 
$$\rightarrow \left(\frac{h\nu_0}{c}, \frac{h\nu_0}{c}\right)$$
  
target particle before  $\rightarrow \left(\frac{Mc^2}{c}, 0\right)$ 

• After interaction  $\rightarrow$  we work in the center of mass frame  $\rightarrow$ 

electron after 
$$\rightarrow \left(\frac{mc^2 + T_e}{c}, \overrightarrow{p_e}\right)$$
  
positron after  $\rightarrow \left(\frac{mc^2 + T_p}{c}, \overrightarrow{p_p}\right)$   
target particle after  $\rightarrow \left(\frac{Mc^2 + T_C}{c}, \overrightarrow{p_C}\right)$ 

### Conservation laws (2)

• After the interaction  $\rightarrow$  center of mass frame  $\rightarrow$ 

$$\overrightarrow{p_e} + \overrightarrow{p_p} + \overrightarrow{p_C} = 0$$

• We note 
$$T_{tot} = T_e + T_p + T_C$$

• By conservation of the invariant  $P^2 = (E/c)^2 + p^2 \rightarrow$ 

before 
$$\rightarrow P^2 = \left(\frac{h\nu_0}{c} + \frac{Mc^2}{c}\right)^2 - \left(\frac{h\nu_0}{c}\right)^2$$
  
after  $\rightarrow P^2 = \left(\frac{2mc^2 + Mc^2 + T_{tot}}{c}\right)^2$ 

### Conservation laws (3)

• The minimum energy  $h\nu_{0,min}$  is obtained by equalizing both expressions and by considering the kinetic energy  $T_{tot} = 0 \rightarrow 0$ 

$$h\nu_{0,min} = 2mc^2\left(1 + \frac{m}{M}\right)$$

- In the nucleus field  $\rightarrow M \gg m \rightarrow h\nu_{0,min} = 2mc^2$
- In the electron field  $\rightarrow M = m \rightarrow h\nu_{0,min} = 4mc^2$
- Remark → It is possible to have pair production in the electron field for photon energy between 2mc<sup>2</sup> and 4mc<sup>2</sup> because the atom can take a part of initial momentum → however the probability of this process is extremely weak

### Pair production cross section in a nucleus field (1)

- Pair creation occurs inside the electronic cloud → the screening effect due to atomic electrons is important
- Cross sections calculations made by Bethe and Heitler (1934)
- In the nucleus field → attractive force for the electron and repulsive force the positron → their energy distributions are different
- However → weak effect (< 0.0075 × Z MeV) → can be neglected → the differential cross section for the creation of an electron with kinetic energy T<sub>-</sub> is equal to the one of creation of a positron with kinetic energy T<sub>+</sub> = hv<sub>0</sub>-2mc -T<sub>-</sub> and is symmetric with respect to the mean energy →

$$\langle T \rangle = \frac{h\nu_0 - 2mc^2}{2}$$

#### Pair production cross section in a nucleus field (2)

• The energy-differential cross section is  $\rightarrow$ 

$$\frac{d_a \kappa}{dT_+} = \frac{\sigma_p Z^2 P(T_+, h\nu_0, Z)}{h\nu_0 - 2mc^2} \quad \text{for} \quad h\nu_0 > 2m_e c^2$$

with 
$$\sigma_{
m p}$$
 =  $lpha r_{e}^{\ 2}$  = 5.80  $imes$  10<sup>-32</sup> m<sup>2</sup>

• It can be written  $\rightarrow$ 

$$\frac{d_a\kappa}{dx} = \sigma_p Z^2 P(x, h\nu_0, Z)$$

with  $x = T_{+} / (h\nu_{0} - 2m_{e}c^{2})$ 

# Results for $P(x,h\nu_o,Z)$



# Comments on the function $P(x,h\nu_o,Z)$

- The function is symmetric
- The function P does not depend a lot on the atomic number Z
   → the cross section is thus proportional to Z<sup>2</sup>
- The function *P* varies slowly with the energy  $h\nu_0$  of the photon
- The shapes of various curves are similar
- For  $0.2 < x < 0.8 \rightarrow P$  is approximately constant

#### Total cross section

• The total cross section is given by integration on  $T_+ \rightarrow$ 

$$a\kappa = \int_{T_+} d_a \kappa = \sigma_p Z^2 \int_0^{h\nu_0 - 2mc^2} \frac{P dT_+}{h\nu_0 - 2mc^2}$$
$$= \sigma_p Z^2 \int_0^1 P d\left(\frac{T_+}{h\nu_0 - 2mc^2}\right)$$
$$= \sigma_p Z^2 \langle P \rangle$$

with  $\langle P \rangle$ , the mean value of P

•  $\langle P \rangle$  does not depend a lot on Z and is slowly increasing with  $h\nu_0 \rightarrow$  becomes constant for large energies (> 100 MeV) due to the screening of the nuclear field by the atomic electrons

# Fuction $\langle P \rangle$



- Line: nucleus field
- Dash: electron field

#### Cross section for triplet production

- Very complex calculations
- It is possible to show  $\rightarrow$

 $_a \kappa_{triplet} = \sigma_p Z \langle P \rangle_{triplet} \quad \text{for} \quad h\nu_0 > 4m_e c^2$ 

• And thus  $\rightarrow \frac{a\kappa_{triplet}}{a\kappa} \simeq \frac{1}{CZ}$ 

with *C*, parameter dependent only on  $h\nu_0$  such as  $C \rightarrow 1$  for  $h\nu_0 \rightarrow \infty$  and  $\nearrow$  slowly for  $h\nu_0 \searrow$  (C  $\approx$  2 for  $h\nu_0 = 5$  MeV)

- The triplet production contributes little to the total cross section except for media with small Z (1% for Pb and 5-10% for Z  $\sim$  10)  $_{\rm 64}$ 

Function  $\langle P \rangle_{\text{triplet}}$ 



- Line: nucleus field
- Dash: electron field

#### e<sup>-</sup> - e<sup>+</sup> direction of emission



- For  $h\nu_0$  quite larger than the energy threshold, electrons and positrons are emitted in forward direction
- Mean emission angle (relatively to the direction of the photon is roughly (radians) →

$$\langle \theta \rangle \simeq \frac{mc^2}{\langle T \rangle}$$

• Example: For  $h\nu_0$  = 5 MeV  $\rightarrow \langle T \rangle$  = 1.989 MeV and  $\langle \theta \rangle$  = 0.26 radians  $\simeq$  15°

### Consecutive phenomenon to the pair production

- First, positron is slowing down in the medium (large cross section for Coulombian interactions)
- Second, annihilation of the positron when it is (quasi) at rest with an electron at rest in the medium
- After the annihilation → two photons of 511 keV energy are emitted with an angle of 180° between them (conservation laws)

### Photodisintegration of nuclei

- The photon is absorbed by an atom and a particle is emitted.
- That particle can be a photon or a light particle: p, n,  $\alpha$ ,...
- This interaction is possible when the photon energy is larger to the threshold energy of the process (between 8 and 20 MeV)

### Comparison of various effects



#### Comparison of the three dominant effects



# Attenuation coefficients (1)

- The 3 main photon interaction processes in matter have been characterized by their atomic scattering cross section :
  - Photoelectric effect:  $_{a}\tau$
  - Compton effect:  $_a\sigma$  =  $Z\sigma$
  - pair creation:  $_{a}\kappa$
- As other processes play a negligible role in our energy range  $\rightarrow$  the total atomic cross section  $_{a}\mu$  is  $\rightarrow$

$$_a\mu = _a\tau + _a\sigma + _a\kappa$$

# Attenuation coefficients (2)

- As previously seen  $\rightarrow$  in a thin target (with atomic density N) of width dx, the scattering probability for 1 photon is  $_{a}\mu Ndx$
- For a monoenergetic beam of *I* photons (||) per time unit  $\rightarrow$  the collision rate is  $I_a \mu N dx$
- The variation dI of the intensity after crossing the target is (by assuming that each collision implies a loss in the beam  $\rightarrow$  all scattering are absorbing)  $\rightarrow dI = -I_a \mu N dx$
- For a thick target (width /) and an initial beam ⊥ to the target with I<sub>0</sub> particles → the intensity after the target is →

$$I = I_0 \exp\left(-_a \mu N l\right)$$

•  $\mu = {}_{a}\mu N$ : Linear attenuation coefficient (unit: m<sup>-1</sup>)  $\rightarrow$  allows to the evaluate the scattering rate
#### Remark on experimental conditions

To check this exponential equation  $\rightarrow$  a particular geometry is needed  $\rightarrow$  *narrow beam geometry* that prevents deflected primaries and secondaries to reach the detector



### Narrow beam geometry: characteristics

- Large distance between the source and the attenuator → particles perpendicular to the attenuator
- Large distance between attenuator and detector → each particle deflected in the attenuator will miss the detector (intensity of the primary beam in the detector independent of the distance of the attenuator ↔ intensity of the deflected primaries and of the secondaries ↘ with the square of this distance) → the relative intensity of the primary beam ↗ with this distance
- The beam is collimated → it uniformly covers the detector → ↘
  of the number of deflected primaries and of secondaries
  generated inside the attenuator

## Narrow beam geometry: shielding

- The shield around the attenuator stops all incident radiations except those passing through the aperture
- The shield around the detector stops all radiations except passing through the aperture (θ ≈ 0°) → Pb for X-rays or γ (advantage: small thickness)

#### Example of attenuation experiment



# Alternative coefficients

 We van write (with *M*, the molar masse of the medium, ρ its density and N<sub>A</sub> the Avogadro number):

$$\mu l = \left(_a \mu \frac{N_A}{M}\right) \left(\rho l\right)$$

- ( $\rho$ *l*): Area density (unit: kg m<sup>-2</sup>)
- $\mu/\rho$ : Mass attenuation coefficient (unit: m<sup>2</sup> kg<sup>-1</sup>)  $\rightarrow$

$$\left(\frac{\mu}{\rho}\right) = \left(_a \mu \frac{N_A}{M}\right)$$

- λ = 1/μ: Mean free path (unit: m) → mean distance travelled by a photon between two collisions
- $\rho/\mu$ : Mass attenuation length (unit: kg m<sup>-2</sup>)

# Mass attenuation coefficient (1)

- μ/ρ: Mass attenuation coefficient (unit: m<sup>2</sup>kg<sup>-1</sup>) → ratio of dI/I by ρdI with dI/I, the fraction of indirectly ionizing radiations which undergo interactions along the distance dI travelled inside a medium of density ρ
- Global coefficient global → takes into account the interactions of particles in matter regardless of the nature of the interaction
- The mass coefficients are directly proportional to the cross section and do not depend on the physical nature of the target → these coefficients are displayed in databases

### Mass attenuation coefficient (2)

- In a medium with various atom species → the interaction probability is the sum of interaction probabilities with each atom specie (since the molecular binding energies are weak compared to energies of γ rays)
- The total mass attenuation coefficient is given by  $\rightarrow$

$$\left(\frac{\mu}{\rho}\right) = \left(\frac{\mu}{\rho}\right)_1 w_1 + \left(\frac{\mu}{\rho}\right)_2 w_2 + \dots$$

with  $w_i$ , the mass fractions of the various atom species

#### Attenuation coefficients: example of lead



### Attenuation coefficients: practical examples

- 1 MeV photons in air:  $\mu/\rho=0.064 \text{ cm}^2/\text{g}$  with  $\rho(\text{air})=0.001205 \text{ g/cm}^3 \rightarrow \mu=7.71 \text{ 10}^{-5} \text{ cm}^{-1} \rightarrow \text{after } 1\text{m} \rightarrow \text{I/I}_0=99.2\%$
- 10 keV photons in air:  $\mu/\rho=5.1 \text{ cm}^2/\text{g}$  with  $\rho(\text{air})=0.001205 \text{ g/cm}^3 \rightarrow \mu=6.15 \text{ 10}^{-3} \text{ cm}^{-1} \rightarrow \text{after } 1\text{m} \rightarrow \text{I/I}_0=54.1\%$
- 1 MeV photons in lead:  $\mu/\rho=0.070 \text{ cm}^2/\text{g}$  with  $\rho(\text{lead})=11.35 \text{ g/cm}^3 \rightarrow \mu=7.95 \text{ 10}^{-1} \text{ cm}^{-1} \rightarrow \text{after } 1\text{m} \rightarrow \text{I/I}_0\approx0\%$

 $\rightarrow$  after 1cm  $\rightarrow$  I/I<sub>0</sub> $\approx$ 45.2%

• 10 keV photons in lead:  $\mu/\rho=130.6 \text{ cm}^2/\text{g}$  with  $\rho(\text{lead})=11.35 \text{ g/cm}^3 \rightarrow \mu=1.48 \text{ 10}^3 \text{ cm}^{-1} \rightarrow \text{after 1cm} \rightarrow \text{I/I}_0 \approx 0\%$ 

http://www.nist.gov/pml/data/xraycoef/index.cfm

# Mass energy-transfer coefficient (1)

- The mass attenuation coefficient  $\mu/\rho$  is a measurement of the mean number of interactions between a photon and matter  $\rightarrow$  it allows to evaluate frequency of collisions
- For frequent applications → important parameter is the energy transferred « locally » in the medium i.e. the energy transferred to electrons → effects of photons in matter are due (almost) exclusively to electrons → see « Radiation protection »
- Definition of another quantity more adapted to this aspect  $\rightarrow$  mass energy-transfer coefficient  $\mu_{tr}/\rho$

### Mass energy-transfer coefficient (2)

- $\mu_{tr}/\rho$ : Mass energy-transfer coefficient (unit: m<sup>2</sup>kg<sup>-1</sup>)  $\rightarrow$  quotient of  $dE_{tr}/(EN)$  (with *E* the energy of all particles excluding rest energy) by  $\rho dI$  where  $dE_{tr}/(EN)$  is the fraction of energy of the incident particles transformed in kinetic energy of charged particles by interactions in a depth *dI* of the medium of density  $\rho \rightarrow$  also:  $\mu_{tr} = (E_{tr}/E)\mu$
- Also defined as  $\rightarrow$

$$\frac{\mu_{tr}}{\rho} = f_{ph}\frac{\tau}{\rho} + f_C\frac{\sigma}{\rho} + f_{pn}\frac{\kappa_n}{\rho} + f_{pe}\frac{\kappa_e}{\rho}$$

with  $f_i$ , the fractions of photon energy transferred to kinetic energy of charged particles for all processes

## Fractions of energy transferred

• Photoelectric effect  $\rightarrow$ 

$$f_{ph} = 1 - \frac{E_X}{E}$$

with  $E_{\chi}$ , the mean energy of fluorescence photons

• Compton effect  $\rightarrow$ 

$$f_C = 1 - \frac{\langle E_1 \rangle + E_X}{E}$$

with  $\langle E_1 \rangle$ , the mean energy of scattered photon  $\rightarrow$  remark: formally X-rays have to be considered  $\rightarrow$  practically they can be neglected

• Pair production (in the field of nucleus and of electron)  $\rightarrow$ 

$$f_{pn} = 1 - \frac{2mc^2}{E}$$
  $f_{pe} = 1 - \frac{2mc^2 + E_X}{E}$ 

84

### Mass energy-absorption coefficient

- A part of kinetic energy of charged particles set in motion can be absorbed no locally → a part of the energy can be lost in radiative processes (especially Bremsstrahlung but also in-flight annihilation or fluorescence radiations)
- μ<sub>en</sub>/ρ: Mass energy-absorption coefficient (unit: m<sup>2</sup>kg<sup>-1</sup>) → product of the mass energy-transfer coefficient by (1-g), with g the fraction of energy lost on average in radiative processes as the charged particles slow to rest in the material
- g is specific to the material

$$\frac{\mu_{en}}{\rho} = (1-g)\frac{\mu_{tr}}{\rho}$$

# Comparison $\mu_{tr} \leftrightarrow \mu_{en}$ (1)



Significant difference only for high energies of the  $\gamma$  rays  $\rightarrow$  when the charged particles produced by the interaction have enough energy to be characterized by an important Bremsstrahlung (especially for high Z materials) Comparison  $\mu_{\rm tr} \leftrightarrow \mu_{\rm en}$  (2)

| γ-ray<br>Energy<br>(MeV) | $100 \ (\mu_{\rm tr} - \mu_{\rm en})/\mu_{\rm tr}$ |      |     |
|--------------------------|----------------------------------------------------|------|-----|
|                          | $\overline{Z} = 6$                                 | 29   | 82  |
| 0.1                      | 0                                                  | 0    | 0   |
| 1.0                      | 0                                                  | 1.1  | 4.8 |
| 10                       | 3.5                                                | 13.3 | 26  |

### Mass absorption coefficient

- μ<sub>a</sub>/ρ: Mass absorption coefficient (unit: m<sup>2</sup>kg<sup>-1</sup>) → coefficient for which only we suppose that only scattered photons (coherently or incoherently) take energy away
- Coefficient rarely used (never!)

• Finally  $\rightarrow$ 

 $\mu \geq \mu_a \geq \mu_{tr} \geq \mu_{en}$ 

Schematic overview of the coefficients



89

#### Example of the application of these coefficients



Energy deposited inside water by  $\gamma$  rays from a <sup>60</sup>Co pointsource put at the center of a water sphere as a function of the distance between the source and the detector