Chapter II:
Interactions of ions with matter
Trajectories of α particles of 5.5 MeV

Source: SRIM
www.srim.org
Incident proton on Al: Bohr model

\[
v = v_0 \rightarrow E_p = 0.025 \text{ MeV}
\]

\[
\text{relativistic effect} \rightarrow E_p = 938 \text{ MeV}
\]

\[
\text{Al, } \rho = 2.70 \text{ g/cm}^3
\]
Contents

• Quantum model of the electronic stopping force
 - Intermediate velocities
 - Large velocities
 - Small velocities

• Nuclear stopping force (small velocities)

• Range and Bragg curve
Transferred energy: Classical oscillator (1)

• Before to look for quantum processing \rightarrow details about classical processing: electron = classical harmonic oscillator with pulsation $\omega_0 \rightarrow e^-$ bound to its site by a spring force with modulus $-m\omega_0^2 r \rightarrow$ motion equation \rightarrow

$$\frac{d^2 \vec{r}}{dt^2} + \omega_0^2 \vec{r} = -\frac{e}{m} \vec{E}(\vec{r}, t)$$

with $\vec{E}(\vec{r}, t)$ the electric field generated by the projectile (perturbation)

• No-linear equation \rightarrow simplification \rightarrow

$$\vec{E}(\vec{r}, t) = \vec{E}(\vec{r}(t), t) \equiv \vec{E}(t)$$
Transferred energy: Classical oscillator (2)

• By supposing the absence of electric field at \(t = -\infty \) and \(r(-\infty) = 0 \) → a particular solution of the equation is →

\[
\vec{r}(t) = -\frac{e}{m\omega_0} \int_{-\infty}^{t} dt' \vec{E}(t') \sin \omega_0(t - t')
\]

• By supposing that the electric field \(\Delta \) after the distance of closest approach → it is possible to find a time \(t_1 \) for which the electric acting on the e\(^{-} \) becomes negligible → for \(t > t_1 \) → we can extend the maximal bound of the integration to \(+\infty \) because the contributions of the integration are negligible for \(t_1 < t' < +\infty \)
Transferred energy: Classical oscillator (3)

- In this case the solution is:

\[\mathbf{r}(t) = -\frac{e}{m\omega_0}(\mathbf{C} \sin \omega_0 t - \mathbf{S} \cos \omega_0 t) \]

with

\[\mathbf{C} = \int_{-\infty}^{+\infty} dt' \mathbf{E}(t') \cos \omega_0 t' \quad \text{et} \quad \mathbf{S} = \int_{-\infty}^{+\infty} dt' \mathbf{E}(t') \sin \omega_0 t' \]

- To determine the energy lost by the projectile to the oscillator:

\[\mathbf{v}_e(t) = -\frac{e}{m}(\mathbf{C} \cos \omega_0 t + \mathbf{S} \sin \omega_0 t) \]
Transferred energy: Classical oscillator (4)

• Thus the transferred energy T is →

$$T = -\frac{e^2}{2m} (\vec{C}^2 + \vec{S}^2)$$

• That can be also written →

$$T = -\frac{e^2}{2m} \left| \int_{-\infty}^{+\infty} dt' \vec{E}(t') e^{i\omega_0 t'} \right|^2$$
Classical oscillator: Dipolar approximation (1)

• We consider the Coulomb field generated by the incident particle →
 \[\vec{E}(\vec{r}, t) = -\nabla \Phi(\vec{r}, t) \]
 with \(\Phi, \vec{R} \) and \(\vec{v} \) the potential, trajectory and velocity of the particle:

 \[\Phi(\vec{r}, t) = \frac{e_1}{|\vec{r} - \vec{R}(t)|} \]
 et

 \[\vec{R} = \vec{p} + \vec{v} t \]

• We note that

 \[\vec{p} \cdot \vec{v} = 0 \]
Classical oscillator: Dipolar approximation (2)

- We consider the Fourier transforms at 1 and 3 dimensions →

\[
f(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dt \, f(t) e^{-i\omega t}
\]

\[
f(\overrightarrow{q}) = \frac{1}{(2\pi)^3} \int_{-\infty}^{+\infty} d^3 \overrightarrow{r} \, f(\overrightarrow{r}) e^{-i \overrightarrow{q} \cdot \overrightarrow{r}}
\]

- To obtain the Fourier transform of the potential → we use the relation →

\[
\frac{1}{r} = \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} d^3 \overrightarrow{q} \frac{1}{q^2} e^{i \overrightarrow{q} \cdot \overrightarrow{r}}
\]
Classical oscillator: Dipolar approximation (3)

- The electric field can be thus written →

\[
\overrightarrow{E}(\overrightarrow{r}, t) = -\frac{i e_1}{(2\pi)^2} \int_{-\infty}^{+\infty} d^3\overrightarrow{q} \frac{\overrightarrow{q}}{q^2} e^{[i \overrightarrow{q} \cdot (\overrightarrow{r} - \overrightarrow{p} - \overrightarrow{v} t)]}
\]

- For small movements from the equilibrium → dipolar approximation →

\[
e^{i \overrightarrow{q} \cdot \overrightarrow{r}} \approx 1 + i \overrightarrow{q} \cdot \overrightarrow{r} \approx 1
\]

- The Fourier transform of the electric field can be written in the dipolar approximation →

\[
\overrightarrow{E}(\omega) = -\frac{i e_1}{(2\pi)^2} \int_{-\infty}^{+\infty} d^3\overrightarrow{q} \frac{\overrightarrow{q}}{q^2} e^{-i \overrightarrow{q} \cdot \overrightarrow{p}} \delta(\omega - \overrightarrow{q} \cdot \overrightarrow{v})
\]
Classical oscillator: Dipolar approximation (4)

- The integration is usually made by choosing the x axis along the projectile velocity and the y axis along the impact parameter →

$$\vec{E}(\omega) = -\frac{e_1 \omega}{\pi v^2} \left(i K_0 \left(\frac{\omega_j 0 p}{v} \right), K_1 \left(\frac{\omega_j 0 p}{v} \right), 0 \right)$$

with K_0 and K_1, the modified Bessel functions of order 0 and 1

- Thus T becomes →

$$T = \frac{2e_1^2 e^2}{mv^2 p^2} f_{dist}(p)$$

with

$$f_{dist}(p) = \left[\frac{\omega_0 p}{v} K_0 \left(\frac{\omega_0 p}{v} \right) \right]^2 + \left[\frac{\omega_0 p}{v} K_1 \left(\frac{\omega_0 p}{v} \right) \right]^2$$

- For $(\omega_0 p/v) \ll 1 \rightarrow f_{dist} \approx 1 \rightarrow$ we find again the Bohr result
Semi-classical model for the stopping power: $v_0 \ll v \ll c$ (1)

• Semi-classical model developed by Bethe (1930) → the motion of the nucleus is analyzed by classical mechanics and the motion of bound electrons by quantum mechanics → the electrons are no more considered as classical oscillators but occupy quantum states in the target atom.

• We consider a target atom with Z_2 electrons (with mass m) and the stationary states $|j\rangle$ of energies ϵ_j, with j that represent a full set of quantum numbers and $j = 0$ for fundamental state → the resonant frequencies for an atom in its initial state are given by

$$\hbar \omega_{j0} = \epsilon_j - \epsilon_0$$

• The electrons are at rest during the → $v \gg v_0$
Semi-classical model for the stopping power: \(v_0 \ll v \ll c \) (2)

- For a loss energy \(Q \) by the incident ion → Bethe considered:

\[
S = \sum_j \int Q d\sigma_R f_{j0}(Q)
\]

- \(\sigma_R \) is the Coulomb cross section for a transferred energy \(Q \) (\(R \) is for Rutherford)
- The functions \(f_{j0}(Q) \) are called generalized oscillator forces (GOS) that include all quantum effects for the stopping cross section and that describe the transition probabilities between different states for a given transferred energy \(Q \)
- Determination of \(f_{j0}(Q) \)?
Resolution of Schrödinger’s equation (1)

• The electronic motion is controlled by Schrödinger’s equation depending on time →

\[(H + V) \Psi(\vec{r}, t) = i\hbar \frac{d\Psi(\vec{r}, t)}{dt}\]

with \(H\), the Hamiltonian of an isolated atom of the target, \(\Psi\), the wave function depending on time for a bound state of the atom, \(V\), the potential describing the interaction with the given projectile is given by

\[V(\vec{r}, t) = \sum_{\nu=1}^{Z_2} \frac{-e_1 e}{\vec{r}_\nu - \vec{R}(t)}\]

where \(\vec{r}\) is for \((\vec{r}_1, ..., \vec{r}_{Z_2})\) with \(\vec{r}_\nu\) the position operator of the \(\nu^{th}\) electron and \(\vec{R} = \vec{p} + \vec{v} t\), the trajectory of the projectile.
Resolution of Schrödinger’s equation (2)

• The wave function depending on time Ψ can be developed according to stationary waves \rightarrow

$$\Psi(\vec{r}, t) = \sum_j c_j(t) e^{-i\epsilon_j t} |j\rangle$$

where $|j\rangle$ are solutions of:

$$H |j\rangle = \epsilon_j |j\rangle$$

• Within the framework of the first order perturbations method (1^{st} order Born approximation) \rightarrow the c_j coefficients can be developed as power of the perturbation potential V \rightarrow

$$c_j(t) = \delta_{j0} + c_j^{(1)}(t) + c_j^{(2)}(t) + \ldots$$
Resolution of Schrödinger’s equation (3)

with

\[\delta_{j0} = \begin{cases}
1 & \text{for } j = 0 \\
0 & \text{for } j \neq 0
\end{cases} \]

and

\[c_{j}^{(1)}(t) = \frac{1}{i\hbar} \int_{-\infty}^{t} dt' e^{i\omega_{j0}t'} \langle j|V(\vec{r}, t')|0\rangle \]

\[c_{j}^{(2)}(t) = \left(\frac{1}{i\hbar} \right)^2 \sum_{k} \int_{-\infty}^{t} dt' e^{i\omega_{jk}t'} \langle j|V(\vec{r}, t')|k\rangle \]

\[\times \int_{-\infty}^{t'} dt'' e^{i\omega_{k0}t''} \langle k|V(\vec{r}, t'')|0\rangle \]

and so on... (remark \rightarrow fundamental state at $t = -\infty$)
Resolution of Schrödinger’s equation (4)

• Within the framework of the first order perturbations method → only coefficients $c_j^{(1)}(\infty)$ are important → they are the transition amplitudes → important to calculate them

• By inserting in $c_j^{(1)}(\infty)$ the explicit expression of the potential, by considering the Fourier transform and by integrating on t' →

$$c_j^{(1)}(\infty) = \frac{-e_1 e}{i \pi \hbar} \int \frac{dq}{q^2} e^{i \overrightarrow{q} \cdot \overrightarrow{P}} F_{j0}(\overrightarrow{q}) \delta(\omega_{j0} - \overrightarrow{q} \cdot \overrightarrow{v})$$

with

$$F_{j0}(\overrightarrow{q}) = \left\langle j \left| \sum_{\nu=1}^{Z_2} e^{i \overrightarrow{q} \cdot \overrightarrow{r}_\nu} \right| 0 \right\rangle$$

We note $Q = \frac{\hbar^2 q^2}{2m}$
Transition probabilities

- The transition probabilities are given by (Postulate IV) →

 \[P_j(p) = |\langle j|\Psi(\infty)\rangle|^2 \]

- And thus within the framework of the first order perturbations method →

 \[P_j(p) = \left| c_j^{(1)}(\infty) \right|^2 \]

- Attention → \(c_j^{(1)}(\infty) \neq 0 \) for \(\omega_{j0} < q\nu \) → condition son \(Q \) →

 \[\omega_{j0}^2 < q^2\nu^2 \Rightarrow 2m\nu^2Q > (\epsilon_j - \epsilon_0)^2 \]
Approximation of distant collisions – Dipolar approximation (1)

- We consider the $c_j^{(1)(\infty)}$ at large p (distant collisions) \rightarrow we use the dipolar approximation \rightarrow

$$e^{i \vec{q} \cdot \vec{r}} \simeq 1 + i \vec{q} \cdot \vec{r}$$

- We thus obtain

$$F_{j0}(\vec{q}) \simeq i \vec{q} \left\langle j \middle| \sum_{\nu = 1}^{Z_2} \vec{r}_\nu \right| 0 \right\rangle$$

- Within this approximation and choosing the x axis along the velocity of the projectile and the y axis along the impact parameter \rightarrow

$$c_j^{(1)}(\infty) = - \frac{2e_1 e \omega_{j0}}{i \hbar v^2} \left\langle j \middle| \sum_{\nu} \vec{r}_\nu \right| 0 \right\rangle$$

$$\times \left(i K_0 \left(\frac{\omega_{j0} p}{v} \right), K_1 \left(\frac{\omega_{j0} p}{v} \right), 0 \right)$$
Approximation of distant collisions –
Dipolar approximation (2)

with K_0 and K_1, the modified Bessel functions of 0 and 1 order

- The transitions probabilities thus become →

$$P_j(p) = -\frac{2e_1^2e^2 Z_2}{mv^2p^2\hbar\omega_{j0}} f_{j0}$$

$$\times \left\{ \left[\frac{\omega_{j0}p}{\nu} K_0 \left(\frac{\omega_{j0}p}{\nu} \right) \right]^2 + \left[\frac{\omega_{j0}p}{\nu} K_1 \left(\frac{\omega_{j0}p}{\nu} \right) \right]^2 \right\}$$

- The quantity f_{j0} is called the dipolar oscillator force and has as expression →

$$f_{j0} = \frac{2m}{3\hbar^2 Z_2} (\epsilon_j - \epsilon_0) \left| \langle j | \sum_{\nu} \frac{\mathbf{r}}{r_{\nu}} | 0 \rangle \right|^2$$

with the sum rule of Thomas-Reiche-Kuhn: $\sum_j f_{j0} = 1$
Comparison classical ↔ semi-classical

• We consider the mean transferred energy T_{moy} as

$$T_{moy}(p) = \sum_j P_j(p) \hbar \omega_{j0}$$

• By comparing this expression with the classical result →

$$T = \frac{2e_1^2 e^2}{mv^2 p^2} f_{dist}(p)$$

$$f_{dist}(p) = \left[\frac{\omega_0 p}{v} K_0 \left(\frac{\omega_0 p}{v} \right) \right]^2 + \left[\frac{\omega_0 p}{v} K_1 \left(\frac{\omega_0 p}{v} \right) \right]^2$$

• Equal expression with

$$f_{dist}(p) = \sum_j f_{j0} \left[\frac{\omega_{j0} p}{v} K_0 \left(\frac{\omega_{j0} p}{v} \right) \right]^2 + \left[\frac{\omega_{j0} p}{v} K_1 \left(\frac{\omega_{j0} p}{v} \right) \right]^2$$
Beyond distant collisions

• To generalize the previous f_{j0} functions to large values of Q, Bethe sets out →

$$f_{j0}(Q) = \frac{1}{Z_2} \frac{\epsilon_j - \epsilon_0}{Q} |F_{j0}(\vec{q})|^2$$

called generalized oscillator forces

• At the limit of small Q values →

$$f_{j0}(Q) \bigg|_{Q \sim 0} = f_{j0}$$
Stopping power: Bethe equation: $v_0 \ll v \ll c \ (1)$

- Necessary distinction between distant and close collisions (via p) ↔ collisions with large or small transferred momentum (via q) ↔ collisions with or small transferred energy (via Q)

- Splitting of the integral:

$$S = \sum_j \int Q d\sigma_R f_{j0}(Q)$$

into 2 parts in relation to Q_0 → For $Q < Q_0$ → dipolar approximation is valid (Q_0) →

$$S_{dist} = \sum_j f_{j0} \int_{(\epsilon_j - \epsilon_0)^2/2mv^2}^{Q_0} Q d\sigma_R$$
Stopping power: Bethe equation: \(v_0 \ll v \ll c \) (2)

• For \(Q > Q_0 \rightarrow \) it is necessary to determine the upper bound of the integral \(\rightarrow \) for an ion interacting with an \(e^- \) \((m_1 \gg m) \rightarrow \)

\[
T_{\text{max}} = \gamma E
= \frac{4m_1 m}{(m_1 + m)^2} \frac{m_1 v^2}{2}
\approx 2mv^2
\]

• That gives \(\rightarrow \)

\[
S_{\text{close}} = \int_{Q_0}^{2mv^2} Q d\sigma_R \sum_j f_{j0}(Q)
\]
Stopping power: Bethe equation: $v_0 \ll v \ll c$ (3)

- Bethe demonstrated that →
 \[\sum_j f_{j0}(Q) = 1 \]

- We have thus →
 \[S_{\text{close}} = \int_{Q_0}^{2mv^2} Q d\sigma_R \equiv \sum_j f_{j0} \int_{Q_0}^{2mv^2} Q d\sigma_R \]

- By combining close and distant collisions →
 \[S = S_{\text{close}} + S_{\text{dist}} = \sum_j f_{j0} \int_{(\epsilon_j - \epsilon_0)/2mv^2}^{2mv^2} Q d\sigma_R \]
Stopping power: Bethe equation: \(v_0 \ll v \ll c \) (4)

- By considering the explicit expression of \(d\sigma_R \rightarrow \)

\[
d\sigma_R = 2\pi \frac{e_1^2 e_2^2}{m_2 v^2} \frac{dQ}{Q^2}
\]

- We thus obtain

\[
S = \frac{4\pi e_1^2 e_2^2}{m v^2} Z_2 \sum_j f_{j0} \ln \frac{2m v^2}{\epsilon_j - \epsilon_0}
\]
Stopping power: Bethe equation: \(v_0 \ll v \ll c \) (5)

- The stopping power equation of Bethe is usually written as:

\[
S_e = \frac{4\pi e_1^2 e^2}{mv^2}Z_2 \ln \frac{2mv^2}{I}
\]

with \(I \) defined as the mean excitation energy such as:

\[
\ln I = \sum_j f_{j0} \ln (\epsilon_j - \epsilon_0)
\]

- Let’s recall the application conditions:

\[
m_1 \gg m, \quad v \gg v_0 \Rightarrow mv^2 \gg \hbar \omega_0
\]
Bethe equation versus Bohr equation

\[S_e = \frac{4\pi Z_2 e_1^2 e^2}{mv^2} L_e \]

with \[L_e = \ln \frac{Cmv^3}{|e_1 e|\omega_0} \] from Bohr

with \[L_e = \ln \frac{2mv^2}{I} \] from Bethe
Principal dependences of the stopping force

\[- \left(\frac{dE}{dx} \right)_{elec} = NS_e = \frac{4\pi e_1^2 e^2}{mv^2} NZ_2 \ln \frac{2mv^2}{I} \]

\[\frac{4\pi e_1^2 e^2}{mv^2} \quad \text{Principal dependence in the velocity} \]

\[NZ_2 \quad \text{Principal dependence in the material} \]

\[\ln \frac{2mv^2}{I} \quad \text{Weak dependence in the velocity and in the material} \]
Mean logarithmic excitation energy (1)

• The mean logarithmic excitation energy I only depends on the medium (not on the projectile)
• Difficult calculations → obtained from experiment
• I is in the logarithmic part of → not necessary to be known with precision
• I linearly varies (approximately) with Z → atomic model of Thomas-Fermi (atomic electrons = “gas”)
• The irregularities in the variation with Z are due to the shell structure of the atom
• Usually → evaluation of I with an empirical equation
Mean logarithmic excitation energy (2)

\[
\frac{I}{Z} = \begin{cases}
12 + 7/Z & Z < 13 \\
9.76 + 58.8Z^{-1.19} & Z \geq 13
\end{cases}
\]
For composite materials → the stopping power of the material can be approximated by the sum of the stopping powers of its elementary constituents → identical relation for the mean excitation energies

Bragg’s additivity rule for \(n \) materials \(i \):

\[
NZ = \sum_{i}^{n} N_i Z_i
\]

\[
NZ \ln I = \sum_{i}^{n} N_i Z_i \ln I_i
\]

\(Z_i \) is the atomic number of the atoms of type \(i \), \(N_i \) is the number of atoms of type \(i \) per volume unit and \(N = \sum_{i} N_i \) is the total number of atoms per volume unit

Approximate rule → can lead to important mistakes
Bethe-Bloch equation: \(v_0 < v \sim c \) (1)

Many corrections to the Bethe equations → Bethe-Bloch equations (in the Born approximation)

\[
S_e = \frac{4\pi r_e^2 mc^2}{\beta^2} Z z^2 L(\beta)
\]

Standard reference expression for the electronic stopping power with
\(\beta = v/c, \ z = e_1/e, \ r_e = e^2/(mc^2) \) (\(r_e \): classical radius of the electron)

\[
L(\beta) = L_0(\beta) = \frac{1}{2} \ln \left(\frac{2mc^2 \beta^2 \mathcal{W}_m}{1 - \beta^2}\right) - \beta^2 - \ln I - \frac{C}{Z} - \frac{\delta}{2}
\]

ICRU – 1993
Bethe-Bloch equation: $\nu_0 < \nu \simeq c$ (2)

- With W_m the maximum energy transferred during 1 collision to a free electron (non-approximated relativistic expression) →

$$W_m = \frac{2mc^2\beta^2}{1 - \beta^2} \left[1 + \frac{2m}{m_1(1 - \beta^2)^{1/2}} + \left(\frac{m}{m_1} \right)^2 \right]^{-1}$$

- For $m_1 \gg m$ → we well find $2m\gamma_1^2v^2$
Relativistic correction: $\nu \simeq c$ (1)

- When $\nu \simeq c$ or $\beta = \nu/c \simeq 1 \rightarrow$ relativistic corrections have to be done to previous expression \rightarrow term $\gamma_1 = (1-\beta^2)^{-1/2}$
- We also have $\rightarrow p_{\text{max}} \sim \gamma_1 \nu/\omega_0 \rightarrow$ of the upper bound of the impact parameter when $\nu \rightarrow$
- A complete relativistic classical calculation (as for quantum) shows that E becomes \rightarrow

\[
\overrightarrow{E}(\omega) = -\frac{e_1 \omega}{\pi \gamma_1 \nu^2} \left(\frac{i}{\gamma_1} K_0 \left(\frac{\omega_0 \rho}{\gamma_1 \nu} \right), K_1 \left(\frac{\omega_0 \rho}{\gamma_1 \nu} \right), 0 \right)
\]

- We have thus a relativistic modification of $f_{\text{dist}}(p) \rightarrow$

\[
f_{\text{dist}}(p) = \frac{1}{\gamma_1^2} \left[\frac{\omega_0 \rho}{\gamma_1 \nu} K_0 \left(\frac{\omega_0 \rho}{\gamma_1 \nu} \right) \right]^2 + \left[\frac{\omega_0 \rho}{\gamma_1 \nu} K_1 \left(\frac{\omega_0 \rho}{\gamma_1 \nu} \right) \right]^2
\]
Relativistic correction: \(v \approx c \) (2)

- And thus a modification of the principal dependence in velocity leads to:
 \[
 \frac{4\pi e_1^2 e^2}{mv^2} \Rightarrow \frac{4\pi e_1^2 e^2}{m\gamma_1^2 v^2} = \frac{4\pi e_1^2 e^2}{mv^2} (1 - \beta^2)
 \]

- Moreover the momentum of the incident particle becomes \(m\gamma_1 v \) leads to:
 \[
 T_{max} = 2m\gamma_1^2 v^2
 \]

- And thus we have a modification of the logarithmic term leads to:
 \[
 \ln \frac{2mv^2}{I} \Rightarrow \ln \frac{2m\gamma_1^2 v^2}{I} = \ln \frac{2mv^2}{I(1 - \beta^2)}
 \]

- The combination of all modifications implies that \(S \uparrow \) when \(v \uparrow \)
Density correction (1)

• Density correction $\rightarrow -\delta/2$

• In the Bethe equation \rightarrow interactions with isolated atoms \rightarrow valid for low density gas

• In condensed matter (solid) \rightarrow the interactions can get done with a large amount of atoms at once \rightarrow we have to consider collective effects

• Model of Fermi (1940) \rightarrow matter assimilated to a gas of oscillators submitted to the electric field of the particle

• Incident charged particle \rightarrow polarization of matter \rightarrow the electric field due to the charged particle disturb the atoms \rightarrow they get a dipolar electric momentum \rightarrow production of an electric field opposed to the field due to the charged particle \rightarrow reduction of the electric field due to screening effect of the dipoles
Density correction (2)

• The polarization implies that distant atoms are submitted to a weaker electric field → their contribution to the stopping power is then reduced

• The density effect particularly appears for high energies because of the factor γ_1 in ρ_{max} that increases the mistake made by ignoring polarization of the medium → $v \uparrow \rightarrow \rho_{\text{max}} \uparrow \rightarrow \delta/2 \uparrow \rightarrow S \downarrow$

• The density correction can be written →

$$\frac{\delta}{2} = \ln \frac{\hbar \omega_p}{I} + \ln \gamma_1 \beta - \frac{1}{2}$$

with ω_p, the plasma pulsation for an electronic density $n = NZ$ (ε_0: dielectric constant) →

$$\omega_p = \sqrt{\frac{ne^2}{\varepsilon_0 m}}$$
Density correction (3)

• Relativistic and density corrections cancel each other out → Fermi’s plateau
Shell correction (1)

• Shell correction $\rightarrow -C/Z$
• Bethe and Bohr equations supposed $v \gg v_0$ (velocity of the atomic electrons) \rightarrow the evaluation of I is based on this assumption \rightarrow mean I value
• When it is not the case ($v \downarrow$) \rightarrow it is necessary to explicitly calculate the ions-electrons interactions for each electron shell and for each electron binding energy
• When $v \downarrow$ \rightarrow contribution to S of internal electrons (first K, then L, ...) \downarrow
• “Mean” correction that reduces S (maximal correction = 6%) \rightarrow = for all charged particles (including electrons) \rightarrow only dependent on medium and velocity
Shell correction (2)

1. The method of the hydrogenous wave functions (HWF: bound e- described by hydrogenous wave functions)
2. The method of the local density approximation (LDA: bound e- are a gas of e- with variable density)
Shell correction (3)
Shell correction (4)

LDA

HWF

\(\frac{C}{Z_2} \) vs. \(\frac{E_p}{Z_2} \) (MeV)

\(Z_2 \) values: 82, 47, 29, 18, 13, 4
Corrections beyond the first order Born approximation

- The stopping number L_0 is valid only if the velocity of the projectile is large by comparison to the velocities of the atomic electrons.

- For $v_0 \lesssim v \rightarrow$ the first order Born approximation (necessary for the calculations of Bethe) is no more valid.

- We have to add correction terms to $L_0 \rightarrow$ expansion of L in power of $z \rightarrow$

\[L(\beta) = L_0(\beta) + zL_1(\beta) + z^2L_2(\beta) \]
Barkas-Andersen correction

- Barkas-Andersen correction $\rightarrow zL_1(\beta)$

- The Barkas-Andersen correction is proportional to an odd power in z (charge of the projectile) $\rightarrow S$ for negative particles is slightly weaker than for positive particles $\rightarrow S \neq$ between particles and corresponding antiparticles

- A positive charge attracts the e^- \rightarrow the interactions $\uparrow \rightarrow S \uparrow$

- A negative charge repulses the e^- \rightarrow the interactions $\downarrow \rightarrow S \downarrow$
Example of Barkas-Andersen effect

Incident proton and antiprotons on silicon
Bloch correction

• Bloch correction $\rightarrow z^2L_2(\beta)$
• Semi-classical model taking precisely into account distant collisions (large impact parameter)
• Generally Bichsel evaluation of the Bloch correction is used:

$$z^2L_2(y) = -y^2[1.202 - y^2(1.042 - 0.855y^2 + 0.343y^4)]$$

where $y = z\alpha/\beta$ and $\alpha = 1/137$ (fine structure constant)
Evaluation of various corrections (1)

Incident proton on aluminium
Evaluation of various corrections (2)

Protons incident on gold →

![Graph showing relative correction vs. proton energy for gold](image)
Stopping cross section for ions at very high velocities

Ultra-relativistic equation of Lindhard-Sørensen (E~ 100 GeV: far beyond normal applications)

\[L \rightarrow \ln \frac{1.64c}{R\omega_p} \]

R: radius of the projectile, \(\omega_p = (4\pi e^2 N_e/m)^{1/2} \): plasma frequency that quantifies the electronic density

Attention: for E ↗ the creation of electron-positron pairs becomes predominant
Electronic cross section for ions at small velocities

\[v \lesssim v_0 \rightarrow \text{Perturbation theory not applicable (no sudden collision)} \]

Moreover, electrons capture by incident projectiles (for example: \(\text{He}^{++} \rightarrow \text{He}^+ \rightarrow \text{He}^0 \)) \(\rightarrow \) charge state of the ion is variable (Thomas-Fermi theory):

\[
\tilde{z}^* = z \left(1 - e^{-v/(z^2/3 v_0)} \right)
\]

Different theories but not so precise that the Bethe-Bloch theory for large velocities \(\rightarrow \) use of semi-empirical expressions based on a theoretical « trend »

\[\Rightarrow S_e \propto E^{0.5} \]
Nuclear cross section for ions at small velocities (1)

- Chapter 1 → Nuclear collisions for incidents ions are rare → small contribution to the total stopping power

- Only for incident ions with small velocity → even in that case their contribution is small

- However → They can have effects a posteriori → radiative damages
Nuclear cross section for ions at small velocities (2)
in the center of mass system:
diffusion by angle θ due to a uncentral potential $V(r)$

\[S_n = \int T \, d\sigma = \int T \, 2\pi \, p \, dp = 2\pi \gamma E \int \sin^2(\theta/2) \, dp \] with \[\gamma = \frac{4m_1m_2}{(m_1 + m_2)^2} \]
Nuclear cross section for ions at small velocities (3)

\[
\frac{m_0}{2} \left[(\frac{dr}{dt})^2 + r^2 (\frac{d\varphi}{dt})^2 \right] + V(r) = \frac{m_0}{2} v^2 \equiv E_r
\]

\[
m_0 r^2 \frac{d\varphi}{dt} = -m_0 p v
\]

\[
\Rightarrow \theta = \pi - 2 \int_{r_m}^{\infty} dr \frac{p}{r^2} \left(\frac{1}{1 - \frac{V(r)}{E_r}} - \frac{p^2}{r^2} \right)^{-1/2}
\]

with \(E_r\) the initial kinetic energy of the relative motion
Nuclear cross section for ions at small velocities (4)

Interaction potential: \[V(r) = \frac{z_1 Z_2 e^2}{r} F_s \left(\frac{r}{r_s} \right) \]

The screening function \(F_s(r/r_s) \) takes into account the screening by the atomic electrons (\(r_s \): screening length in the model of Thomas-Fermi) → Adjustment to experimental results → « universal screening function »

\[
F_s(r/r_s) = 0.1818 \exp(-3.2r/r_s) + 0.5099 \exp(-0.942r/r_s) \\
+ 0.2802 \exp(-0.4029r/r_s) + 0.2817 \exp(-0.2016r/r_s)
\]

with \(r_s = 0.88534a_0 (z_1^{0.23} + Z_2^{0.23})^{-1} \) and \(a_0 = 0.529\text{Å} \)
Stopping power for ion: example

Incident proton on aluminium $\rightarrow S = S_{\text{elec}} + S_{\text{nucl}} \approx S_{\text{elec}} = S_{\text{coll}}$
Electronic mass stopping power (1)

• Mass stopping power: ratio between the stopping power and the density ρ of the material (ordinary unit: MeV cm2 g$^{-1}$) →

$$\frac{NS(E)}{\rho} = -\frac{1}{\rho} \frac{dE}{dx}$$

• With $\rho = M_A N/N_A$ (M_A is the molar mass, N is the atomic density and N_A is the Avogadro number) and $M_A = AM_u$ (A is le mass number and $M_u = m_u N_A = 10^{-3}$ kg mol$^{-1}$ is the constant of molar mass and m_u is the atomic mass constant) →

$$-\frac{1}{\rho} \frac{dE_{elec}}{dx} = 4\pi r_e^2 mc^2 \frac{N_A}{M_u} \frac{Z}{A} \frac{z^2}{\beta^2} L(\beta)$$
Electronic mass stopping power (2)

The electronic mass stopping power is the product of 4 factors:

1. The constant factor \(4\pi r_e^2 mc^2 N_A/M_u = 0.307 \text{ MeV cm}^2 \text{ g}^{-1}\) → order of magnitude for the electronic mass stopping power.
2. The factor \(Z/A\) that is included between 0.4 et 0.5 for all stable isotopes (except hydrogen) → weak dependency into the medium.
3. The factor \(\beta^{-2}\) → monotonic decreasing function in ion velocity that tends to 1 for large energies → explain the decrease of the stopping power as a function of the energy.
4. The stopping number \(L(\beta)\) → for \(L(\beta) = L_0(\beta)\) → monotonic increasing function (slow) in the velocity and in \(Z\) (via \(I: -\ln I\)).
Variation of Z/A as a function of A
Velocity dependency

Protons incident on Si → shell and density corrections are neglected in the calculation of $L_0(\beta)$
Electronic mass stopping power: Examples

Protons incident on different media
Influence of the phase

- For large energies → influence of the density correction → large correction for solids and weak correction for gases
- For small energies → influence of chemical and intermolecular bounding → modification of the value of I (example: liquid water: $I = 75.0$ eV and gaseous water: $I = 71.6$ eV)
Range of charged particles (1)

• Charged particles lose their energy in matter → they travel a certain distance in matter → this distance is variable because of aleatory energy losses and deviations (straggling) → different ranges have to be defined:
 – The range R of a charged particle of energy E in a medium is the mean value $\langle l \rangle$ of the length l of its trajectory as it slows down to rest (we do not take into account thermal motion)
 – The projected range R_p of a charged particle of energy E in a medium is the mean value of its penetration depth $\langle d \rangle$ along the initial direction of the particle

• $R_p < R$ due to the sinuous character of trajectories → definition of the detour factor $= R_p/R_{CSDA} < 1$
Range of charged particles (2)

• In CSDA approximation →

\[R_{CSDA} = \int_0^E \frac{dE'}{NS(E')} \]

• By replacing \(S \) by the Bethe expression (non-relativistic → \(dE = Mvdv \)) →

\[R_{CSDA} \propto \int_0^v \frac{v^3 dv}{L(v)} \]

• By neglecting the dependency into the velocity for the stopping number →

\[R_{CSDA} \propto v^4 \propto E^2 \]
Range of charged particles (3)

• In reality → the equation of Bethe (or Bethe-Bloch) is not valid for small velocities → but before to stop small velocities have to be considered

• We consider the empiric equation →

\[\rho R_{CSDA} = \frac{E^{1.77}}{415} + \frac{1}{670} \]
Range of charged particles: Example

Incident proton on aluminium ($\rho = 2.70 \text{ g/cm}^3$)

http://www.nist.gov/pml/data/star/index.cfm
Detour factor

Incident proton on aluminium

![Graph showing detour factor as a function of kinetic energy (MeV)]
Range approximations

\[S_e = \frac{4\pi r_e^2 mc^2}{\beta^2} Z z^2 L(\beta) \]

- \(\text{NS}(E) \propto \frac{1}{E} \)
- \(\text{NS}(E)/z^2 \) only depends on \(v \) → if we have particle of mass \(M_i \) and charge \(z_i \):

\[NS(E) = -\frac{dE}{dx} \Rightarrow -\frac{M_i}{z_i^2} \frac{dv^2}{dx} \propto v^{-2} \]

- For 2 particles \((M_1, z_1)\) and \((M_2, z_2)\) of same velocity:

\[\frac{R^1_{\text{CSDA}}}{R^2_{\text{CSDA}}} = \frac{M_1 z_2^2}{M_2 z_1^2} \]

Same range for proton and \(\alpha \) of same velocity
Examples of CSDA ranges (1)

- 5.5 MeV α in air: $R_{\text{CSDA}} = 4.2 \text{ cm}$
- 4.0 MeV α in air: $R_{\text{CSDA}} = 2.6 \text{ cm}$
- 5.5 MeV α in aluminium: $R_{\text{CSDA}} = 2.5 \times 10^{-3} \text{ cm}$
- 1 MeV proton in air: $R_{\text{CSDA}} = 2.4 \text{ cm}$
- 4 MeV proton in air: $R_{\text{CSDA}} = 23.6 \text{ cm}$
- 5.5 MeV proton in aluminium: $R_{\text{CSDA}} = 2.3 \times 10^{-2} \text{ cm}$

http://www.nist.gov/pml/data/star/index.cfm
Examples of CSDA ranges (2)

α incident on various media
Bragg curve

- We consider a semi-infinite medium and a beam of identical parallel charged particles with same $E \rightarrow$ they stop after travelling the distance R_{CSDA}
- The Bragg curve gives the dose (mean deposited energy per mass unit of the target) as a function of the depth
- At depth x, the particle has to cover a distance $d = R_{CSDA} - x$
- The dose $D \propto S \propto 1/v^2 \rightarrow R_{CSDA} \propto v^4$

$$D \propto \frac{1}{\sqrt{d}} = \frac{1}{\sqrt{R_{CSDA} - x}}$$
Example of Bragg curve

- Protons of 700 MeV in water →

- Applications: proton therapy or hadron therapy
Transmission of ions

Transmission probability

Absorber thickness
Strong nuclear interactions

• If ion comes very close to target nucleus → strong nuclear interaction becomes possible → the target nucleus will be broken up

• One particular case: the collision of a high-energy proton with a very heavy nucleus with thus more neutrons than protons (lead: 82 protons and ≈125 neutrons) → the fragments will quickly expel their excess neutrons → production of a large number of secondary neutrons (proton of 1 GeV → on average 25 neutrons in lead)

• This process of neutrons production is called spallation → efficient way to produce neutrons

• All fragments interact with matter