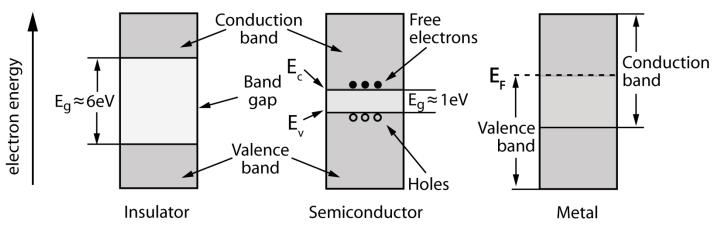
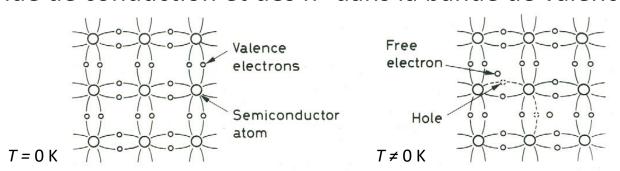
Chapitre 9: Détecteurs basés sur l'ionisation dans les semiconducteurs


Contenu

- Introduction aux semiconducteurs
- Jonction p-n utilisée comme détecteur
- Détecteurs au silicium
- Détecteurs au germanium
- Autres matériaux

Semiconducteurs comme détecteurs

- Détecteur semiconducteur → « comparable » à un détecteur à gaz où le milieu gazeux est remplacé par un milieu solide placé entre 2 électrodes
- Le passage d'un rayonnement ionisant crée des paires e⁻-h⁺ (à la place des paires e⁻-ions dans un détecteur à gaz) → les paires sont collectées par un champ électrique
- Détecteur semiconducteur → chambre d'ionisation solide
- Avantage 1 \rightarrow énergie moyenne nécessaire pour créer une paire \sim 3 eV \rightarrow \sim 10 \times plus petite que pour un gaz \rightarrow meilleure résolution
- Avantage 2 → densité plus élevée que pour un gaz → pouvoir d'arrêt élevé → plus compact
- Inconvénient → nécessite une faible température (sauf le silicium) → système cryogénique nécessaire


Structure en bandes d'énergie

- Les bandes d'énergie sont constituées de nombreux états électroniques extrêmement proches → continuum
- Configuration permise par la structure périodique du réseau cristallin (recouvrement des fonctions d'onde électroniques)
- Existence de domaines d'énergies interdites → gap d'énergie (largeur: E_g)
- Les e dans la bande de valence sont liés aux atomes
- Les e dans la bande de conduction sont libres
 - E_F : énergie de Fermi (énergie de l'état occupé le plus élevé à T=0 K)

Porteurs de charge dans un semiconducteur (1)

- À T = 0 K, tous les e⁻ sont dans la bande de valence → bande de conduction vide → pas de courant si champ électrique appliqué
- À T ambiante → les fluctuations thermiques provoquent l'excitation d'un certain nombre d'e⁻ de la bande de valence vers la bande de conduction → porteurs de charge négatifs → présence de trous (h⁺) à leur position d'origine dans la bande de valence
- Un e⁻ de la bande de valence peut migrer de sa position d'origine vers le trou et le combler → cette séquence peut se répéter → mouvement des h⁺ à travers le cristal → porteurs de charge positifs
- Porteurs de charges → un champ électrique appliqué produit un courant
- Dans un semiconducteur → 2 sources de courant: mouvement des e⁻ libres dans la bande de conduction et des h⁺ dans la bande de valence

Porteurs de charge dans un semiconducteur (2)

- Lorsque de l'énergie est cédée à un atome du cristal par un rayonnement incident sur le semiconducteur → un e⁻ peut être excité dans des niveaux d'énergie élevée de la bande de conduction → présence d'un h⁺ dans la bande de valence
- Très rapidement après cette 1^{ère} excitation → l'e⁻ redescend vers le bas de la bande de conduction et l'atome ionisé perd son énergie d'excitation laissant un h⁺ dans le haut de la bande de valence
- L'énergie perdue au cours de ce processus donne lieu à la création de phonons et à d'autres excitations qui produisent d'autres paires e⁻-h⁺ → création de nombreuses paires e⁻-h⁺
- Après $\sim 10^{-12}$ s \rightarrow tous les e⁻ sont dans le bas de la bande de conduction et tous les h⁺ dans le haut de la bande de valence
- L'énergie initiale s'est repartie entre les paires e⁻-h⁺ et le réseau cristallin (création des phonons) → équivalence e⁻-h⁺ ↔ e⁻-ions et phonons ↔ excitations par comparaison à un gaz

Concentration des porteurs de charge pour un sc intrinsèque

• La probabilité qu'un niveau énergétique particulier soit occupé à l'équilibre thermique est donné par la distribution de Fermi-Dirac (avec $k = 1.38 \ 10^{-23} \ \text{JK}^{-1}$: la constante de Boltzmann)

$$f(E) = \frac{1}{\exp\left(\frac{E - E_F}{kT}\right) + 1}$$

 Les paires e⁻-h⁺ sont générées en continu par l'énergie thermique et se recombinent en continu aussi → pour un s-c intrinsèque à l'équilibre et sous des conditions stables → les concentrations de e⁻ et h⁺ sont égales: n = p = n; →

$$n_i = AT^{3/2} \exp\left(\frac{-E_g}{2kT}\right)$$

avec A une constante dépendant du matériau et indépendante de T

Exemples: Si et Ge

- Le silicium et le germanium sont les deux semiconducteurs les plus courants
- Ils sont tous deux utilisés comme milieu détecteur
- Leur réseau cristallin est du type « diamant »

$$n_i(Si) = 2.8 \times 10^{16} T^{3/2} \exp\left(\frac{-6450}{T}\right) / \text{cm}^{-3}$$

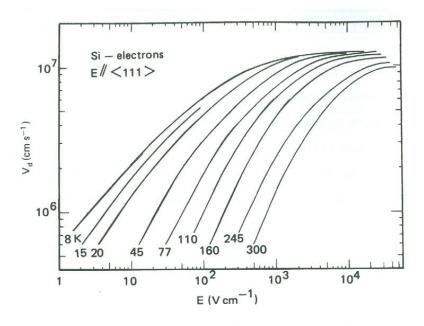
$$n_i(Ge) = 9.7 \times 10^{15} T^{3/2} \exp\left(\frac{-4350}{T}\right) / \text{cm}^{-3}$$

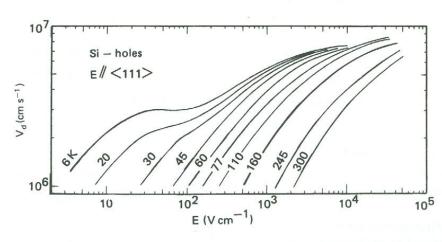
• Exemple \rightarrow pour $T = 300 \text{ K} \rightarrow n_i(Si) = 6.7 \times 10^{10} \text{ cm}^{-3}$

Mobilités pour un sc intrinsèque

 Sous l'action d'un champ électrique appliqué E → vitesses de migration des e⁻ et des h⁺ →

$$v_e = \mu_e E$$


$$v_h = \mu_h E$$


avec $\mu_{e,h}$ les mobilités des e⁻ et des h⁺ (dépendant de E et de $T \rightarrow$ pour les faibles E ($E < 10^6$ V/m) $\rightarrow \mu$ est indépendant de E; pour les E élevés $\rightarrow \mu$ sature

- Généralement $\mu_h < \mu_e \rightarrow$ le mouvement d'un h⁺ nécessite la transition d'un e⁻ entre atomes voisins (le rapport vaut $\approx 2-3$)
- Les mobilités déterminent le courant \rightarrow et donc la conductivité σ et la résistivité $\rho \rightarrow$

$$\sigma = en_i(\mu_e + \mu_h) \qquad \rho = \frac{1}{en_i(\mu_e + \mu_h)}$$

Exemple de vitesses de migration: Si

Caractéristiques du Si et du Ge

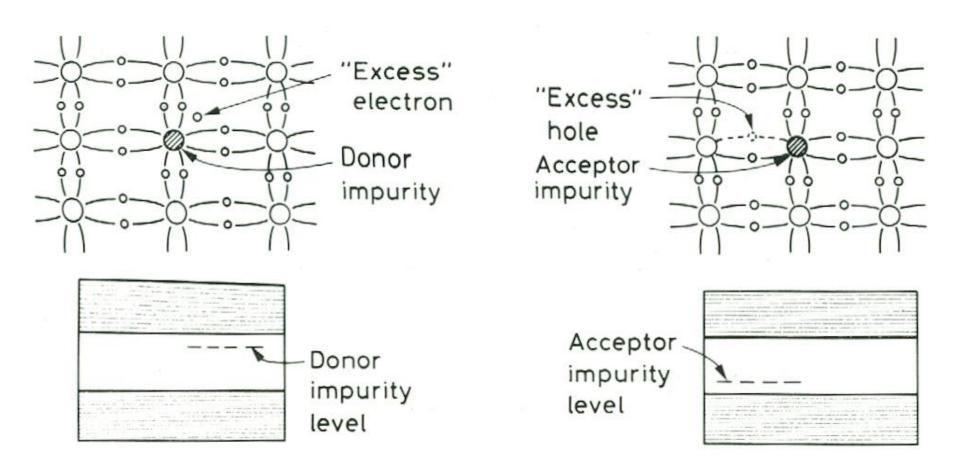
	Si	Ge
Atomic number Z	14	32
Atomic weight A	28.1	72.6
Density [g/cm ²]	2.33	5.32
Dielectric constant (relative)	12	16
Intrinsic resistivity (300 K) [Ωcm]	230000	45
Energy gap (300 K) [eV]	1.1	0.7
Energy gap (0 K) [eV]	1.21	0.785
Electron mobility (300 K) [cm ² /Vs]	1350	3900
Hole mobility (300 K) [cm ² /Vs]	480	1900

Contacts ohmiques

- Un contact ohmique permet le passage des e⁻ dans les deux sens
- Lorsque des e⁻ et des h⁺ sont créés en nombre égal dans le sc → ces charges se séparent suivant leur signe
- Certaines arrivent sur leur électrode avant les autres et le milieu initialement neutre est alors chargé → cette charge d'espace crée un champ électrique qui entraîne l'injection de charge à une électrode
- Dans notre cas seuls des e⁻ peuvent être injectés à l'électrode négative pour maintenir les concentrations d'équilibre dans le sc → multiplication du nombre d'e⁻ et apparition d'un courant
- L'intensité de ce courant est peu prévisible → dépend de l'endroit où les paires sont créées, de la mobilité des porteurs et de la géométrie du champ électrique interne
- Pas de possibilité d'utilisation du sc tel quel → utilisation de jonctions pn

Semiconducteur de type n

- Le silicium et le germanium sont tétravalents
- Si on introduit une impureté (dopage) pentavalente: arsenic, phosphore, antimoine (élément donneur) → remplacement d'un atome du réseau → un e⁻ supplémentaire est ajouté
- Cet e⁻ supplémentaire est faiblement lié → facilement excité vers la bande de conduction → présence d'un niveau localisé juste en-dessous du fonds de la bande de conduction
- E d'ionisation de ce niveau localisé: qqs 0.01 eV → comparable à l'E thermique → présence d'un e⁻ dans la bande de conduction sans h⁺ dans la bande de valence → semiconducteur de type n
- En pratique \rightarrow concentration de donneurs $N_D \gg n_i$ (concentration de porteurs à l'équilibre pour du Si non-dopé) \rightarrow concentration d'électron $n \approx N_D (N_D \sim 10^{15} \text{ atomes/cm}^3) \rightarrow$


$$\sigma = eN_D\mu_e$$

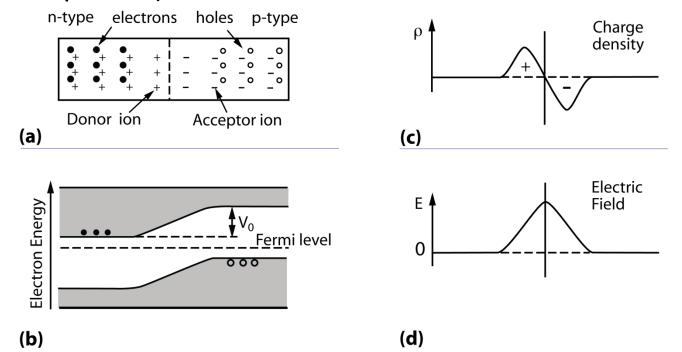
Semiconducteur de type p

- Si une impureté trivalente est introduite (élément accepteur)
 comme le gallium, le bore ou l'indium → remplacement d'un
 atome du réseau → pas assez d'électrons → un h+ supplémentaire
 est ajouté
- Un e⁻ capturé dans ce trou est moins lié qu'un e⁻ normal → niveau localisé juste au dessus du sommet de la bande de valence
- Les e⁻ dans la bande de valence sont facilement excités vers ce niveau localisé → trou supplémentaire dans la bande de valence sans e⁻ dans la bande de conduction → semiconducteur de type p
- En pratique \rightarrow concentration d'accepteurs $N_A \gg n_i \rightarrow$ concentration de trous: $p \approx N_A (N_A \sim 10^{15} \text{ atomes/cm}^3) \rightarrow$

$$\sigma = eN_A\mu_h$$

Représentation des semiconducteurs dopés (extrinsèques)

Concentration des porteurs de charge pour un sc extrinsèque


Pour un type n → l'addition de e⁻ dans la bande de conduction → ↗
 du taux de recombinaison avec les h⁺ → ↘ de la concentration de h⁺
 dans la bande de valence → à l'équilibre →

$$np = n_i^2$$

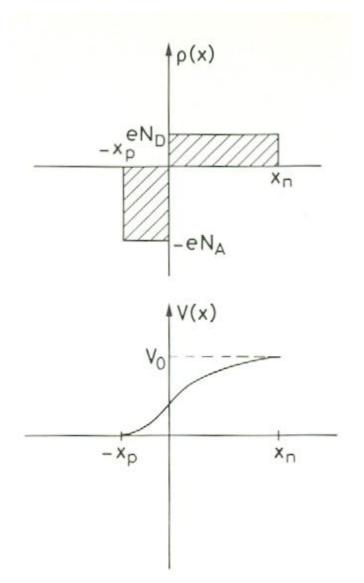
- Exemple: à T ambiante, pour du Si d'une densité de $\sim 10^{22}$ atomes/cm³ \rightarrow la densité intrinsèque de porteurs est $\sim 10^{10}$ atomes/cm³ \rightarrow si les impuretés donneuses sont présentes avec une densité de $\sim 10^{17}$ atomes/cm³ \rightarrow la densité d'électrons (n) vaut $\sim 10^{17}$ atomes/cm³ et la densité de trous (p) vaut $\sim 10^3$ atomes/cm³
- Remarque → la neutralité est assurée par les noyaux des impuretés

Jonction pn

La \neq de densité de charge implique une diffusion des e⁻ majoritaires de la région n vers la région p et des h⁺ majoritaires de la région p vers la région n \rightarrow dans la zone de jonction \rightarrow recombinaison des e⁻ et des h⁺ \rightarrow présence d'ions + dans la région n et d'ions - dans la région p \rightarrow champ électrique (10³ V/cm) dans cette région (appelée zone de déplétion)

Taille de la zone de déplétion (1)

 La taille de la zone de déplétion (= d) dépend de la concentration en impuretés en n et p → elle peut être déterminée à partir de l'équation de Poisson (avec ε la constante diélectrique) →


$$\frac{d^2V}{dx^2} = -\frac{\rho(x)}{\varepsilon}$$

• On considère une distribution de charge uniforme au niveau de la jonction, x_n et x_p les étendues de la zone de déplétion dans les régions n et p et un potentiel de contact $V_0 \rightarrow$

$$\rho(x) = \begin{cases} eN_D & 0 < x < x_n \\ -eN_A & -x_p < x < 0 \end{cases}$$

• Comme la charge est conservée $\rightarrow N_A x_p = N_D x_n$ (avec la concentration d'accepteurs $N_A \approx p$ et la concentration de donneurs $N_D \approx n$)

Taille de la zone de déplétion (2)

Taille de la zone de déplétion (3)

• En intégrant l'équation de Poisson →

$$\frac{dV}{dx} = \begin{cases} -\frac{eN_D}{\varepsilon}x + C_n & 0 < x < x_n \\ \frac{eN_A}{\varepsilon}x + C_p & -x_p < x < 0 \end{cases}$$

• Comme dV/dx = 0 en $x = x_n$ et $x = -x_p \rightarrow$

$$\frac{dV}{dx} = \begin{cases} -\frac{eN_D}{\varepsilon}(x - x_n) & 0 < x < x_n \\ \frac{eN_A}{\varepsilon}(x + x_p) & -x_p < x < 0 \end{cases}$$

• En intégrant une fois de plus →

$$V(x) = \begin{cases} -\frac{eN_D}{\varepsilon} \left(\frac{x^2}{2} - x_n x \right) + C & 0 < x < x_n \\ \frac{eN_A}{\varepsilon} \left(\frac{x^2}{2} + x_p x \right) + C' & -x_p < x < 0 \end{cases}$$

Taille de la zone de déplétion (4)

Les solution étant égales en $x = 0 \rightarrow C = C'$ et comme $V(x_n) = V_0$ et $V(-x_p) = 0 \rightarrow$

$$V_0 = \frac{eN_D}{2\varepsilon}x_n^2 + C$$
$$0 = -\frac{eN_A}{2\varepsilon}x_p^2 + C$$

En éliminant $C \rightarrow$

$$V_0 = \frac{e}{2\varepsilon} (N_D x_n^2 + N_A x_p^2)$$

En utilisant l'équation de conservation de la charge →

$$x_n = \left(\frac{2\varepsilon V_0}{eN_D[1+N_D/N_A]}\right)^{1/2} \quad \text{et} \quad x_p = \left(\frac{2\varepsilon V_0}{eN_A[1+N_A/N_D]}\right)^{1/2}$$

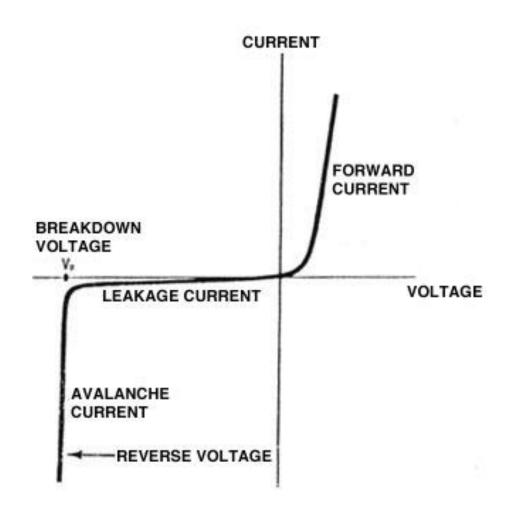
$$d = x_n + x_p$$

Taille de la zone de déplétion (5)

• En considérant, par exemple, $N_A \gg N_D \rightarrow x_n \gg x_p \rightarrow$

$$d \simeq x_n \simeq \left(\frac{2\varepsilon V_0}{eN_D}\right)^{1/2}$$

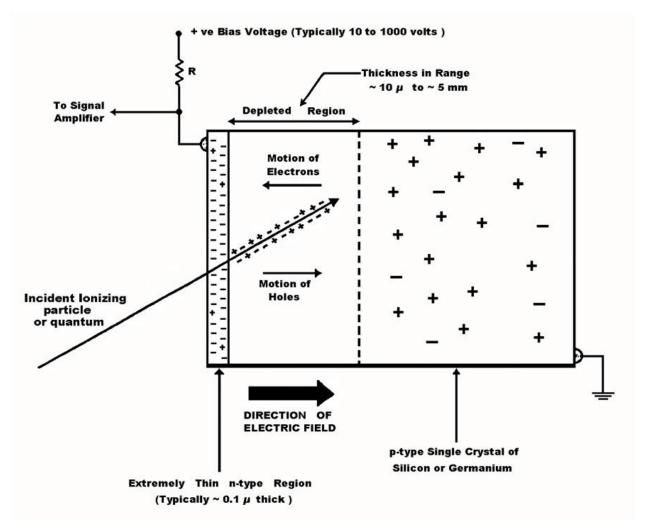
- Extension de la zone de déplétion du côté n
- Pour Si avec ρ = 20000 Ω cm et V_0 = 1V \rightarrow $d \approx 75 \,\mu$ m


Tension appliquée

- Si une tension externe est appliquée telle que l'anode est portée à un potentiel supérieur à celui de la cathode (polarisation directe) → diminution du potentiel de la jonction → passage d'un courant → pas d'utilisation
- Si une tension externe V_B est appliquée telle que l'anode portée à un potentiel négatif par rapport à celui de la cathode (polarisation inverse) \rightarrow renforcement de la différence de potentiel à la jonction \rightarrow pas de courant
 - 1. Cette tension attire les h⁺ de la région p loin de la jonction (et de manière identique les e⁻ dans la région n $\rightarrow \nearrow$ de la taille de la zone de déplétion (dans les éqs. précédentes \rightarrow utilisation de $V_B + V_O \approx V_B$ car $V_B \gg V_O \rightarrow 5$ mm dans du Si et 20 mm dans du Ge
 - 2. V_B limité \rightarrow attention au claquage

Claquage

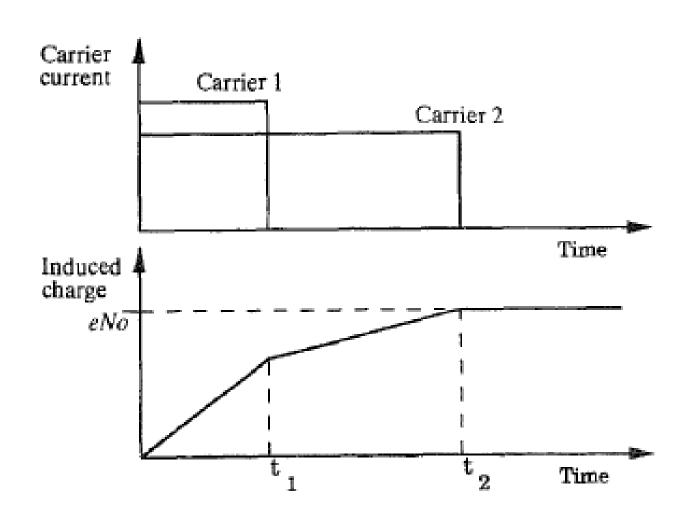
- Claquage de la jonction → brusque augmentation du courant inverse lorsque la tension inverse appliquée atteint une valeur limite (tension de claquage)
- Le claquage n'est pas destructif si le courant inverse est limité par le circuit extérieur pour éviter un échauffement excessif
- 2 mécanismes de claquage → Effet Zener et effet d'avalanche
- Effet Zener → le champ électrique est suffisamment intense pour arracher un électron de la bande de valence et le faire passer dans la bande de conduction → présence d'un courant
- Effet d'avalanche → un électron fortement accéléré peut ioniser un atome lors d'une collision → paire e⁻ h⁺ → le nombre de porteurs libres augmente et le phénomène se reproduit avec le porteur initial et les porteurs secondaires → multiplication des porteurs → courant
- En fonctions des conditions (température,...) → soit Zener soit avalanche apparaît le premier


Caractéristique courant - tension

Principe d'un détecteur semiconducteur

- Un rayonnement traversant la zone désertée d'une jonction pn polarisée en inverse crée de nombreuses paires e⁻ - h⁺
- Les e⁻ vont se diriger vers le pôle positif et les h⁺ vers le pôle négatif → apparition d'un courant comme dans une chambre d'ionisation → chambre d'ionisation solide de petite taille
- Le nombre de paires e⁻- h⁺ est directement ∝ à l'énergie cédée par le rayonnement dans la jonction → l'intensité de courant et donc l'impulsion de tension aux bornes d'une résistance seront ∝ à cette énergie → détecteur permettant à la fois le comptage et la spectrométrie

Schéma d'un détecteur semiconducteur



Seules les charges créées dans la zone de déplétion sont collectées

Collecte des charges (1)

- Quand un rayonnement ionisant dépose son énergie dans le volume actif du détecteur (= zone de déplétion) → création d'un nombre égal d'e⁻ et de h⁺
- À cause du champ électrique → migration des porteurs dans des directions opposées → le mouvement des e⁻ et des h⁺ constitue le courant qui persiste jusqu'au moment où les porteurs sont collectés à la frontière du volume actif
- Exactement le même principe que pour la collecte des charges dans une chambre d'ionisation gazeuse avec 1 différence -> l'échelle de temps
- La mobilité des e⁻ est plus grande que celle des h⁺ mais seulement d'un facteur 2 ou 3 → les temps de collection des porteurs sont similaires
- Le courant total inclut les courants dus aux 2 types de porteurs

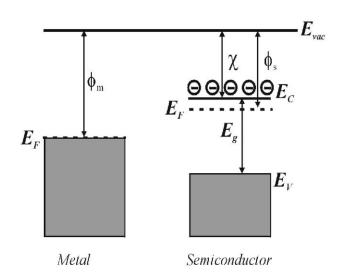
Collecte des charges (2)

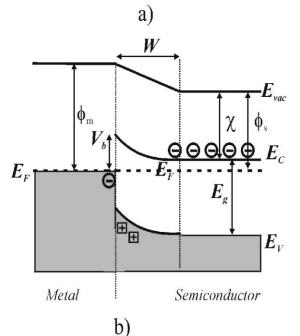
Détecteurs au silicium

- Utilisation à température ambiante (à l'exception des Si(Li))
- À température ambiante: énergie moyenne pour la création d'une paire e⁻-h⁺: 3.62 eV
- Désavantage \rightarrow taille relativement faible de la zone de déplétion (\approx 5 mm) \rightarrow utilisés principalement pour la spectrométrie (ou la détection) des particules chargées (libre parcours moyen des γ trop important)
- Autre application → détecteur des trajectoires des particules chargées
- Facteur de Fano seulement déterminé de manière imprécise mais $\approx 0.11 \rightarrow$ résolution typique pour un α de 5.5 MeV \rightarrow 3.5 keV (ou 0.063%)

Différents types de détecteurs au Si

- Diode à jonction diffusée
- Jonction à barrière de surface
- Jonction par implantation ionique
- Jonction compensée au lithium Si(Li) Diode p-i-n
- Détecteur à microstrips

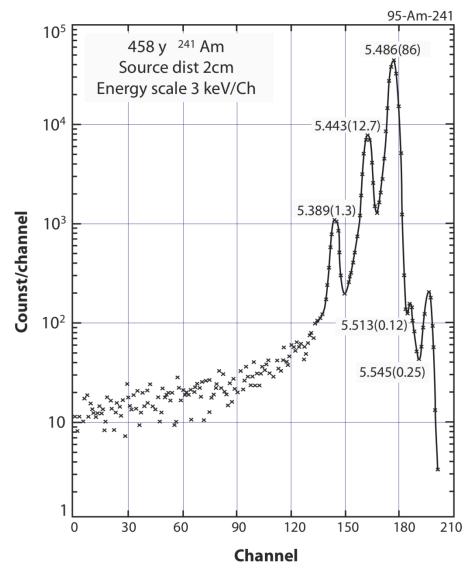

Diode à jonction diffusée


- Historiquement: 1^{ère} jonction pour la détection
- On considère un cristal homogène de type p → on fait diffuser à haute T (≈ 1000 °C) une impureté de type donneur (phosphore par exemple) → conversion d'une zone proche de la surface en type n
- Diode très robuste mais surface très fortement dopée $(N_D \nearrow) \rightarrow$ extension de la zone de déplétion du côté p \rightarrow présence d'une zone morte équivalente à la zone de diffusion ($\approx 1 \mu m$)
- Gênant pour la détection de particules chargées → peu utilisée actuellement

Jonction à barrière de surface

- En anglais → « Surface Barrier Detector » ou SSB
- Type de détecteur au silicium le plus utilisé
- Jonction formée entre un semiconducteur et un métal (généralement → Si de type n + Au ou Si de type p + Al)
- À cause de la ≠ entre les niveaux de Fermi des 2 matériaux →
 modification des bandes dans le sc → formation d'une barrière
 de Shottky
- Zone de déplétion qui peut atteindre ≈ 5 mm
- Avantages: processus de fabrication simple + zone morte de faible épaisseur \sim épaisseur de métal \sim 20 nm
- Désavantage: très sensible à la lumière (épaisseur de métal trop faible pour stopper les photons lumineux) → protection nécessaire + fragile
- Remarque: présence d'une couche d'oxyde à l'interface

Barrière de Shottky

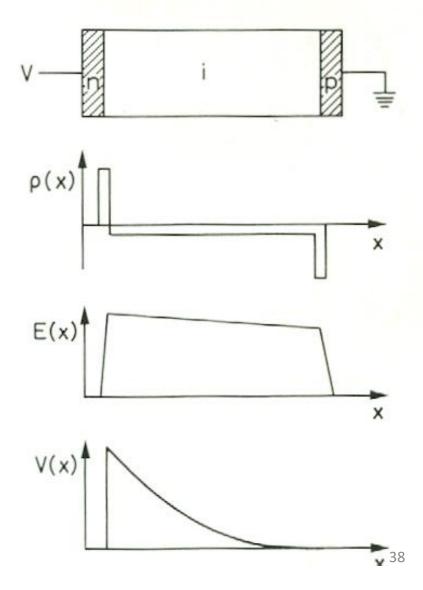


- Exemple: métal sc de type n
- Lorsqu'on établit un contact entre le métal et le sc → diffusion des e⁻ du sc vers le métal (≠ entre les E_F) → région située au niveau du contact dans le sc se vide d'e⁻
- Cette région contient des donneurs positifs → apparition d'un champ électrique → diffusion des e⁻ stoppée
- Région de déplétion équivalente à celle d'un contact pn
- 2 différences → potentiel de contact plus faible et région de déplétion qui s'étend uniquement dans le sc

Exemple de mesure avec une SSB

Spectre énergétique des particules α émises par une source de 241 Am et enregistré par un détecteur à barrière de surface

Jonction par implantation ionique

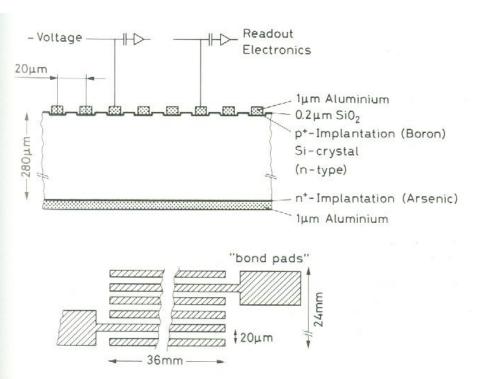

- La surface du sc (de type n ou p) est bombardée par un faisceau d'ions donneurs ou accepteurs → les dopants sont injectés dans le sc
- En ajustant l'énergie des ions du faisceau → contrôle de la profondeur de pénétration, de la concentration d'impuretés et de leur profile en profondeur
- Contrôle parfait → détecteur très stable, zone morte très mince (~ 35 nm) → le meilleur détecteur existant actuellement → utilisé particulièrement en physique des hautes énergies
- Désavantage: prix élevé

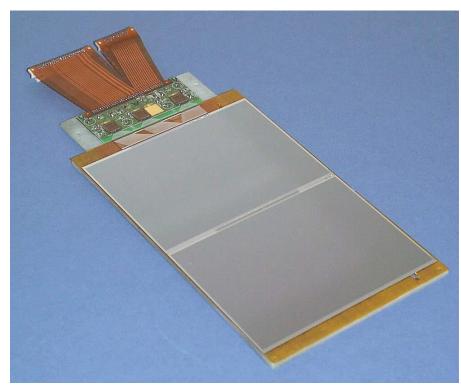
Jonction compensée au lithium – Si(Li) – Diode p-i-n (1)

- Le problème des diodes précédentes est la petite taille de leur zone de déplétion
- Solution → utilisation d'un matériau compensé (i) pris en sandwich entre des couches de type p et n → p-i-n
- Semiconducteur compensé \rightarrow les impuretés d'un type donné peuvent être compensées par injection d'impuretés de l'autre type tel que $N_D = N_A \rightarrow$ exactement la même quantité de donneurs et d'accepteurs
- On retrouve les caractéristiques d'un matériau intrinsèque → en particulier pas de charge d'espace dans la région i

Jonction compensée au lithium – Si(Li) – Diode p-i-n (2)

- Pas de charge d'espace → champ électrique presque constant
- La zone de compensation peut atteindre une épaisseur ≈ 15 mm = zone dans laquelle la particule doit déposer son énergie
- Possibilité de détection des β et des RX de faible énergie


Jonction compensée au lithium – Si(Li) – Diode p-i-n (3)


- On considère du Si de type p
- On fait diffuser du lithium (matériau donneur) qui compense les accepteurs → détecteur Si(Li)
- Le lithium est utilisé en raison de son très haut coefficient de diffusion → il ne se déplace pas sur les sites du réseau mais se glisse dans les interstices et tend à former une paire avec les impuretés de type p du matériau
- Problème: à température ambiante → le Li continue à diffuser
 → il envahit tout le cristal → nécessité de refroidir le détecteur
 (même en dehors des périodes d'utilisation) → utilisation
 d'azote liquide

Détecteur Si à micro-bandes (1)

- Détecteur constitué d'un substrat de Si de type n sur lequel une série de micro-bandes de Si de type p sont implantées à 20 μ m d'intervalle et reliées à des contacts en aluminium
- Le nombre de charges collectées à un contact donné est dépendant de la trajectoire de la particule incidente
- Résolution spatiale \approx 5 μ m

Détecteur Si à micro-bandes (2)

Détecteur des traces des particules chargées utilisé pour l'expérience CMS (« Compact Muon Solenoid »)

Détecteurs au germanium (1)

- À cause de son gap en énergie faible (≈ 0.7 eV) → les mesures doivent être effectuées à basse température pour éviter les courants de fuite dus aux paires e⁻-h⁺ générées thermiquement dans la zone de déplétion
- À 77 K (T° de l'azote liquide) → énergie moyenne nécessaire pour une paire e⁻-h⁺: 2.96 eV
- Numéro atomique élevé (Z_{Ge} = 32 tandis que Z_{Si} = 14) \rightarrow grande section efficace pour l'effet photoélectrique (60 \times plus grande pour le Ge que pour le Si) \rightarrow utilisé principalement pour la détection et la spectrométrie de rayonnements γ

Détecteurs au germanium (2)

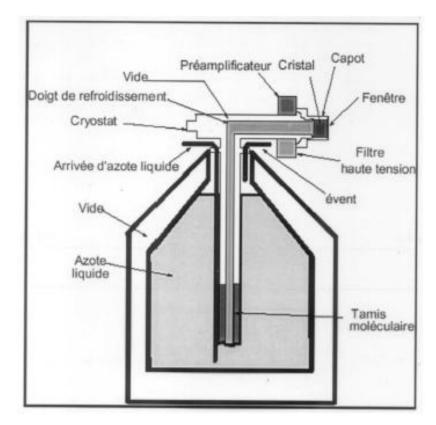
 Peu utilisé pour la détection de particules chargées car les détecteurs au Ge ne présentent aucun avantage par rapport à ceux au Si (pour ce type de détection) et ils nécessitent un refroidissement

• Résolution Typique pour des γ de 1.33 MeV: 1.7 keV (ou R=0.13%) avec F<0.13

Chers!

Jonction compensée au lithium – Ge(Li)

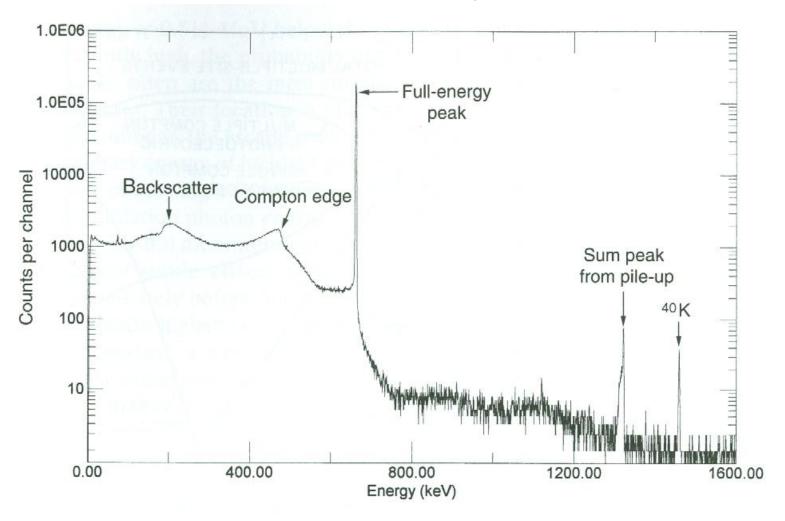
- Diffusion de lithium dans du Ge de type p → détecteur Ge(Li)
- En pratique → épaisseur de la zone compensée ≈ 15-20 mm
- À cause de la diffusion du Li à température ambiante


 nécessité de refroidir le détecteur constamment (et pas seulement pendant l'utilisation)
- Peu utilisé actuellement

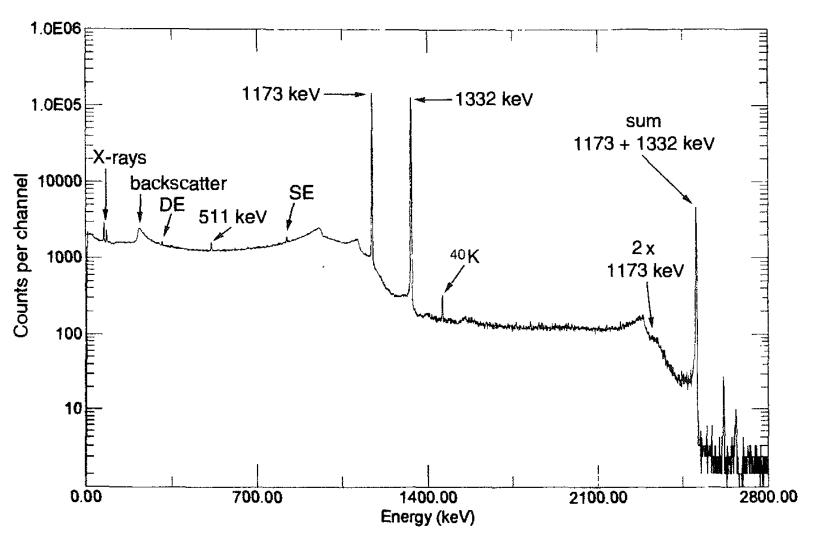
Détecteur au Ge intrinsèque - HPGe

- Actuellement → possibilité d'obtenir des cristaux de Ge de haute pureté (< 10¹⁰ atomes d'impuretés/cm³) → Ge quasi-intrinsèque → développement du détecteur HPGe (« High Purity Germanium »)
- Les cristaux sont légèrement de type p ou de type n selon la nature des traces d'impuretés résiduelles
- Les jonctions détectrices sont réalisées en dopant par implantation ionique une des faces du cristal quasi-intrinsèque qui peut être réalisé dans de gros volumes
- Refroidissement nécessaire uniquement durant leur utilisation sous rayonnement pour réduire le bruit de fond thermique et pas pendant le stockage
- Fréquemment utilisé pour la spectrométrie γ

Photo et schéma d'un détecteur HPGe à azote liquide



Détecteur HPGe avec refroidissement par tube à gaz pulsé

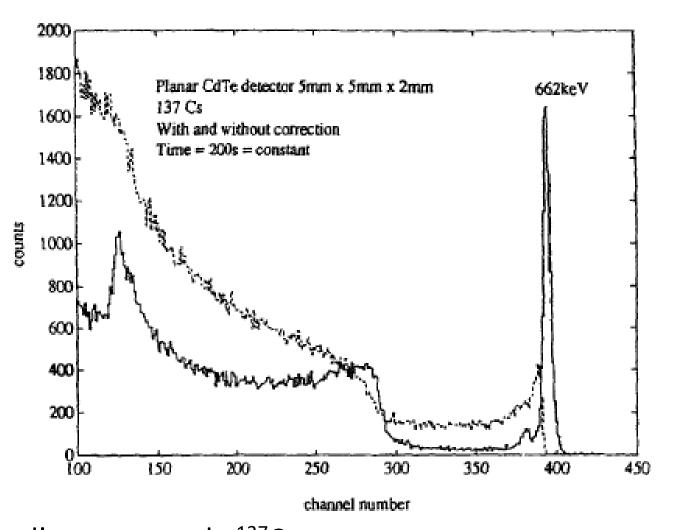

Détecteur HPGe *Falcon 5000* de Canberra avec refroidissement par tube à gaz pulsé (machine frigorifique fonctionnant en cycle fermé \rightarrow permet d'obtenir des sources froides permanentes (\approx 3-120 K) en utilisant le cycles thermodynamique de compression/détente du He gazeux)

Exemple de spectrométrie γ avec un HPGe (1)

Spectre γ d'une source de $^{137}\mathrm{Cs}$

Exemple de spectrométrie γ avec un HPGe (2)

Spectre γ d'une source de $^{60}\mathrm{Co}$


Autres semiconducteurs utilisés comme détecteurs

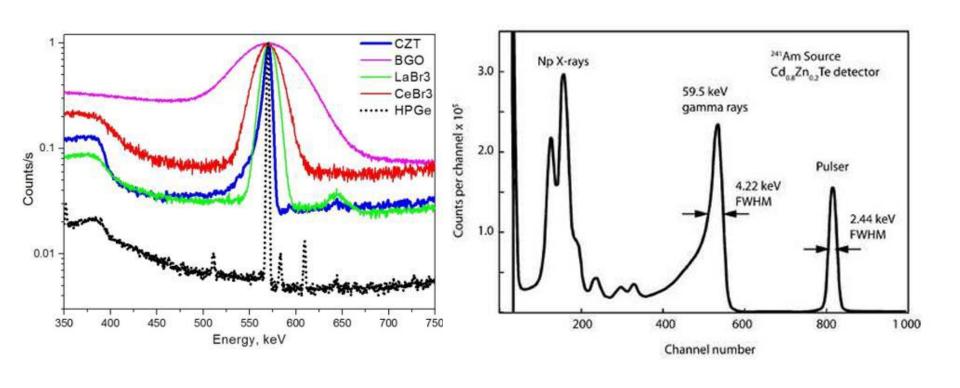
- Volonté d'utiliser des détecteurs de haute performance ne nécessitant pas un refroidissement → utilisation à température ambiante → peu de bruit de fond thermique → E_g « assez » grand
- Utilisation de matériau à Z élevé pour maximiser l'effet photoélectrique pour la détection des γ
- CdTe, Hgl₂, GaAs, GaSb, InSb,...

Détecteurs au tellurure de cadmium (CdTe)

- Z élevé (Z_{Cd} = 48 et Z_{Te} = 52) \rightarrow section efficace pour l'effet photoélectrique 5 \times plus grande que pour le Ge
- Bande interdite suffisamment large (E_g = 1.52 eV) \rightarrow utilisation à température ambiante
- Efficacité de collection des h⁺ faible → capture par des pièges → résolution en énergie moins bonne que pour Si ou Ge
- Piégeage aussi des e⁻ par des niveaux accepteurs profonds →
 accumulation de charges → polarisation variable dans le temps → →
 de la collection des charges et → de l'épaisseur de la région de
 déplétion → efficacité →
- Transport des charges difficile → volume limité
- Disponible commercialement mais cher
- Utilisé quand l'efficacité de détection de γ de haute énergie est primordiale

Exemple de spectrométrie γ avec un CdTe

Spectre γ d'une source de $^{137}\mathrm{Cs}$ Possibilité de compenser électroniquement le piégeage des h $^+$


Détecteurs à l'iodure mercurique (Hgl₂)

- Z élevé (Z_{Hg} = 80 et Z_I = 53) → section efficace pour l'effet photoélectrique 50 × plus grande que pour le Ge → 85% d'un faisceau de photons de 100 keV est absorbé dans 1 mm d'épaisseur de Hgl₂ (pour un même pourcentage → il faut 10 mm de Ge ou 2.6 mm de CdTe)
- Bande interdite large ($E_g = 2.13 \text{ eV}$) \rightarrow utilisation à température ambiante avec très peu de bruit de fond thermique
- Problèmes: mobilité des h⁺ faible, piégeage des h⁺, polarisation, dégradation de la surface dans le temps → résolution limitée, volume limité, efficacité ☐ dans le temps
- Prix élevé

Détecteur CZT (1)

- Utilisation du composé ternaire $Cd_{1-x}Zn_xTe$ (CZT) avec 0.04 < x < 0.2
- Gap en énergie qui varie entre 1.53 et 1.64 respectivement
- À température ambiante → très bonne résolution en énergie et grand volume possible
- MAIS 10 ans auparavant →
 - Pas d'effet de polarisation mais piégeage à cours terme des trous → pics asymétriques
 - Difficultés pour obtenir un cristal sans défaut (tels que inclusions métalliques, frontière de grains,...) → reproductibilité compliquée

Détecteur CZT (2)

Détecteur CZT (3)

- Actuellement → solution pour l'asymétrie → utilisation d'anodes coplanaires → le signal dépend uniquement du mouvement des électrons
- L'anode plate est remplacée par un ensemble de fines bandes parallèles connectées alternativement à deux amplificateurs différents → deux électrodes de lecture indépendantes
- Un ensemble de bandes (A) est porté à un potentiel positif légèrement supérieur à celui de l'autre ensemble de bandes (B)
 → 2 effets

Détecteur CZT (4)

- Effet 1 : les électrons ne se rassemblent que sur l'anode A → le mouvement des électrons à proximité des bandes induit la majeure partie du signal sur l'anode A uniquement
- Effet 2 : le mouvement des charges (trous en particulier) à grande distance du plan des bandes induit le même signal sur les anodes A et B
- La différence entre les signaux sur les deux anodes (A-B) ne dépend que du mouvement des électrons → le signal dû aux trous disparaît → l'asymétrie disparaît pour (A-B)
- Depuis → développement technologique → reproductibilité → cristaux entre 1 et 8 cm³ → très compact
- Le détecteur CZT sera le détecteur gamma dominant dans les prochaines années

Résumé des applications d'un détecteur semiconducteur

- Détecteurs au silicium (généralement SSB ou implantation) \rightarrow utilisés principalement pour la spectrométrie (ou la détection) des particules chargées (proton, α ,...) et pour la détermination des trajectoires de particules chargées
- Détecteur au germanium (généralement HPGe) \rightarrow utilisé principalement pour la détection et la spectrométrie de rayonnements γ
- Détecteur CZT \rightarrow détection et spectrométrie de rayonnements γ pour la médecine nucléaire