Chapitre 3: Interaction des électrons avec la matière

Contenu

- Pouvoir d'arrêt électronique
- Pouvoir d'arrêt nucléaire
- Collisions radiatives
- Effet Cherenkov
- Trajectoire des électrons

Considérations de base à propos des e⁻ et des e⁺

- Grands transferts d'énergie possibles
- Les positrons incidents peuvent transférer toute leur énergie à un électron de la cible en 1 seul choc $\leftrightarrow T_{max} = \gamma E = E$
- Les électron incidents sont indiscernables de ceux de la cible \rightarrow après une collision le plus énergétique est suivi (par convention) et $T_{max} = E/2$
- Grandes déviations angulaires possibles → trajectoire sinueuse
- e^{-}/e^{+} sont « rapidement » relativistes ($E_0 = m_e c^2 = 511$ keV)

Pouvoir d'arrêt électronique pour les e⁻ (1)

- Comme pour des ions incidents → distinction nécessaire entre collisions distantes ou proches → ou, de manière équivalente, entre collisions avec grande ou petite énergie transférée Q (Q₀, comme valeur « frontière »)
- Pour les collisions lointaines → traitement identique à la formule de Bethe →

$$-\frac{1}{\rho}\frac{dE_{elec}^l}{dx} = \frac{2\pi r_e^2 mc^2}{\beta^2}\frac{N_A}{M_u}\frac{Z}{A}\left[\ln\left(\frac{2mc^2\beta^2 Q}{(1-\beta^2)I}\right) - \beta^2\right]$$

• Pour les collisions proches \rightarrow traitement de Møller (1932) tenant compte des effets relativistes, des effets de spin et des effets d'échange (électrons indiscernables) avec $\tau = E/mc^2 \rightarrow$ $-\frac{1}{\rho} \frac{dE_{elec}^p}{dx} = \frac{2\pi r_e^2 mc^2}{\beta^2} \frac{N_A}{M_u} \frac{Z}{A} \frac{dQ}{Q^2}$ $\times \left[1 + \frac{Q^2}{(E-Q)^2} + \frac{\tau^2}{(\tau+1)^2} \left(\frac{Q}{E}\right)^2 - \frac{(2\tau-1)}{(\tau+1)^2} \frac{Q}{(E-Q)} \right]$

Pouvoir d'arrêt électronique pour les e⁻ (2)

 En combinant les résultats pour les collisions lointaines et proches et en incluant les corrections shell et de densité →

$$-\frac{1}{\rho}\frac{dE_{elec}}{dx} = \frac{4\pi r_e^2 mc^2}{\beta^2}\frac{N_A}{M_u}\frac{Z}{A}\left[\ln\left(\frac{E}{I}\right) + \ln\left(1 + \frac{\tau}{2}\right)^{1/2} + F^-\left(\tau\right) - \frac{\delta}{2} - \frac{C}{Z}\right]$$

avec

$$F^{-}(\tau) = \frac{1-\beta^2}{2} \left[1 + \frac{\tau^2}{8} - (2\tau + 1)\ln 2 \right]$$

 On remarque que le terme devant les crochets est le même que pour des ions Exemple de pouvoir d'arrêt électronique pour les e

e⁻ incidents sur de l'aluminium

www.nist.gov/pml/data/star/index.cfm

Pouvoir d'arrêt électronique pour les e⁻ dans ≠ matériaux

- $dE/dx \approx \text{constant pour } E > 1 \text{ MeV}$
- Écart faible entre les ≠ matériaux

Pouvoir d'arrêt électronique pour les e⁺

 Expression identique à celle des électrons avec F⁻ remplacé par F⁺ (tenant compte du fait que toute l'énergie cinétique peut être transférée en une seule collision): traitement de Bhabha →

$$-\frac{1}{\rho}\frac{dE_{elec}}{dx} = \frac{4\pi r_e^2 mc^2}{\beta^2}\frac{N_A}{M_u}\frac{Z}{A}\left[\ln\left(\frac{E}{I}\right) + \ln\left(1 + \frac{\tau}{2}\right)^{1/2} + F^+\left(\tau\right) - \frac{\delta}{2} - \frac{C}{Z}\right]$$

avec

$$F^{+}(\tau) = \ln 2 - \frac{\beta^2}{24} \left[23 + \frac{14}{\tau + 2} + \frac{10}{(\tau + 2)^2 + \frac{4}{(\tau + 2)^3}} \right]$$

Comparaison entre e⁻ et e⁺

Remarque sur l'effet de densité pour les e⁻ et les e⁺

- Pour un ion \rightarrow l'effet de densité devient significatif à des énergies élevées
- Pour un électron qui possède une masse beaucoup plus faible \rightarrow l'effet de densité se manifeste à des énergies beaucoup plus faibles (dépendance en la vitesse) \rightarrow existe pour des électrons émis lors de désintégrations nucléaires
- Étude complète réalisée par Sternheimer (1952) $\rightarrow \delta$ dépend de la composition et de la densité du matériau ainsi que de la vitesse de la particule via le paramètre $\chi \rightarrow$

$$\chi = \log \frac{p}{mc} = \log \beta \gamma_1$$

• On observe que $\delta \nearrow$ linéairement avec χ (pour $\chi > 1$), devient « conséquent » pour E > 511 keV (χ = 0.24) et que δ \searrow quand $Z \nearrow$ (matériaux à petit Z se polarisent plus efficacement) \rightarrow important pour matériaux biologiques

Effet de densité pour des e⁻ et des e⁺ (1)

Effet de densité pour des e⁻ et des e⁺ (2)

T (MeV)	Effect ^e (%)			
	С	Cu	Au	
0.1	0	0	0	
1.0	3	1.5	0.7	
5	9	7	5	
10	12	10	8	
50	20	18	15	

Polarization Effect for Electrons

^eDecrease in mass collision stopping power for condensed media vs. gases.

Effet de densité pour des e⁻ et des e⁺ (3)

Pouvoir d'arrêt restreint (transfert linéique d'énergie)

L_{Δ}: **Transfert linéique d'énergie** (LET) (ou Pouvoir d'arrêt restreint) \rightarrow

$$L_{\Delta} = \frac{dE_{\Delta}}{dx}$$
$$L_{\Delta} = \frac{dE_{elec}}{dx} - \frac{dE_{KE>\Delta}}{dx}$$

avec $dE_{\Delta} = dE_{elec}$ - $dE_{KE>\Delta}$ et $dE_{KE>\Delta}$: somme des énergies cinétiques des e⁻ secondaires (e⁻ δ) dont l'énergie cinétique > à l'énergie $\Delta \rightarrow dE_{\Delta}$ s'interprète comme l'énergie transférée localement

 L_{∞} : Pouvoir d'arrêt non-restreint $\rightarrow L_{\infty} = \frac{dE_{elec}}{dx}$

Collisions nucléaires pour les e⁻ et les e⁺

- Les collision avec les noyaux n'apportent aucune contribution au pouvoir d'arrêt (fréquence et perte trop faibles)
- Cependant elles expliquent en grande partie la trajectoire sinueuse des e^{\pm} dans la matière
- En général → nombreuses petites collisions (à faible déviation)
- Faible probabilité de grande déviation (jusqu'à 180°)
- Rétrodiffusion électronique possible → spectre d'*E* déposée dans le milieu prend la forme →

Collisions radiatives (1)

- Une particule chargée libre qui accélère (accélération positive ou négative) perd une partie de son énergie en émettant un rayonnement électromagnétique
- Rayonnement appelé rayonnement de freinage ou « Bremsstrahlung »
- Pour v ≪ c → la puissance rayonnée P est donnée par la formule de Larmor (voir cours d'électromagnétisme) →

$$P = \frac{2}{3} \frac{e_1^2}{4\pi\epsilon_0 c^3} a^2$$

avec ϵ_0 la permittivité du vide, e_1 la charge de la particule et a, son accélération

Collisions radiatives (2)

Puissance rayonnée ∝ au carré de l'accélération → on considère l'interaction coulombienne entre une particule incidente 1 (énergie *E*, charge *z*₁*e* et masse *m*₁) et une particule 2 (charge *Z*₂*e*) de la cible →

Caractéristiques du Bremsstrahlung

- P ∝ m₁⁻² → processus radiatif négligeable pour des ions incidents
 → à considérer pour des e⁻ et des e⁺ incidents
- L'accélération peut se produire dans le champ du noyau (n) ou d'un électron atomique (e) → plus faible car charge = e → mais comme Z₂ électrons présents → la section efficace totale sera multipliée par Z₂ (effet global) → au final facteur Z₂ de différence
- On note le pouvoir d'arrêt massique radiatif sous la forme \rightarrow

$$-\frac{1}{\rho}\frac{dE_{rad}}{dx} = \frac{N_A}{M_u A} \left[\int h\nu \frac{d\sigma_n}{d(h\nu)} d(h\nu) + Z_2 \int h\nu \frac{d\sigma_e}{d(h\nu)} d(h\nu) \right]$$

avec $d\sigma_{n,e}/d(h\nu)$, les sections efficaces différentielles pour l'émission d'un photon d'énergie $h\nu$ dues aux interactions avec un noyau ou un électron atomique

Caractéristiques du Bremsstrahlung pour des e⁻(1)

- Pour une interaction électron-ion → spectre d'émission en énergie du photon continu entre 0 et *E*
- Pour une interaction électron-électron → spectre d'émission en énergie du photon continu entre 0 et E' avec (conservation énergie + indiscernabilité + corrections relativistes) →

$$E' = mc^{2}E[E + 2mc^{2} - \beta(E + mc^{2})]^{-1}$$

 Généralement on introduit les sections efficaces de perte d'énergie radiatives adimensionnelles suivantes →

$$\Phi_{rad,n} = (\alpha r_e^2 Z_2^2)^{-1} \int_0^E (h\nu/E_{tot}) \frac{d\sigma_n}{d(h\nu)} dh\nu$$
$$\Phi_{rad,e} = (\alpha r_e^2)^{-1} \int_0^{E'} (h\nu/E_{tot}) \frac{d\sigma_e}{d(h\nu)} dh\nu$$

Caractéristiques du Bremsstrahlung pour des e⁻ (2)

- On a introduit dans les expressions précédentes la constante de structure fine $\alpha = 1/137.036$ et $E_{tot} = E + mc^2$, l'énergie totale de l'électron
- Avec ces notations → le pouvoir d'arrêt massique radiatif devient →

$$-\frac{1}{\rho}\frac{dE_{rad}}{dx} = \frac{N_A}{M_u A}\alpha r_e^2 E_{tot} Z_2^2 \Phi_{rad,n} [1 + (1/Z)\Phi_{rad,e}/\Phi_{rad,n}]$$

Habituellement → Φ_{rad,e}/Φ_{rad,n} est supposé égal à 1, ce qui n'est vrai qu'à hautes énergies → pour E ↘ → on peut montrer qu'il tend vers 0 (absence de moment dipolaire électrique)

Rapport $\Phi_{rad,e}/\Phi_{rad,n}$

 $\Phi_{rad,e}/\Phi_{rad,n}$ dépend peu de Z

Détermination de $\Phi_{rad,n}$

- Calcul complexe → approximations ≠ pour les grandes (E > 50 MeV) et faibles (E < 2 MeV) énergies → entre les 2 → interpolation
- De plus nécessité de considérer l'écrantage du noyau par les électrons atomiques
- Au final obtention de $\Phi_{rad,n}$ comme une fonction lentement variable de E et Z_2
- Pour $E < 2 \text{ MeV} \rightarrow \Phi_{rad,n} \approx 16/3$ (qui peut être obtenu par un calcul non relativiste) \rightarrow section efficace constante
- Pour *E* grand $\rightarrow \Phi_{rad,n} \nearrow$ quand *E* \nearrow et tend vers \rightarrow

$$\Phi_{rad,n} \to 4\left(\frac{1}{18} + \ln 183Z_2^{-1/3}\right)$$

Exemples de $\Phi_{\rm rad,n}$ pour différents matériaux

23

Évolution de $\Phi_{rad,n}$ asymptotique en fonction de Z

Section efficaces différentielles

- On peut montrer que hνdσ_n/d(hν) est à peu près indépendant de hν pour les faible énergies de l'électron incident → densité d'énergie rayonnée constante
- Pour les énergies plus élevées de l'électron incident $\rightarrow h\nu d\sigma_n/d(h\nu)$ \searrow quand $h\nu \nearrow$
- $d\sigma_n/d(\Omega)$ présente un maximum \perp à la direction du faisceau incident pour les faibles énergies
- Pour les énergies élevées → le maximum se déplace progressivement vers la direction du faisceau incident

Densité d'énergie rayonnée pour différentes cibles minces

Bremsstrahlung: cible mince \leftrightarrow cible épaisse (1)

- Dans une cible mince, le rayonnement de freinage est l'émission d'un photon lors d'une seule collision d'un électron avec un atome → processus décrit par la section efficace différentielle
- Le rayonnement de freinage dans une cible épaisse résulte d'un processus d'interaction multiple de l'électron qui perd une partie importante ou la totalité de son énergie dans la cible
- La densité d'énergie rayonnée dans une cible épaisse est donc la somme des densités d'énergie rayonnée dans une cible mince à différentes énergies

Bremsstrahlung: cible mince \leftrightarrow cible épaisse (2)

28

Caractéristiques du Bremsstrahlung pour des e⁺

- Pour des e⁺ incidents $\rightarrow (\Phi_{rad,n})^+ \approx (\Phi_{rad,n})^-$ pour des énergies élevées mais pour des énergies faibles $\rightarrow (\Phi_{rad,n})^+ < (\Phi_{rad,n})^-$ (à nouveau absence de moment dipolaire électrique)
- De plus pour *E* grand $\rightarrow (\Phi_{rad,e})^+ \approx (\Phi_{rad,e})^-$ mais pour *E* faible $\rightarrow (\Phi_{rad,e})^+ > (\Phi_{rad,e})^-$
- Finalement → pouvoir d'arrêt radiatif plus faible pour des e⁺ que pour des e⁻ à faibles énergies et à peu près égaux aux énergies élevées

	$(T/Z^2)/MeV$	$[\phi_{\mathrm{rad,n}}]^+/[\phi_{\mathrm{rad,n}}]^-$	
	1×10^{-7}	0.014	
· ·	2×10^{-7}	0.030	
	5×10^{-7}	0.059	
	1×10^{-6}	0.087	
	1.18×10^{-6}	0.094*	
	2×10^{-6}	0.119	
	$5 imes 10^{-6}$	0.166	
•	$5.91 imes 10^{-6}$	0.175^{*}	
	1×10^{-5}	0.206	
	2×10^{-5}	0.253	
	5×10^{-5}	0.335	
	5.91×10^{-5}	0.359*	
	1×10^{-4}	0.415	
	$1.56 imes 10^{-4}$	0.465*	
	2×10^{-4}	0.507	
	5×10^{-4}	0.640	
	$7.81 imes 10^{-4}$	0.708*	
	1×10^{-3}	0.740	
	2×10^{-3}	0.816	
	5×10^{-3}	0.887	
	$7.81 imes 10^{-3}$	0.916*	
	1×10^{-2}	0.928	
	2×10^{-2}	0.962	
	5×10^{-2}	0.991	
	1×10^{-1}	1.000	

4.6

 $\Phi_{\operatorname{rad},n}$ pour des e⁻ et des e⁺ incidents

30

•

Remarque sur le pouvoir d'arrêt radiatif

L'électron incident peut céder une part importante de son énergie en une seule interaction radiative → l'énergie perdue par un électron en particulier peut être très différente de celle calculée à partir du pouvoir d'arrêt

Pouvoir d'arrêt total pour les électrons

- Le pouvoir d'arrêt total est la somme des pouvoirs d'arrêt électronique et radiatif (pouvoir d'arrêt nucléaire négligeable)
- Comme $dE_{elec}/dx \rightarrow$ constante quand $E \nearrow$ et que $dE_{rad}/dx \propto E$ \rightarrow quand $E \nearrow$ les perte radiatives deviennent dominantes
- Puisque $dE_{elec}/dx \propto Z/A$ et $dE_{rad}/dx \propto Z^2/A \rightarrow$ le pouvoir d'arrêt radiatif augmente plus vite avec Z que le pouvoir d'arrêt électronique
- L'énergie cinétique critique E_c à laquelle les deux pouvoirs d'arrêt sont égaux ↘ lorsque Z ↗
- En fait $1/E_c$ dépend linéairement de $Z \rightarrow$ on a pour E_c en MeV:

$$E_c = \frac{817}{Z + 1.97}$$

Pouvoir d'arrêt total pour les électrons: Exemple 1

http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

Pouvoir d'arrêt total pour les électrons: Exemple 2

Évolution de E_c en fonction de Z

Rendement de rayonnement (1)

- Le rendement de rayonnement Y(E₀) d'un électron d'énergie cinétique initiale E₀ est la fraction de l'énergie qui est émise sous la forme de photons lorsque l'électron ralentit complètement dans un matériau
- La fraction *y*(*E*) de l'énergie perdue par unité de distance qui se retrouve sous forme de photons est donnée par

$$y(E) = \frac{dE_{rad}/dx}{dE_{tot}/dx} = \frac{dE_{rad}}{dE_{tot}}$$

 Ainsi Y(E₀) pour un électron d'énergie initiale E₀ est la valeur moyenne de y(E) pour E variant de E₀ à 0

$$Y(E_0) = \frac{\int_{parcours} dE_{rad}}{E_0} = \frac{1}{E_0} \int_0^{E_0} y(E) dE$$

Rendement de rayonnement (2)

- Le rendement de rayonnement augmente avec l'énergie et avec Z
- À faible énergie → le rendement est très faible → l'essentiel de l'énergie de l'électron est donc dissipée sous forme de chaleur → il faut refroidir la cible

Rendement de rayonnement: Exemples

Electron energy (MeV)

Effet Cherenkov

- Lorsqu'une particule chargée traverse un milieu plus vite que la vitesse de la lumière dans ce milieu (*c/n* avec *n* l'indice de réfraction du milieu) → émission d'un rayonnement électromagnétique
- Phénomène analogue à l'onde de choc produite dans l'air aux vitesses supersoniques
- La particule provoque une polarisation du milieu → pour des vitesses de la particule < c/n → les dipôles sont distribués de manière symétrique autour de la trajectoire de la particule et en particulier par rapport au plan ⊥ à la trajectoire → moment dipolaire net nul → lors du retour à un état non-polarisé → perturbations électromagnétiques (se propageant à la vitesse c/n) aléatoires qui s'annihilent
- Pour des vitesses de la particule > c/n → la vitesse d'établissement des dipôles < à la vitesse de la particule → asymétrie par rapport au plan ⊥ à la trajectoire → moment dipolaire net non-nul → les perturbations interfèrent constructivement → apparition d'une onde

Polarisation du milieu par une particule chargée

Construction d'Huygens pour l'effet Cherenkov

Construction d'Huygens →

•

• Direction d'émission $\rightarrow \cos \Theta_c = \frac{(c/n)t}{vt} = \frac{c}{nv} = \frac{1}{n\beta}$

Remarques sur l'effet Cherenkov

- L'équation précédente implique une vitesse minimale pour la particule $\rightarrow v_{min} = c/n$ (et par conséquence $\rightarrow n > 1$)
- Avec $T = E mc^2 = (\gamma 1)mc^2 \rightarrow$ $T_{min} = mc^2 \left(\frac{n}{\sqrt{n^2 - 1}} - 1\right)$
- Pour un électron dans l'eau $\rightarrow T_{min} = 264 \text{ keV}$
- Pour un proton dans l'eau $\rightarrow T_{min} = 486 \text{ MeV}$
- Effet Cherenkov uniquement pour des électrons incidents pour les énergies considérées ici
- L'indice de réfraction varie en fonction de la longueur d'onde → comme il faut n(λ) > 1 → seules les longueurs d'onde remplissant cette condition peuvent apparaître dans le spectre d'émission → pas de rayons X

Indice de réfraction pour de l'eau

Maximum dans le bleu

Pour que l'effet Cherenkov soit perceptible \rightarrow le matériau doit être transparent dans le domaine visible

Contribution à la perte d'énergie

Nombre de photons émis par unité de longueur et de fréquence →

$$\frac{d^2N}{d\nu dx} = \frac{2\pi\alpha z^2}{c}\sin^2\Theta_c$$

• Pour un électron (z = -1) et une fenêtre optique entre 350 nm et 500 nm (et n indépendant de λ dans cette fenêtre) \rightarrow

$$\frac{dN}{dx} = 390\sin^2\Theta_c(\mathrm{cm}^{-1})$$

 Très petit nombre de photons → aucune contribution à la perte d'énergie

Effet Cherenkov: Exemple

Combustible refroidissant dans un bassin d'eau au complexe nucléaire de La Hague

Trajectoire des électrons (1)

 Le notion de parcours des électrons n'est pas aussi clairement définie que pour des ions → la trajectoire d'un électron ne peut pas être assimilée à une droite car l'électron peut subir de grandes déviations angulaires (lors des collisions électroniques et nucléaires)

Trajectoire des électrons (2)

- De plus l'électron peut perdre une fraction importante de son énergie lors d'un seul choc (→ 50%) → la profondeur de pénétration et la longueur de la trajectoire sont des variables aléatoires dont le distributions sont relativement larges → straggling important
- Dans les bases de données → tabulation du parcours CSDA, R_{CSDA} → un écart important peut exister entre R_{CSDA} et le parcours réel d'un particule donnée
- Le facteur de détour peut aussi différer fortement de 1 (≈ 0.9 pour des matériaux à faible Z mais il peut atteindre ≈ 0.5 pour des Z élevés)

Profondeurs de pénétration et longueur de trajectoire: Exemple

Distributions mesurées des profondeurs de pénétration et des longueurs de trajectoire d'un électron de 800 keV dans l'eau

Facteur de détour: Exemple

T / MeV	Ζ	$d_{\rm max} \ /{\rm mg} \cdot {\rm cm}^{-2}$	$\mathbb{R}_{\rm csda} \ /mg \cdot cm^{-2}$	$d_{\rm max}/\mathbb{R}_{\rm csda}$
0.05	13(Al)	5.05	5.71	0.88
0.10	13(Al)	15.44	18.64	0.83
0.15	13(Al)	31.0	36.4	0.85
0.05	29(Cu)	5.42	6.90	0.79
0.10	29(Cu)	17.1	22.1	0.77
0.15	29(Cu)	34.0	42.8	0.79
0.05	47(Ag)	5.04	7.99	0.63
0.10	47(Ag)	15.6	25.2	0.62
0.15	47(Ag)	30.2	48.4	0.62
0.05	79(Au)	4.73	9.88	0.48
0.10	79(Au)	14.3	30.3	0.47
0.15	79(Au)	27.6	57.5	0.48

Parcours CSDA: Exemples (1)

- Pour un électron de 1 MeV dans du plomb $\rightarrow R_{CSDA} = 0.7$ mm
- Pour un électron de 1 MeV dans du silicium $\rightarrow R_{CSDA} = 2$ mm
- Pour un électron de 1 MeV dans de l'air $\rightarrow R_{CSDA} = 4076$ mm

Parcours CSDA: Exemples (2)

Électron incident sur une cible d'aluminium (ρ =2.70 g/cm³)

http://www.nist.gov/pml/data/star/index.cfm

Parcours CSDA: Exemples (3)

Comme pour les ions \rightarrow on exprime $R_{CSDA} \times \rho \rightarrow \rho R_{CSDA}$ (quasi) indépendant du matériau, surtout pour les faibles énergies

Formule empirique pour le parcours

Pour des matériaux à Z faible \rightarrow on peut considérer la formule empirique (avec ρR_{CSDA} en gcm⁻² et E en MeV) \rightarrow

$$\rho R_{CSDA} = \begin{cases} 0.412 E^{1.27 - 0.0954 \ln E} & \text{pour } 0.01 < E < 2.5 \\ 0.530 E - 0.106 & \text{pour } E > 2.5 \end{cases}$$

Transmission des électrons

Forme complètement \neq de celle obtenue pour des ions (forme rectangulaire) \rightarrow

Transmission des électrons β (1)

- Lors d'une désintégration $\beta \rightarrow \text{le }\beta$ et un neutrino se partagent l'énergie disponible \rightarrow spectre en énergie du β continu entre 0 et $E_{max} \rightarrow \text{courbe} \ll \text{en cloche} \gg$
- Lorsque l'on observe l'atténuation de ces β → allure ~ à une exponentielle décroissante → on approxime le rapport de l'intensité transmise *I* sur l'intensité initiale *I*₀ par →

$$\frac{I}{I_0} = \exp\left(-n\rho d\right)$$

• Avec ρ , la masse volumique du matériau, d, son épaisseur et n, le coefficient d'absorption càd une constante dépendant de E_{max} (et faiblement du matériau) \rightarrow formule empirique pour n (m²kg⁻¹) \rightarrow

$$n = 1.7 E_{max}^{-1.14}$$

Transmission des électrons β (2)

Loi approximative \rightarrow fausse pour une épaisseur du matériau \sim au parcours des électrons d'énergie E_{max}

Annihilation du positron

Annihilation du e⁺ après la perte de toute son énergie cinétique (en 1^{ère} approximation \rightarrow si non: annihilation « en vol ») \rightarrow différents processus sont possibles \rightarrow le plus probable: annihilation avec un e⁻ au repos avec émission de 2 γ de 511 keV chacun (conservation de l'énergie et de la quantité de mouvement)

Exemple: Pouvoir d'arrêt du muon (« électron lourd »)

