Chapter IX: Detectors based on scintillation

Contents

- Introduction
- Organic scintillators
- Inorganic crystals
- Photomultipliers
- Spectrometry γ with NaI(TI)

Introduction

- When ionizing radiation interacts with matter \rightarrow a large number of molecules are excited or ionized
- When these molecules return to the ground state \rightarrow possible creation of luminescence centers (light emission point during e-h⁺ recombination) \rightarrow possible emission of photons in the visible or near to the visible energy range \rightarrow radioluminescence, luminescence or scintillation
- The number of emitted photons $N_{h\nu} \propto E_{abs}$ in the medium
- One of the most widely used particle detection devices are based on this principle: scintillation detectors or photoscintillators
- Emitted light is converted into an electrical pulse by photomultiplier tube or photodiode

Luminescence

3 types of Luminescence:

- 1. Fluorescence: very short lifetime of the luminescence center \rightarrow light emission occurs "immediately" after absorption (more precisely: $< 10^{-8}$ s, i.e. time for atomic transition)
- 2. Phosphorescence: light emission is delayed because excited state is metastable (time between absorption and emission can be from μ s to days, months)
- 3. Delayed fluorescence: a center of phosphorescence can be transformed into a fluorescence center following an external excitation \rightarrow "normal" fluorescence but after a much longer time

Properties of a "good" scintillator

- The conversion of kinetic energy of the ionizing radiation into detectable light should have high efficiency
- The amount of light emitted should be proportional to the energy deposited by the ionizing particle
- Material should be transparent to the wavelength of its own scintillation light
- The decay time of the induced luminescence should be little or zero
- The light pulses should be as short as possible
- The refractive index of the material should preferably be close to 1.5 (*n* of glass) to permit efficient coupling of the scintillation light to a photomultiplier tube or other light sensor in glass
- The material should be chemically and mechanically stable, not too difficult to produce and not too expensive

Types of scintillators

- No material shows all these properties \rightarrow for a particular application: compromise between luminescence properties and those required by application
- Moreover, dimensions of scintillator depends on the type of radiation (larger dimensions for γ rays)
- Two important "families" of scintillators:
	- 1. Organic scintillators (crystal, liquid, plastic, gas) principally composed of H, C and O \rightarrow molecular fluorescence
	- 2. Inorganic scintillators (crystal, glass, gas) \rightarrow crystalline fluorescence
- A third type exists but rarely used \rightarrow rare gases \rightarrow atomic fluorescence

Organic scintillator: example of benzene (1)

- Most of organic scintillators are constituted of molecules with delocalized electrons \Rightarrow example of benzene (C₆H₆) which has an hexagonal form
- The σ e⁻ are on localized orbitals and bind C and H atoms
- The 6 π e are delocalized on orbitals which are on both sides of the molecule plane \rightarrow They can have a spin = 0 (singlet: S) or a spin = 1 (triplet: T) \rightarrow we note their electronic state by a first index and their vibration state by a second index
- The energy difference between the electronic states S_0 and S_1 is \approx 3-4 eV
- The energy difference between the vibration states is ≈ 0.15 eV
- At room temperature \rightarrow rotation states are ignored because their energy difference is weak
- At room temperature \rightarrow all the e⁻ are in the fundamental state S₀₀ (the energy differences are quite larger than 0.025 eV)

Organic scintillator: example of benzene (2)

Scintillation mechanisms : Fluorescence

- 1. An ionizing particle crosses the scintillator and produces ionizations and excitations \rightarrow the excitations of e^- in singlet states are at the origin of the fluorescence while ionizations does not give rise to a light emission \rightarrow can be responsible of nonlinear effects
- 2. After the absorption of energy \rightarrow molecule in an excited electronic state
- 3. Very quickly (\approx ps) high level electronic states decay without photon emission (« radiationless internal conversion ») \rightarrow molecule in the state S₁
- 4. The transitions between the vibrational states of one band are radiationless \rightarrow dissipation of the energy as heat \rightarrow the molecule reaches its thermal equilibrium \rightarrow S₁₀ state (after time \approx ps)
- 5. Then decay (dipolar electric transition) to S_{0i} state with photon emission (with t \approx ns) \rightarrow fluorescence
- 6. Finally radiationless transition \rightarrow S₀₀

Scintillation mechanisms: Phosphorescence

- For triplet states \rightarrow same process \rightarrow molecules are finally in the T_1 triplet state (either directly during the energy absorption either indirectly from the S_1 state (« inter-system crossing »)
- The transitions from T_1 to S_0 are strongly forbidden due to selection rules of multipolar transitions (spin difference) but possible
- The lifetime of the T_1 state is thus long (\approx 1 ms in this case \rightarrow it can be still longer) \rightarrow delayed photons emission \rightarrow phosphorescence
- The T energy levels \lt than S levels \Rightarrow phosphorescence wavelength > fluorescence wavelength

Fluorescence and phosphorescence spectra

Luminescence spectrum of benzene (excitation at 255 nm for 77 K) \rightarrow blue: normal emission \leftrightarrow red: phosphorescence spectrum measured with a delay of 5 ms

Scintillation mechanisms: Delayed fluorescence

- In the T₁₀ metastable state \rightarrow molecules can be excited to S₁₀ state due to a controlled external stimulus \rightarrow delayed fluorescence
- Thermal stimulation \rightarrow application: thermoluminescent dosimeters (TLD)
- Optical stimulation (UV, visible, IR) \rightarrow application: optically stimulated luminescence dosimeters (OSL)

Properties of organic scintillators

- Absorption end emission spectra
- Light response
- Time response
- Types of scintillators
- Applications of organic scintillators

Absorption and emission spectra for organic scintillators

- Energy between S_{10} and S_{0i} < energy between S_{00} and $S_{1i} \rightarrow$ no (or little) superposing of absorption and emission spectra (Stokes shift)
- A scintillator is thus quasi transparent to its own luminescence light \leftrightarrow only little self-absorption of the fluorescence

Light response of an organic scintillator (1)

- Only a small fraction of the kinetic energy lost by the incident radiation in the scintillator is converted into fluorescence energy (i.e. into photons) \rightarrow the remaining is radiationless dissipated \rightarrow principally into heat (vibrations of the lattice)
- This energy emitted by fluorescence is called the light response of the scintillator, $L \rightarrow$

$$
L=E_{h\nu}=\langle N_{h\nu}\rangle\langle h\nu\rangle
$$

with $\langle N_{h\nu} \rangle$ the mean number of photons emitted and $\langle h\nu \rangle$ their mean energy

• We define the intrinsic efficiency of the scintillator as the fraction of energy lost by the ionizing particle (E_{abc}) which is converted into light energy \rightarrow

$$
S = \frac{L}{E_{abs}}
$$

Light response of an organic scintillator (2)

- Generally \rightarrow S is small (\approx 1-2%)
- We have thus the mean energy lost *W* by the particle for each emitted photon \rightarrow

$$
W = \frac{E_{abs}}{\langle N_{h\nu} \rangle} = \frac{\langle h\nu \rangle}{S}
$$

- With $\langle h\nu \rangle \approx 2$ -3 eV \rightarrow W ≈ 100 eV
- S and W strongly depend on the type of incident radiation and sometimes of its energy

Light response of an organic scintillator (3)

- Thus we have \rightarrow *L = SE*_{abs}
- For particles with small ionization density (electrons with *E* « not too small » ($E > 125$ keV) which can be direct e^- or e^- produced by γ) \rightarrow the distance between 2 successive collisions is large compared to the distance entre 2 neighbouring molecules \rightarrow the interaction between 2 luminescent sites is thus weak and the response is linear \rightarrow *S* is independent on E_{obs}
- The heavy particles (proton, α ,...) have a higher ionization and excitation density \rightarrow the sites are closer and can interact $\rightarrow \rightarrow$ of the light emission \rightarrow *S* is dependent on E_{abs} \rightarrow non-linearity (moreover \rightarrow if the ionization density more $\lambda \rightarrow$ the limit of the density of the luminescence centers is reached \rightarrow supplementary ↘ of the response)

Light response of an organic scintillator (4)

Response *L* for anthracene $(C_{14}H_{10})$ 19

Differential light response of an organic scintillator (1)

- The differential light response of a scintillator *dL/dx* is defined as the fluorescent energy *dL* emitted per unit of distance travelled by the ionizing radiation
- We can wrtite \rightarrow

$$
\frac{dL}{dx} = S \frac{dE_{abs}}{dx}
$$

with *dEabs/dx* the stopping force

• For a small stopping force \rightarrow the ionizing density is weak \rightarrow S is constant

Differential light response of an organic scintillator (2)

- In a general way \rightarrow the differential light response follows the law of Birks
- We suppose that the ionization and excitation densities are proportional to the stopping force \rightarrow = B dE_{ab}/dx
- We introduce the quenching parameter (or the « ionization quenching ») *k* which is the proportional factor between the fraction of « vanishing » luminescence centers and the ionization density
- Without quenching we have \rightarrow

$$
\frac{dL}{dx} = S_n \frac{dE_{abs}}{dx}
$$

with S_n the normal efficiency of the scintillator assumed independent on the energy 21

Differential light response of an organic scintillator (3)

By considering the probability of quenching \rightarrow we obtain the formula of Birks \rightarrow

$$
\frac{dL}{dx} = \frac{S_n(dE_{abs}/dx)}{1 + kB(dE_{abs}/dx)}
$$

- For small $dE_{ab}/dx \rightarrow$ we find again the expression with neglected quenching
- For large $dE_{ab}/dx \rightarrow$

$$
\frac{dL}{dx} = \frac{S_n}{kB}
$$

• The *kB* parameter is considered as an adjustable parameter allowing a good agreement between theory and experiment $_{22}$

Differential light response of an organic scintillator (4)

Differential light response of anthracene

Time response of an organic scintillator (1)

• The variation of the light intensity as a function of time depends on the population time τ , of the luminescence centers and on the lifetime τ of these centers (expression of Hyman) \rightarrow

$$
I = I_0 \left(e^{-t/\tau} - e^{-t/\tau_1} \right)
$$

- For prompt plastic scintillators $\tau_i < \tau \rightarrow$ example NE111 (« Nuclear Entreprise Technology ») $\rightarrow \tau_1 = 0.2$ ns and $\tau = 1.7$ ns
- Big advantage of organic scintillators \rightarrow very prompt response
- We often ignore the population time of the luminescence center \rightarrow on the other hand at ambient $T \rightarrow \infty$ we cannot neglect the delayed fluorescence due to thermal stimulation

Time response of an organic scintillator (2)

• With τ_r the lifetime of the delayed centers \rightarrow

$$
I = Ae^{-t/\tau} + Be^{-t/\tau_r}
$$

- The 2 terms of this expression are called the prompt and slow components of the scintillation $\rightarrow \tau_r > \tau$
- The slow component implies a long-lived tail in the decay (example \rightarrow stilbene (C₁₄H₁₂) excited by X-rays: τ = 6.2 ns and τ_r = 370 ns)
- τ_r depends on the type of incident particle \leftrightarrow on ionization quenching \leftrightarrow on the ionization density
- The process of ionization quenching reduces the number of prompt luminescence centers \rightarrow relative λ of the importance of the delayed luminescence

Time response of an organic scintillator (3)

Normalized time responses of the stilbene \rightarrow possible discrimination as a function of the shape of the pulse 26

Types of organic scintillators (1)

- **1. Pure Crystal**: principally 2 materials \rightarrow anthracene (the largest scintillation efficiency among all organic scintillators) and stilbene (discrimination as a function of the pulse shape); both are fragilous; a large size is difficult to obtain
- **2. Liquid organic solution**: organic scintillator (ex: PBD) dissolved inside an organic solvent (ex: polystyrene) \rightarrow can have a very important volume; shapes are varied; they are resistant to intense radiations (solids have a structure which can be damaged); they can be mixed to a radioactive solution (liquid scintillation) \rightarrow the radiation directly crosses the scintillator \rightarrow large counting efficiency; possible presence dissolved oxygen \rightarrow decrease of the efficiency of the scintillator; cheap

Types of organic scintillators (2)

- **3. Plastic scintillators** : organic scintillator dissolved into a solvent then polymerization \rightarrow equivalent to a solid solution (example \rightarrow styrene (C₈H₈) \rightarrow polystyrene); ease of fabrication; varied shapes and volumes (very large or very thin \rightarrow thin films); cheap \rightarrow very often used
- **4. « Loaded » organic scintillators**: due to their small $Z \rightarrow$ virtually no photoelectric effect for $\gamma \rightarrow$ not adapted to γ spectroscopy \rightarrow addition of lead or tin \rightarrow enormous decrease of the scintillator efficiency; cheap; rare

Applications of organic scintillators

- 1. Easily manufactured with varied shapes and volumes and cheap
- 2. Prompt \rightarrow lifetime of the fluorescence centers is very small (\approx 2-4 ns) \rightarrow used for measurement of very small nuclear lifetimes
- 3. Approximatively linear response for electrons \rightarrow used for β spectroscopy
- 4. As liquids \rightarrow used for the measurement of small activities (³H, ¹⁴C sources) \rightarrow detection efficiency close to 1 for liquid scintillation
- 5. Large proportion of hydrogen \rightarrow good detector for fast neutrons (see chapter on neutrons detection)
- 6. Weak resolution
- 7. Small Z \rightarrow not adapted for γ spectroscopy

Inorganic scintillators

- Description of inorganic scintillators
- Properties of inorganic scintillators
- NaI(Tl)
- Other inorganic scintillators

Description of inorganic scintillators (1)

- Scintillation mechanism depends on the crystal band structure
- In a pure crystal \rightarrow absorption of the energy of an incident radiation \rightarrow production of a large number of e-h⁺ pairs \rightarrow the e are elevated into the conduction band \rightarrow then transition to the valence band with emission of a photon \rightarrow inefficient process and generally too high energy for the photon \rightarrow not in the visible range
- Solution \rightarrow addition of impurities (activators)

Description of inorganic scintillators (2)

- Addition of impurities \rightarrow creation of special sites in the lattice \rightarrow energy band structure modified \rightarrow energy states within the forbidden $gap \rightarrow$ the electrons de-excite through these sites called luminescence centers or recombination centers
- Emitted photons have a smaller energy \rightarrow visible
- Efficiency of the detector \bar{Z}

Mechanisms of scintillation (1)

- After the excitation \rightarrow the h⁺ drifts to an activation site and is trapped \rightarrow creation of a recombination center
- After the excitation \rightarrow the e-drifts and \neq process are possible \rightarrow
	- 1. The e⁻ drifts to a luminescence center \rightarrow the captured e⁻ undergoes a transition with photon emission
	- 2. The e⁻ drifts to an impurity site for which a transition to the ground state is forbidden \rightarrow trap \rightarrow if addition of energy (thermal or optical) \rightarrow transition to the conduction band and capture by a luminescence center \rightarrow photon after a longer time (delayed fluorescence)
	- 3. The e is captured by a quenching center = center for which the de-excitation is radiationless \rightarrow loss mechanism for the conversion of energy into scintillation light
	- 4. Joint migration of the e⁻ and h⁺ \rightarrow formation of a bound state (e⁻-h⁺ pair) \rightarrow exciton \rightarrow drift of the exciton through the crystal to an impurity center \rightarrow photon emission 33

Mechanisms of scintillation (2)

Proprerties of inorganic scintillators (1)

- Typical lifetime of the recombination centers \approx 50 -500 ns \rightarrow 2 to 3 orders of magnitude slower than organic scintillators (with a few exceptions) \rightarrow time evolution described by 1 or 2 exponentials
- Consequence of the luminescence through the activators \rightarrow liberated energy during luminescence < energy needed to create an e-h⁺ pair \rightarrow no (or little) superposing of emission and absorption spectra \rightarrow inorganic scintillator transparent to its scintillation light (without impurity \rightarrow excitation energy = emitted energy \rightarrow superposing of the 2 spectra \rightarrow autoabsorption \rightarrow to avoid)

To make full use of the scintillation light \rightarrow the emission spectrum should fall near the wavelength region of maximum sensitivity of the device used to detect light (ex PM in the figure) 36
Proprerties of inorganic scintillators (2)

- High density and $Z \rightarrow h$ high stopping force
- High Z \rightarrow Extremely suitable for γ -rays spectroscopy
- Generally \rightarrow high luminescence efficiency
- Disadvantage (generally) \rightarrow highly hygroscopic (absorption of air humidity) \rightarrow protection against moisture needed
- Particles with high ionization density (proton, α ,...) have a higher quenching probability (as for organic scintillators) \rightarrow presence of non-linearities
- Fano factor $\simeq 1$
- Large variations of the luminescence efficiency as a function of temperature

Temperature dependence

- At small $T \rightarrow$ the e⁻ and/or the h⁺ are trapped into shallow traps
- When T \overline{Z} \rightarrow the carriers are liberated and can reach luminescence centers
- When T still \overline{Z} \rightarrow thermal quenching \rightarrow \overline{Z} of interactions between molecules and between sites

e - spectroscopy with a scintillator

- The response of a scintillator (organic or inorganic) to a monoenergetic e - beam shows a total absorption peak (if the size of the detector is larger than the e⁻ range) + a queue at small energies due to backscattered e (e which emerge from the detector by the entrance surface after loosing a part of their energy)
- The effect of backscattering strongly depends on the Z of the medium \rightarrow Z \rightarrow \rightarrow backscattering probability \rightarrow
- Moreover \rightarrow Z \rightarrow \rightarrow Bremsstrahlung \rightarrow \rightarrow energy escaping from the detector
- For the e spectroscopy \rightarrow media with small Z are favoured \rightarrow organic scintillators (conversely media with large Z are favoured for γ spectroscopy) γ 39

Examples of backscattering fractions

Fraction of backscattered e for a beam normally incident on the scintillator

e - spectra with a scintillator

1 MeV e⁻

Types of inorganic scintillators

Inorganic scintillators are roughly classified into 3 groups \rightarrow

- 1. Scintillators doped by impurities \rightarrow alkali halides activated by heavy metals (thallium, lead, indium); zinc sulphides activated by copper, manganese, silver;…
- 2. Non-doped scintillators but auto-activated \rightarrow there is one component in excess compared to the stoichiometric ratio \rightarrow ions in excess take an interstitial position \rightarrow calcium, strontium, cadmium, lead tungstates
- 3. Pure scintillators \rightarrow diamond, pure alkali halides

Examples of inorganic scintillators

NaI(Tl) (1)

- Sodium iodide crystal activated with thallium
- The use of a NaI crystal for the γ detection has been proposed by Hofstadter in 1948
- High luminescence efficiency, available with various dimensions and shapes
- Most often used scintillator
- Strongly hygroscopic

NaI(Tl) (2)

- Energy band gap for pure Nal: E_q = 6 eV
- NaI(TI) \rightarrow emission spectrum centered at \approx 3 eV
- Concentration of Tl: 0.1%
- Refractive index = 1.85
- For a 1 MeV $\gamma \rightarrow 38000$ photons are created \rightarrow 26 eV by photon \rightarrow *E* of 1 photon \approx 3 eV \rightarrow *E* emitted as photons \approx 3 \times 38000 eV = 114000 eV \rightarrow intrinsic efficiency of the scintillator: $S \approx 11\%$
- Fano factor *F =* 1
- $W = 26$ eV \rightarrow high (to be compared to 2.96 eV for Ge) \rightarrow the bad resolution is one of the principal disadvantages of NaI(Tl)

Efficiency of NaI(Tl) as a function of Tl concentration

When the Tl concentration too much $\Box \rightarrow$ interaction between the recombination sites \rightarrow quenching \rightarrow efficiency \searrow

Intrinsic efficiency of NaI(Tl) (1)

- The intrinsic efficiency of NaI(Tl) *S = L*/E should be constant as a function of the incident radiation energy to have a linear process
- As for e- or $\gamma \rightarrow i$ it is not the case \rightarrow the difference can reach 15%
- No convincing explanation for this phenomenon as a whole

Intrinsic efficiency of NaI(Tl) (2)

For incident e⁻

Intrinsic efficiency of NaI(Tl) (3)

For incident γ

Other inorganic scintillators (1)

- Cesium iodide doped with thallium CsI(Tl):
	- $-$ Absorption probability of a γ larger than the NaI(TI) \rightarrow important for instance for space instrumentation for which weight and size are very important
	- The slow component of the decrease strongly depends on the type of incident particle \rightarrow discrimination as a function of the shape of the pulse
	- Less fragile than NaI(Tl)
	- Reasonably malleable
	- Maximum of the emission spectrum shifted to the large wave lengths \rightarrow less adapted to the coupling with a photomultiplier
- Bismuth germanate $Bi₄Ge₃O₁₂$ (or BGO):
	- $-$ More dense (7.13 g cm⁻³) than NaI and high Z of Bi (Z = 83) \rightarrow particularly adapted to γ spectroscopy
	- Robust detector
	- Easy to manufacture
	- Small luminescence efficiency \rightarrow 10-20% of the efficiency of NaI(TI)

Other inorganic scintillators (2)

- Cadmium tungstate CdWO₄:
	- Weak luminescence efficiency \rightarrow 40% of the efficiency of NaI(TI)
	- Time decrease is double and extremely slow \rightarrow 1.1 and 14.5 μ s \rightarrow use limited to weak counting rates but good discrimination as a function of the pulse shape
	- Good resolution
	- High refractive index (2.3) \rightarrow difficult coupling to the photomultiplier
- Barium Fluoride BaF₂:
	- Lifetime of the luminescence centers extremely short (0.6 ns) \rightarrow to use when a rapid response is required
	- $-$ Short emission wave lengty \rightarrow necessary coupling with a sensor sensitive to UV
	- Weak luminescence efficiency \rightarrow 20% of the efficiency of NaI(TI)
- Lithium iodide doped with europium Lil(Eu):
	- Neutrons detection (see chapter on neutrons)

Photomultiplier (PM)

Principles of the photomultiplier

- Goal of the PM \rightarrow conversion of the energy of a (close to) visible radiation into electric energy \rightarrow use of photoemission phenomenon and then amplification thanks to secondary emission process
- PM = glass vessel in which there is vacuum
- The incident photons penetrate into the PM and hit a semi-transparent or opaque photocathode \rightarrow interaction of the photon with the atoms of the photocathode \rightarrow possible ejection of an e- out of the photocathode
- The photoelectrons stemmed from the photocathode are accelerated by an electric field and hit the 1st dynode \rightarrow due to secondary emission process \rightarrow secondary e^- are ejected out of the $1st$ dynode and then accelerated to the 2^{nd} dynode \rightarrow new secondary e⁻ which are accelerated ... \rightarrow process which is repeated until the e go out the last dynode and are collected by the anode \rightarrow signal

Photocathode (1)

- If the photocathode is opaque \rightarrow the e- are emitted from the photon entrance surface
- If it is very thin (semi-transparent) \rightarrow the e-can leave from the surface opposite from the photon entrance surface
- This thin configuration mince is adopted most of the time \rightarrow it facilitates both the optic coupling with the external light source and the electronic coupling of the photocathode with the first dynode

Photocathode (2)

- 1. A photon have to cross the entrance window (depth e) of the PM \rightarrow probability $T(\lambda, e)$
- 2. A photon with λ wavelength incident on a medium can be reflected, absorbed or transmitted \rightarrow with ρ , α and τ the probabilities associated with these 3 processes \rightarrow

 $\rho(\lambda) + \alpha(\lambda) + \tau(\lambda) = 1$

 \rightarrow the photon has to get into the photocathode \rightarrow its material must have a low reflection coefficient

3. The photon which is gone into the photocathode must be absorbed there \rightarrow transfer of its energy to an electron \rightarrow with $\mu(\lambda)$ the absorption probability per length unit \rightarrow the probability p_{abs} to have a photon absorption at a depth x inside the interval dx is \rightarrow

$$
p_{abs}(x)dx = e^{-\mu(\lambda)x}\mu(\lambda)dx
$$

Photocathode (3)

If we consider a normal incidence on the material with depth *d* \rightarrow the integration of p_{abs} from 0 to *d* gives \rightarrow

$$
\alpha(\lambda, d) = [1 - \rho(\lambda)] \left(1 - e^{-\mu(\lambda)d} \right)
$$

- 4. The electron is moving inside the material \rightarrow it undergoes collisions \rightarrow it loses energy \rightarrow it possibly arrives at the surface between the material and the vacuum \rightarrow the material must have a large escape depth (e origin depth such it can reach the surface with enough energy)
- 5. Thee must escape from the photocathode \rightarrow its energy must be > than the work function Φ of the photocathode

Photocathode (4)

We define the photoelectric quantum efficiency $\eta_{ph}(\lambda) \rightarrow$

 $\eta_{ph}(\lambda) = \frac{\text{number of e}^{-} \text{emitted by the photocathode}}{\text{number of photons absorbed by the photocathode}}$

- We also define the spectral quantum efficiency $\eta(\lambda) \rightarrow$ $\eta(\lambda) = \frac{\text{number of e}^- \text{ emitted by the photocathode}}{\text{number of photons entering into the PM}}$
- We have thus $\Rightarrow \eta(\lambda) = T(\lambda, e) \alpha(\lambda, d) \eta_{ph}(\lambda)$
- We also define the effective quantum efficiency η_{eff} of a photomultiplier which receives a light with the $I(\lambda)$ spectrum \rightarrow

$$
\eta_{eff}=\int_0^\infty I(\lambda)\eta(\lambda)d\lambda
$$

Choice of the material for the photocathode

- Metals are characterized by a large reflection probability, a small escape depth (because of the large number of free einside a metal) and a high work function \rightarrow small quantum efficiency $(\eta(\lambda) < 0.1\%)$
- Semiconductors have a small reflection probability, a escape depth (small amount of free e⁻) and a small et une work function $\rightarrow \eta(\lambda) \approx 10$ -30%

Examples of photocathode materials

Photocathode noise

- The photocathode spontaneously emits electrons due to thermionic emission \rightarrow at ambient T \rightarrow this emission is responsible of most of the part of the PM noise
- The number of emitted electrons by unit of time and surface is given by Richardson's law:

$$
\eta_e = AT^2 \exp -e\Phi/kT
$$

with A: constant, T: temperature, k: Boltzmann's constant

- As Φ is smaller for a sc than for a metal $\Rightarrow \eta_e$ is larger for a sc $(z 10^{2}-10^{4} s^{-1}cm^{-2})$ than for a metal $(z 10^{-2} s^{-1}cm^{-2})$
- If $T \searrow \eta_e \searrow$ but other noise sources exist (ionization of residual gas inside the PM, radioactivity of the glass constituting the PM, cosmic rays,…)

Dynodes

- In dynode, electron energy is transferred to dynode electrons \rightarrow a certain number of electrons can escape (again semiconductors are used) \rightarrow gain of each dynode: secondary emission factor δ (δ > 1 to have multiplication)
- Constant electric field is maintained between dynodes to accelerate and guide electrons \rightarrow the secondary emission material must be deposited on a conducting material
- The gain of the PM: $M = \delta^n$ with $n \approx 10$ to obtain $M = 10^7$

PM gain

- If each electron hitting a dynode eject \approx 4 electrons \rightarrow the gain of a PM with 12 stages (or dynodes) is $M = 4^{12} \approx 1.7 \times 10^{7}$
- Only one photoelectron produces 17 millions electrons
- All these electrons arrive (quasi) simultaneously at the anode \rightarrow *t* < 5 ns
- The current pulse at the anode is ≈ 0.5 mA

Different types of PM (1)

- a) Focused linear structure
- b) Circular grid
- c) Venetian blind
- d) Box-and-grid 63

Different types of PM (2)

- Structures (a) and (b) use an electron focalization between dynodes \rightarrow the electron transit time through the structure is speeded up compared to other structures \rightarrow fast PM
- The structures (c) and (d) have a better collection efficiency from the photocathode at the first dynode than structures (a) and (b)
- The Venetian blind type (c) is the oldest and shows a slow response time because of the low electric field \rightarrow obsolete
- The structure (d) is also fairly old and slow but it is still standard in many tubes of large diameter

Different types of PM (3)

- Continuous channel electron multiplier \rightarrow "continuous chain of dynodes"
- The electric potential linearly varies along the tube \rightarrow an incoming electron produces secondary electrons that are accelerated until they in turn produce further secondaries
- We finally have a large number of electrons at the end of the tube

Resolution of a scintillation detector (1)

- Scintillation detector = scintillator + PM
- By considering *C* the probability for a photoelectron to reach the 1st dynode, *N⁰* the number of electrons collected at the anode and *Nph* the number of photons emitted inside the scintillator \rightarrow

$$
N_0 = M C \eta N_{ph}
$$

- N_{0} is thus \propto to the energy E_{abs} absorbed inside the detector (via N_{ph})
- All these quantities are random variables \rightarrow calculation of the variance
- By considering *v*[*X*] the relative variance of the random variable *X* →

$$
v[X] = \frac{\sigma^2(X)}{\langle X \rangle^2}
$$

Resolution of a scintillation detector (2)

• We have thus for $v[N_0] \rightarrow$

$$
v[N_0] = v[N_{ph}] + \frac{1}{\langle N_{ph} \rangle} v[\eta] + \frac{1}{\langle N_{ph} \rangle \langle \eta \rangle} v[C] + \frac{1}{\langle N_{ph} \rangle \langle \eta \rangle \langle C \rangle} v[M]
$$

$$
= \left(v[N_{ph}] - \frac{1}{\langle N_{ph} \rangle} \right) + \frac{1}{\langle N_{ph} \rangle} \left(v[\eta] - \frac{1 - \langle \eta \rangle}{\langle \eta \rangle} \right)
$$

$$
+ \frac{1}{\langle N_{ph} \rangle \langle \eta \rangle} \left(v[C] - \frac{1 - \langle C \rangle}{\langle C \rangle} \right) + \frac{1}{\langle N_{ph} \rangle \langle \eta \rangle \langle C \rangle} (1 + v[M])
$$

• If N_{ph} is a Poisson variable and *C* and η are binomial \rightarrow

$$
v[N_0] = \frac{1}{\langle N_{ph} \rangle \langle \eta \rangle \langle C \rangle} (1 + v[M]) \propto \frac{1}{E_{abs}}
$$

Resolution of a scintillation detector (3)

- As 1st approximation \rightarrow The relative variance on $N_0 \propto 1/E_{obs}$
- However \rightarrow many non-linear effects are present:
	- The number of photons escaping from the scintillator depends on their emission position \rightarrow N_{ph} withdraws from a Poisson variable
	- Inhomogeneity in the photocathode $\rightarrow \eta$ withdraws from a binomial
	- $-$ Collection efficiency of the photoelectrons by the 1st dynode depends on the emission position \rightarrow *C* withdraws from a binomial

Resolution of a scintillation detector (4)

- Resolution of a NaI(Tl) detector associated to a PM
- Curve $B \rightarrow$ resolution by only considering the PM \rightarrow $\propto 1/E_{\text{obs}}$
- Curve $A \rightarrow$ total resolution \rightarrow discrepancy by comparison to the *1/Eabs* law

γ spectroscopy with a NaI(TI) (1)

70

γ spectroscopy with a NaI(TI) (2)

Caution: Size of detector is crucial!! \leftrightarrow size must be compared with mean free path of secondary γ rays produced in interactions of the original γ rays (Compton scattered γ rays and annihilations photons formed at the end of the track of e^+ created in pair production) \rightarrow mean free path of these secondary γ rays is \approx 3-5 cm in NaI \rightarrow « small » means \approx 1 cm and « large » means \approx 30 cm

In the following, we consider « intermediate » size for the detector \rightarrow classicaly: NaI(TI) 3"x3" (1 inch=2.54 cm) \rightarrow diameter = $length = 7.62$ cm

Photons with $h\nu = 1$ MeV

Multiple Compton events

E
Photons with $h\nu = 1$ MeV (2)

• After *n* Compton scatterings \rightarrow E \rightarrow (E_n) \rightarrow photoelectric effect becomes dominant (we suppose it always occurs) \Rightarrow E_n-B_K is absorbed

As photoelectric effect occurs deep inside the detector \rightarrow X-rays or Auger electrons cannot escape \rightarrow energy B_K is deposited (again time history small compared to the detector response)

Photons with $h\nu = 1$ MeV (3)

• Practically, photon can escape after a few Compton scattering or can be absorbed \rightarrow example of ¹³⁷Cs (662 keV γ):

Photons with $h\nu$ = 100 keV

• Dominant process: Photoelectric absorption

• X-ray $(E = B_K - B_L)$ can escape (absorption occurs close to the entrance) \rightarrow

Photons with $h\nu$ = 10 MeV

Compton or pair creation \rightarrow if pair creation \rightarrow deposited energy = h ν -2m $_{\rm e}$ c 2 (m $_{\rm e}$ c 2 = 0.511 MeV) \rightarrow both γ of 0.511 MeV can escape or one γ can escape or both γ can be detected (Compton or photoelectric)

Complications in the response function (1)

- Secondary radiations created near the source:
	- 1. Annihilation radiation: if source emits $e^+ \rightarrow$ an additional 0.511 MeV peak will be measured due to the annihilation in the material encapsulating the source
	- 2. Bremsstrahlung: γ –ray emitters are generally also β emitters \rightarrow to avoid energy deposition from these β in detector \rightarrow they are stopped by encapsulating material or be an absorber before the detector \rightarrow but generation of Bremsstrahlung (complex to precisely study) \rightarrow to avoid this Bremsstrahlung radiation $\rightarrow \beta$ absorber must have small Z

Complications in the response function (2)

- Effect of surrounding materials
	- 1. X-ray peak from the surrounding material
	- 2. Backscattered γ rays in the vicinity of 0.2-0.25 MeV
	- 3. Annihilation peak due to e^+ from the surrounding material

Comparison germanium/scintillators for γ spectroscopy

- Ge: Much better resolution but
- **Expensive**
- Small detector size and low $Z \rightarrow$ ratio full-energy peak/background largely smaller
- Slower
- Complication of cryogenics (not with modern detectors)

Example of comparison: $110mAg$

