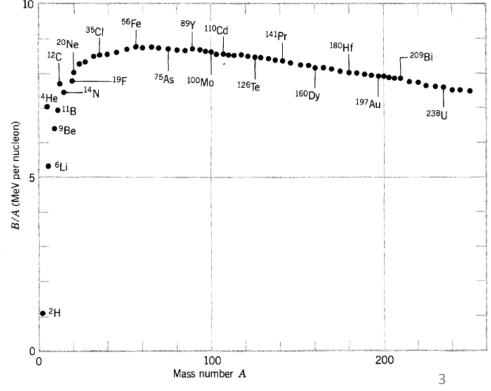
Chapter IX: Nuclear fission

Summary

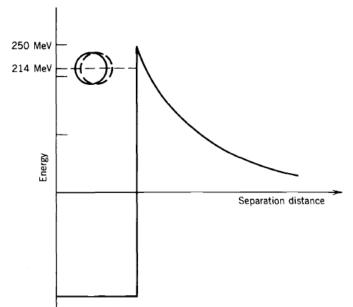

- General remarks
- 2. Spontaneous and induced fissions
- 3. Nucleus deformation
- 4. Mass distribution of fragments
- 5. Number of emitted electrons
- 6. Radioactive decay processes
- 7. Fission cross section
- 8. Energy in fission
- 9. Nuclear structure
- 10. Applications

General remarks (1)

 Fission results from competition between nuclear and Coulomb forces in heavy nuclei → total nuclear binding energy increases roughly like A ↔ Coulomb repulsion energy of protons increase

like $Z^2 \rightarrow$ faster

• Example of $^{238}U \rightarrow$ binding energy $B \approx 7.6$ MeV/nucleon \rightarrow if division into 2 equal Pd fragments with A $\simeq 119 \rightarrow B$ by nucleon ≈ 8.5 MeV \rightarrow more tightly bound system \rightarrow energy is released \rightarrow (-238 \times 7.6) - (-2 \times 119 \times 8.5) = 214 MeV

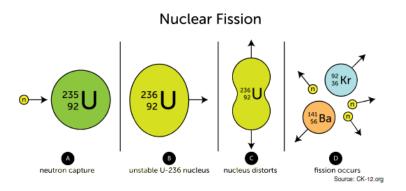


General remarks (2)

- To conserve energy \rightarrow the final state must include an extra energy \rightarrow variety of forms \rightarrow neutrons, β and γ emissions from the fragments and primarily (\sim 80%) as kinetic energy of the fragments as Coulomb repulsion drives them apart
- Generally fragments are not identical \rightarrow binary fission if 2 fragments \leftrightarrow ternary fission if 3 fragments (rare and generally 1 of the 3 fragments is an α)
- Attention \rightarrow not so obvious \rightarrow for ²³⁸U competition with spontaneous α decay ($T_{1/2} = 4.5 \times 10^9$ y) while $T_{1/2}$ for fission is $\approx 10^{16}$ y \rightarrow not important decay mode for ²³⁸U \rightarrow become important for $A \ge 250$

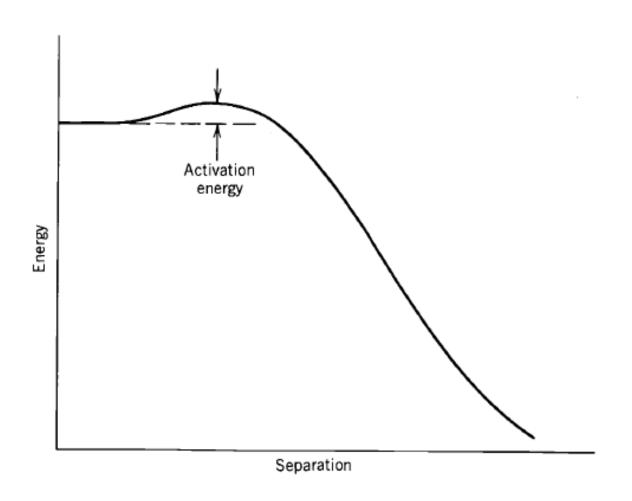
Spontaneous and induced fissions (1)

- Inhibition of the fission by the Coulomb barrier (analogous to Coulomb barrier of α decay) \rightarrow improbable in general for a nucleus in its ground state
- In previous example of $^{238}U \rightarrow ^{238}U$ may perhaps exist instantaneously as two fragments of ^{119}Pd but Coulomb barrier of about 250 MeV for ^{238}U prevents the fission



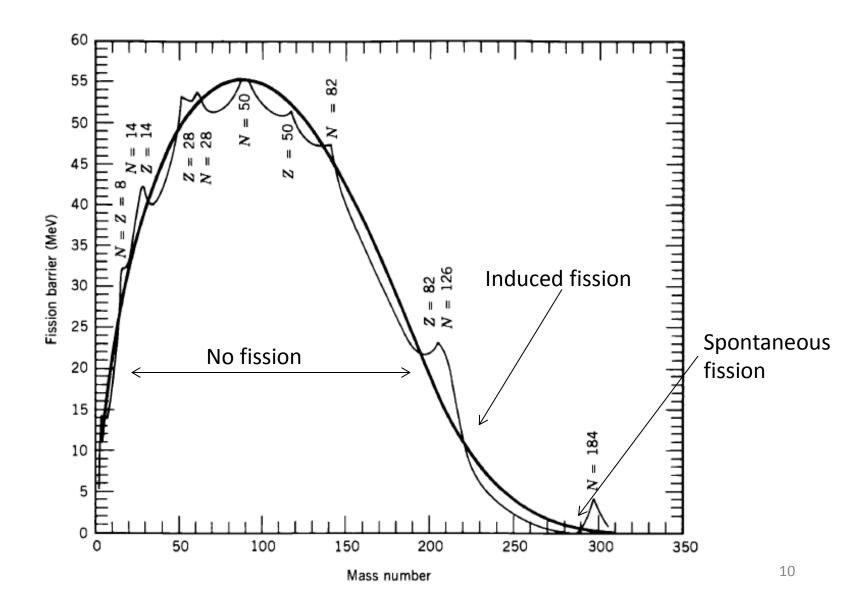
Spontaneous and induced fissions (2)

- If the height of the Coulomb barrier is roughly equal to the energy released in fission → reasonably good chance to penetrate the barrier
- This process is called spontaneous fission → in that case fission competes successfully with other decay processes
- Lightest nucleus for which spontaneous fission is the dominant decay mode \rightarrow isotope $^{250}_{96}\mathrm{Cm}$ of the curium (80% of the disintegrations are fission and $T_{1/2}=10^4\,\mathrm{y}$)
- For $^{254}_{98}\mathrm{Cl}$ of californium ($T_{1/2}$ = 60 days) \rightarrow lightest nucleus for which almost 100% of decay is spontaneous fission
- These 2 nuclei does not exist in natural state


Spontaneous and induced fissions (3)

Fission is much more frequent if the nucleus is in an excited state →
occurs if a heavy nucleus absorb energy from a neutron or a photon
→ formation of an intermediate state in an excited state that is at or
above the barrier → phenomenon called induced fission

- The ability of a nucleus to undergo induced fission depends critically on the energy of the intermediate system → for some absorption of thermal neutrons (≈ 0.025 eV) is sufficient ↔ for others fast (MeV) neutrons are required
- The height of the fission barrier above the ground state is called the activation energy E_{act}

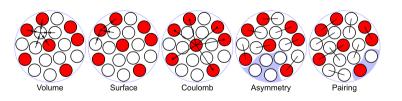

Spontaneous and induced fissions: activation energy (1)

Spontaneous and induced fissions: activation energy (2)

- Calculation of the barrier height is based on the liquid-drop model →
 the use of the shell model including more sophisticated effects
 modifies a bit the calculation (especially for magic numbers)
- Liquid-drop model implies the vanishing energy around mass 280 → these nuclei are thus extremely unstable to spontaneous fission
- Shell closure suggests that super-heavy nuclei around A = 300 are more stable against fission \rightarrow research about super-heavy nucleons around the magic number N = 184 for neutrons
- Note the typical 5-MeV energies around uranium

Spontaneous and induced fissions: activation energy (3)

Nucleus deformation (1)


 To qualitatively understand fission → effect of the deformation on a heavy nucleus on semi-empirical Bethe-Weizsäcker equation →

$$B(A,Z) = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_a \frac{(N-Z)^2}{A} + \delta$$

Effect on the binding energy of an initially spherical nucleus $(V = (4/3)\pi R^3)$ that we gradually stretch $\rightarrow V$ is kept constant (cannot change because of the short-range of nuclear interaction) \rightarrow stretched nucleus is an ellipsoid of revolution $(V = (4/3)\pi ab^2)$ whit a the semimajor axis and b the semiminor axis \rightarrow deviation of the ellipsoid from a sphere of is given in terms of the distortion parameter ϵ (eccentricity of the ellipse) \rightarrow

$$a = R(1+\epsilon)$$

$$b = R(1+\epsilon)^{-1/2}$$

Nucleus deformation (2)

Distortion of a sphere to an ellipse → increase of area S →

$$S = 4\pi R^2 (1 + \frac{2}{5}\epsilon^2 + \dots)$$

Consequently \rightarrow the absolute value of the surface energy term in the Bethe-Weizsäcker formula increases \rightarrow decrease of the binding energy by $\Delta B_S \rightarrow$

$$\Delta B_S \simeq -a_S A^{2/3} \frac{2}{5} \epsilon^2$$

• Distortion of a sphere to an ellipse \rightarrow decrease of the Coulomb term by a factor $(1 - (1/5)\epsilon^2 + ...) \rightarrow$ increase of the of the binding energy by

$$\Delta B_C \simeq a_C \frac{Z^2}{A^{1/3}} \frac{1}{5} \epsilon^2$$

 $\Delta B_C \rightarrow$

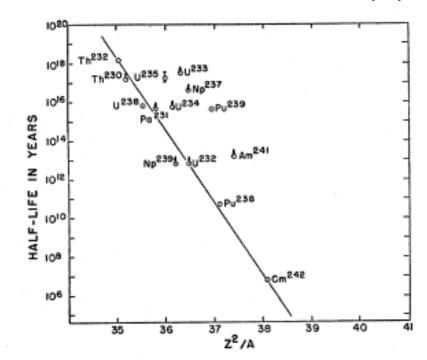
Nucleus deformation (3)

• The total variation of the binding energy is given by \rightarrow

$$\Delta B \simeq A^{2/3} \frac{2}{5} (-a_s + \frac{a_C}{2} \frac{Z^2}{A}) \epsilon^2$$

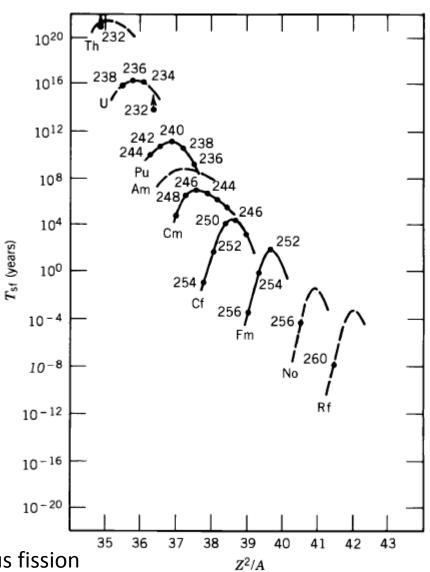
• If the second term is larger than the first \rightarrow the energy difference ΔB is $> 0 \rightarrow$ gain energy due to the stretching \rightarrow more the nucleus is stretched more energy is gained \rightarrow amplification of the stretching \rightarrow nucleus unstable \rightarrow fission

• The condition for spontaneous fission is thus \rightarrow


$$\Delta B > 0 \to \frac{a_C}{2} \frac{Z^2}{A} > a_S \to \frac{Z^2}{A} > 47$$

Nucleus deformation (4)

- For heavy nuclei $\rightarrow Z/A \approx 0.4 \rightarrow$ nuclei become instable for Z > 117
- In practice → modifications of this expression
 - Quantum mechanical barrier penetration could be possible even for negative energy deformation
 - Heavy nuclei have permanent deformation → the equilibrium shape is ellipsoidal
- However Z^2/A gives an indicator of the ability of a nucleus to fission spontaneously \rightarrow the larger the value o Z^2/A the shorter is the half-life for spontaneous fission
- An approached expression for the half-life for spontaneous fission is:


$$T_{1/2}^{SF} = 10^{-21} \times 10^{178 - 3.75Z^2/A} \text{ s}$$

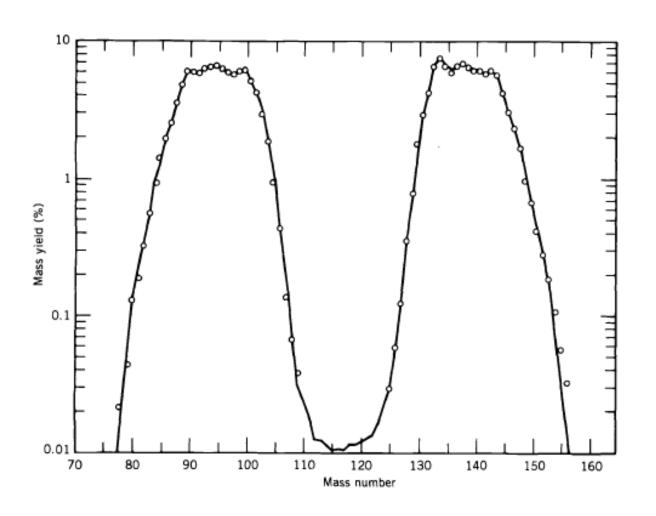
Nucleus deformation (5)

- Attention \rightarrow the real $T_{1/2}$ can be very different of the $T_{1/2}^{SF}$ due to other decay possibilities
- Extrapolation for $45 < Z^2/A < 50 \rightarrow T_{1/2}^{SF} = 10^{-20}$ s i.e. an instantaneous fission \rightarrow it corresponds to A \approx 280 as obtained previously
- For Z = constant $\rightarrow T_{1/2}^{SF}$ are not constant \rightarrow parabolic shape \rightarrow more elaborated models are needed

Nucleus deformation (6)

Mass distribution of fragments (1)

Typical neutron-induced fission reaction is

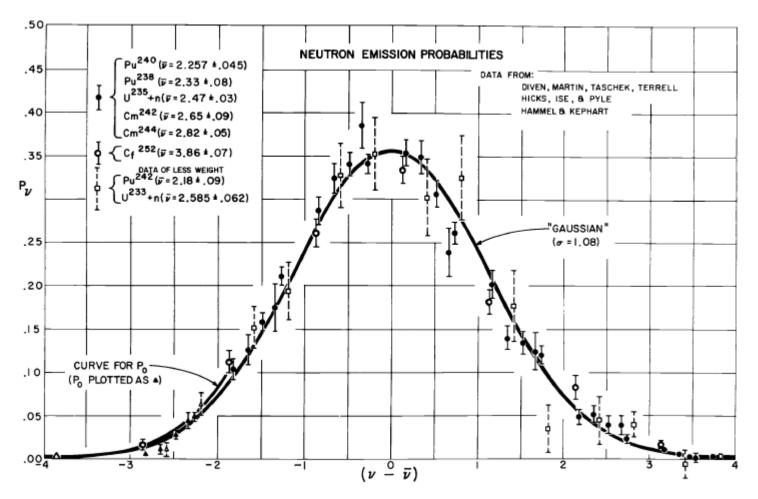

$${}_{Z}^{A}X_{N} + n \rightarrow {}_{Z}^{A+1}X_{N+1}^{*} \rightarrow {}_{Z_{1}}^{A_{1}}X_{N_{1}} + {}_{Z_{2}}^{A_{2}}X_{N_{2}} + \nu n$$

As for instance \rightarrow

$$^{235}_{92}$$
U₁₄₃ + n $\rightarrow ^{93}_{37}$ Rb₅₆ + $^{141}_{55}$ Cs₈₆ + 2n

- This last reaction is particularly probable for low energy neutrons (thermal energies) but other reactions are only possible for large neutron energies (i.e. ²³⁸U)
- Fission products are not determined uniquely → distribution of masses of the 2 fission products (ternary decay is rare) with condition $Z_1 + Z_2 = Z$ and $N_1 + N_2 + \nu = N + 1$
- For $^{235}U \rightarrow$ distribution is symmetric about the center ($A \approx 116$) \rightarrow an heavy fragment $(A_1 \approx 140 \rightarrow I)$, Xe, Ba) and a light fragment $(A_2 \approx 95 \rightarrow I)$ Br, Kr, Sr, Zr) \rightarrow fission with $A_1 \approx A_2$ is less probable by a factor 600

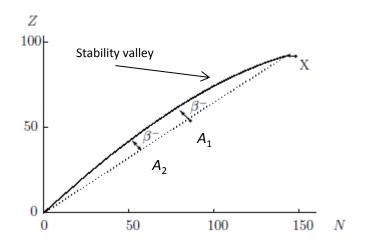
Mass distribution of fragments (2)



Mass distribution of fission fragments for ²³⁵U + n

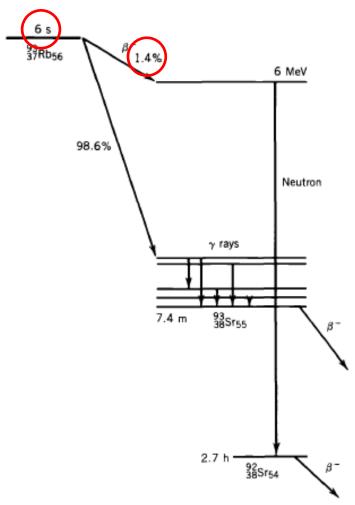
Number of emitted neutrons: prompt neutrons (1)

- The ν neutrons of previous equation are emitted in a time < 10⁻¹⁶ s (time analog to the fragmentation duration) \rightarrow they are called prompt neutrons
- To understand their origin \rightarrow we consider again the case of ²³⁵U \rightarrow the fragments in the vicinity of A = 95 and A = 140 must share 92 protons \rightarrow if it happens in rough proportion to their masses the nuclei formed are $^{95}_{37}\mathrm{Rb}_{58}$ and $^{140}_{55}\mathrm{Cs}_{85} \rightarrow$ nuclei rich in neutrons
- These fission products have Z/A = 0.39 (i.e. same Z/A ratio as the initial nucleus ^{235}U)
- The stable A = 95 isobar has Z = 42 and the stable A = 140 isobar has $Z = 58 \rightarrow$ neutron excess emits at the instant of fission
- The average number of prompt neutrons depends of the nature of the 2 fragments and of the energy of incident particle for induced fission


Number of emitted neutrons: prompt neutrons (2)

Distribution of fission neutrons → the average number of neutrons changes with the fissioning nucleus but the distribution about the average is independent of the original nucleus

Number of emitted neutrons: delayed neutrons (1)


• Nuclei A_1 and A_2 are generally far from the stability valley $\rightarrow \beta^2$ decay

- Following this β decay $\rightarrow \beta$ -delayed nucleon emission (as explained in chapter V) \rightarrow these neutrons are called delayed neutrons
- Nucleon emission occurs rapidly \rightarrow nucleon emission occurs with a half-life characteristic of β decay \rightarrow usually of the order of seconds

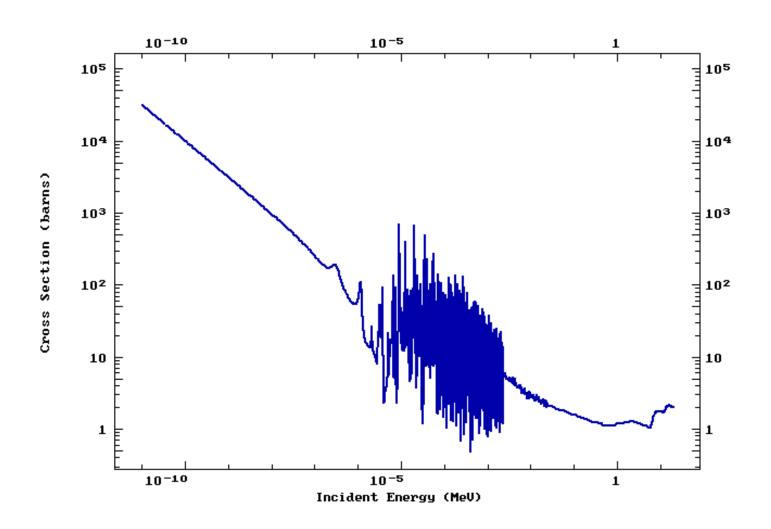
Number of emitted neutrons: delayed neutrons (2)

Practical example: ⁹³Rb →

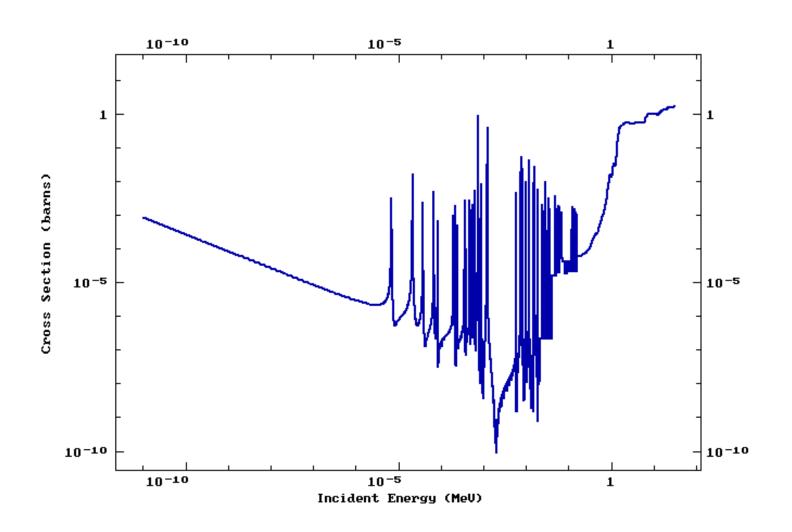
Number of emitted neutrons: delayed neutrons (3)

- The total intensity of delayed neutrons is ≈ 1 per 100 fissions
- Delayed neutrons are essential for the control of nuclear reactors
- No mechanical system could respond rapidly enough to prevent important variations in the prompt neutrons
- On the contrary → possible to achieve control using the delayed neutrons

Radioactive decay processes


- Initial fission products are highly radioactive \rightarrow they decay toward stable isobars by emitting many β and $\gamma \rightarrow$ these radiations contribute to the total energy release during fission
- Examples of decay chains →

$$^{93}\text{Rb} \xrightarrow{^{6}\text{ s}} ^{93}\text{Sr} \xrightarrow{^{7}\text{ m}} ^{93}\text{Y} \xrightarrow{^{10}\text{ h}} ^{93}\text{Zr} \xrightarrow{^{10^{6}}\text{ y}} ^{93}\text{Nb}$$


$$^{141}\text{Cs} \xrightarrow{^{25}\text{ s}} ^{141}\text{Ba} \xrightarrow{^{18}\text{ m}} ^{141}\text{La} \xrightarrow{^{4}\text{ h}} ^{141}\text{Ce} \xrightarrow{^{33}\text{ d}} ^{141}\text{Pr}$$

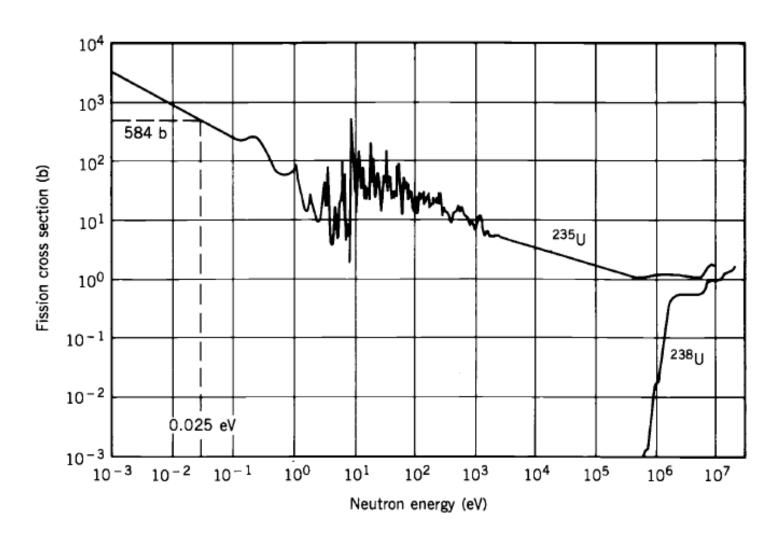
- These radioactive products are the waste products of nuclear reactors
- Many decay very quickly ↔ others have long half-lives (especially near the stable members of the series)

Fission cross section: ²³⁵U

Fission cross section: ²³⁸U

Fission cross section: Simple model

- Simple estimation of energy dependence is provided by the Ramsauer model
- The effective size of a neutron is \propto to its de Broglie wavelength \rightarrow


$$\lambda(E) = \frac{1}{k} = \frac{h}{p} = \frac{h}{\sqrt{2mE}}$$

- R is the effective radius of the nucleus \rightarrow the cross section of interaction $\sigma(E) \propto \pi [R + \lambda(E)]^2 \times T$ (T is the transmission probability of crossing the barrier potential, written $4kK/(k+K)^2$ with $k=(2mE/\hbar^2)^{1/2}$ and $K=(2m(E+V_0)/\hbar^2)^{1/2}$ for a barrier of depth $-V_0$)
- For low energy neutron = large wavelength $\rightarrow R$ can be neglected, $E \ll V_0$ and $k \ll K \rightarrow \sigma \propto \lambda \rightarrow \sigma$ (E) is inversely proportional to neutron velocity
- For high energy neutron = small wavelength $\rightarrow \sigma(E) \propto R^2 \rightarrow$ constant
- Attention → presence of resonances → precisely defined states of the composed nucleus

Fission cross section: For thermal neutrons

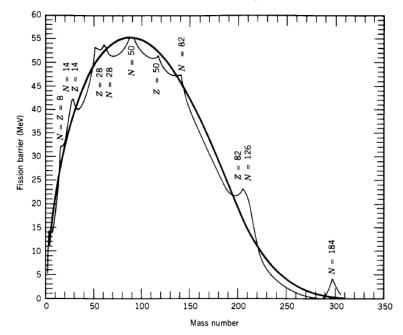
Nuclide	Cross Section (b)	A + 1 Activation Energy (MeV)	
²²⁷ ₉₀ Th ₁₃₇	200 ± 20		
²²⁸ ₉₀ Th ₁₃₈	< 0.3		
²²⁹ ₉₀ Th ₁₃₉	30 ± 3	8.3	
²³⁰ ₉₀ Th ₁₄₀	< 0.001	8.3	
²³⁰ ₉₁ Pa ₁₃₉	1500 ± 300	7.6	
²³¹ ₉₁ Pa ₁₄₀	0.019 ± 0.003	7.6	
²³² ₉₁ Pa ₁₄₁	700 ± 100	7.2	
²³³ ₉₁ Pa ₁₄₂	< 0.1	7.1	
$^{131}_{92}$ U ₁₃₉	300 ± 300	6.8	
232 92 U ₁₄₀	76 ± 4	6.9	
133 U ₁₄₁	530 ± 5	6.5	
$^{134}_{92}$ U ₁₄₂	< 0.005	6.5	
35 U ₁₄₃	584 ± 1	6.2	
³⁸ ₉₂ U ₁₄₆	$(2.7 \pm 0.3) \times 10^{-6}$	6.6	
²³⁴ ₉₃ Np ₁₄₁	1000 ± 400	5.9	
²³⁶ ₉₃ Np ₁₄₃	3000 ± 600	5.9	
²³⁷ ₉₃ Np ₁₄₄	0.020 ± 0.005	6.2	
²³⁸ ₉₃ Np ₁₄₅	17 ± 1	6.0	
²³⁹ ₉₃ Np ₁₄₆	< 0.001	6.3	
²³⁸ Pu ₁₄₄	17 ± 1	6.2	
²³⁹ ₉₄ Pu ₁₄₅	742 ± 3	6.0	
⁴⁰ ₉₄ Pu ₁₄₆	< 0.08	6.3	
²⁴¹ ₉₄ Pu ₁₄₇	1010 ± 10	6.0	
²⁴² ₉₄ Pu ₁₄₈	< 0.2	6.2	
²⁴¹ ₉₅ A m ₁₄₆	3.24 ± 0.15	6.5	
¹⁴² ₉₅ Am ₁₄₇	2100 ± 200	6.2	
²⁴³ ₉₅ Am ₁₄₈	< 0.08	6.3	
²⁴⁴ ₉₅ Am ₁₄₉	2200 ± 300	6.0	
²⁴³ ₉₆ Cm ₁₄₇	610 + 30	6.1	
²⁴⁴ ₉₆ Cm ₁₄₈	1.0 ± 0.5	6.3	
²⁴⁵ ₉₆ Cm ₁₄₉	2000 ± 200	5.9	
²⁴⁶ ₉₆ Cm ₁₅₀	0.2 ± 0.1	6.0	

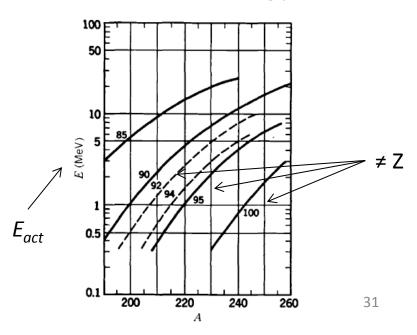
Fission cross section: ²³⁵U and ²³⁸U

Energy in fission: Excitation energy (1)

- We consider ²³⁵U capturing a neutron → compound state ²³⁶U*
- The excitation energy E_{ex} is

$$E_{ex} = [m(^{236}U^*) - m(^{236}U)]c^2$$


 Energy of ²³⁶U* is given by (assuming a negligible kinetic energy for the incident neutron ↔ thermal neutron) →


$$m(^{236}U^*) = m(^{235}U) + m_n = 235.043924 u + 1.008665 u$$

= 236.052589 u

$$E_{ex} = (236.052589 \text{ u} - 236.045563 \text{ u})931.502 \text{ MeV/u}$$

= 6.5 MeV

Energy in fission: Excitation energy (2)

- The activation energy obtained for ²³⁶U is 6.2 MeV
- We have $E_{ex} > E_{act}$
- ²³⁵U can be fissioned with ≈ 0-energy neutrons
- For $^{238}\text{U} + \text{n} \rightarrow ^{239}\text{U}^* \rightarrow E_{ex} = 4.8 \text{ MeV}$ and $E_{act} = 6.6 \text{ MeV} \rightarrow \text{neutrons}$ of a few MeV are required for fission \rightarrow threshold in energy

Energy in fission: Excitation energy (3)

- The extreme differences in the fissionability of ²³⁵U and ²³⁸U is due to the difference between their excitation energies: 6.5 and 4.8 MeV
- This \neq in E_{ex} is explained by the pairing energy term $\delta = \pm 12A^{-1/2}$ in the Bethe-Weizsäcker formula \longleftrightarrow only significant \neq between A and A+1

$$B(A,Z) = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_a \frac{(N-Z)^2}{A} + \delta$$

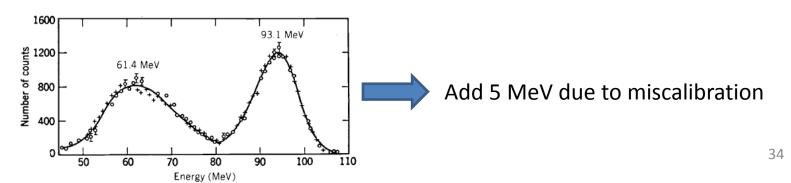
- The role of δ in the excitation energy \rightarrow
 - 235 U (*N*-odd *Z*-even → δ = 0) + n → 236 U (*N*-even *Z*-even → δ ≈ +12/(235)^{1/2} = 0.78 MeV) → gain of 1 δ ≈ +0.78 MeV
 - ²³⁸U (*N*-even *Z*-even → δ = 0. 78 MeV) + n → ²³⁹U (*N*-odd *Z*-even → δ ≈ 0 MeV) → decrease of 1 δ ≈ -0. 78 MeV
 - − The difference in excitation energy between 235 U + n and 238 U + n is therefore about $2\delta \approx +1.6$ MeV \rightarrow corresponds to observed difference

Energy in fission: Excitation energy (4)

AX		A+1X			ΔE_{X^*}	
N	Z	$\delta(^{A}X)$	N	Z	$\delta(^{A+1}X)$	
even	even	$+\delta$	odd	even	0	$-\delta$
even	odd	0	odd	odd	$-\delta$	$-\delta$
odd	even	0	even	even	$+\delta$	$+\delta$
odd	odd	$-\delta$	even	odd	0	$+\delta$

In a general way \rightarrow if we call ΔE_{χ^*} the contribution to the excitation energy due to the pairing energy term $\delta \rightarrow$ if we consider the 4 possible case types \rightarrow we obtain (for initial N) \rightarrow

$$\Delta E_{X^*} \approx (-1)^{N+1} \delta$$

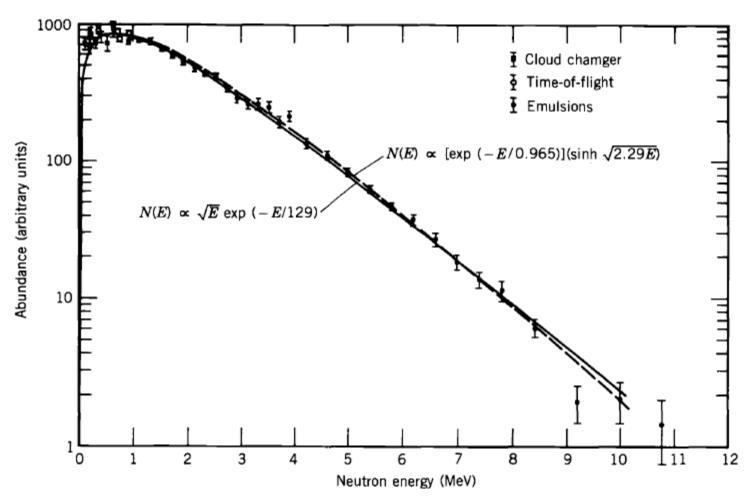

• The difference between nuclei with even neutrons and odd neutrons is $2\delta \rightarrow \approx 1.6$ MeV for $A \approx 240$

Energy in fission: Released energy (1)

We consider again the reaction →

$$^{235}_{92}$$
U₁₄₃ + n $\rightarrow ^{93}_{37}$ Rb₅₆ + $^{141}_{55}$ Cs₈₆ + 2n

- Using the binding energy/nucleon (see for instance http://amdc.in2p3.fr/masstables/Ame2012/Ame2012b-v2.pdf) → Q ≈ 180 MeV → other final products gives energy releases of roughly the same magnitude → quite reasonable to take 200 MeV as an average value for the energy released for ²³⁵U fission
- Experiments allows obtaining the energy distribution of the two fission fragments → the 2 higher energies are at 66 MeV for heavy fragment and 98 MeV for light fragment


Energy in fission: Released energy (2)

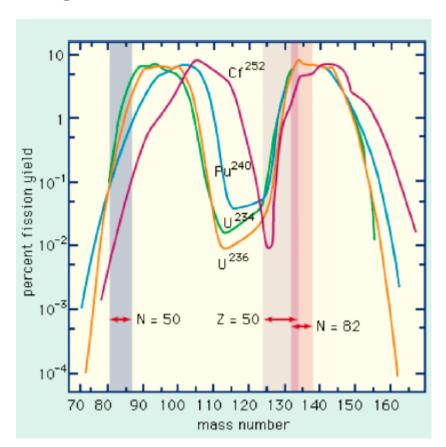
• Conservation of momenta gives (neutrons carry very little momentum) $\rightarrow m_1 v_1 = m_2 v_2 \rightarrow$ ratio between kinetic energies is the inverse of the ratio of the masses \rightarrow

$$\frac{\frac{1}{2}m_1v_1^2}{\frac{1}{2}m_2v_2^2} = \frac{m_2}{m_1}$$

- The ratio of the energies 66 MeV / 98 MeV = 0.67 is consistent with the ratio of the masses 95 / 140 = 0.68
- The total energy carried by the 2 fragments = 164 MeV ≈ 80% of the total fission energy
- The average energy carried by 1 prompt neutron is about 2 MeV → with 2.5 neutrons per fission → the total average energy carried by the neutrons in fission is ≈ 5 MeV (3% of the fragments energy → can be neglected in the equation of momentum conservation)

Energy in fission: Released energy (3)

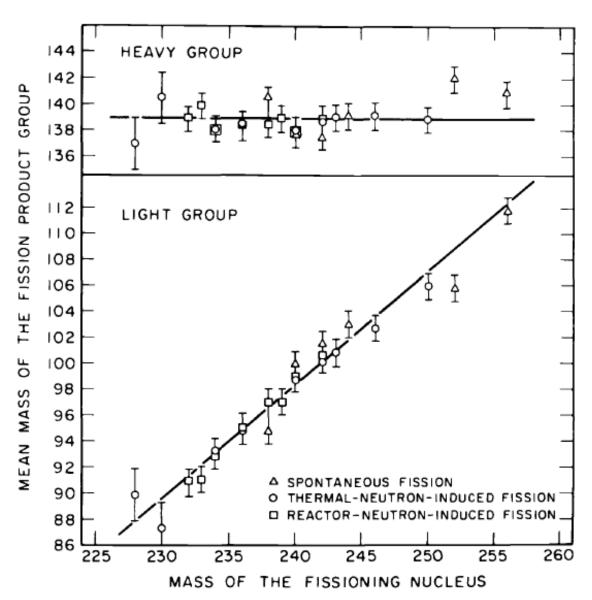
Energy spectrum of prompt neutrons emitted during fission of ²³⁵U → mean value ≈ 2 MeV


Energy in fission: Released energy (4)

- Measurements allows identification of other released energy →
 - prompt γ rays (at the instant of fission \rightarrow within 10⁻¹⁴ s) \rightarrow 8 MeV
 - − β decays from radioactive fragments \rightarrow 19 MeV
 - γ decays from radioactive fragments \rightarrow 7 MeV
- Remark \rightarrow the energy released during the β decay is shared between β particle and neutrino \rightarrow about 30-40% is given to β particles \rightarrow the remainder (\approx 12 MeV) goes to neutrinos \rightarrow the neutrino energy is lost and have no contribution in practice

Nuclear structure (1)

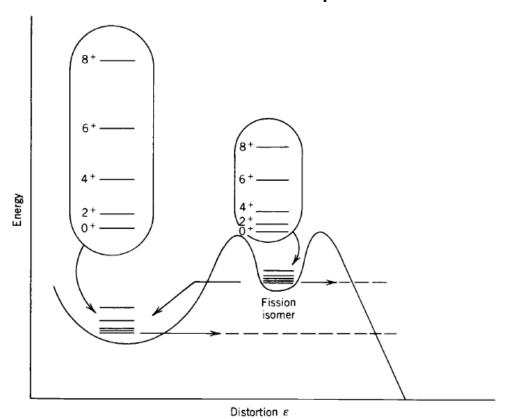
- Previous results obtained from the liquid-drop model
- However shell effect (←) shell model) also plays an important role
- Effect 1 → mass distribution of fragments →


- For heavy fragments → the mass distributions overlap quite well
- For lighter fragment → large variation

Nuclear structure (2)

- Comparing ²³⁶U and ²⁵⁶Fm \rightarrow Z, N and A \nearrow by \approx 8.5%
- If the liquid-drop model of fission is completely correct → shift of both the heavy and light fragment distributions by ≈ 8.5% between ²³⁶U and ²⁵⁶Fm → the average masses should go from ≈ 95 and 140 in ²³⁶U to about 103 and 152 in ²⁵⁶Fm
- Practically \rightarrow the observed average masses in ²⁵⁶Fm are \approx 114 and 141 \rightarrow the 20 additional mass goes to the lighter fragment
- More generally → looking for the average masses of the light and heavy fragments over a mass range from 228 to 256 → for heavy fragment it stays constant at ≈ 140 ↔ for light fragment it ↗ linearly with A → the added nucleons all go to the lighter fragment
- This is in contradiction with the liquid-drop model for which the masses would be uniformly shared

Nuclear structure (3)



Nuclear structure (4)

- Difference can be explained with the shell model
- In previous figure are shown regions with fission fragments with shell-model magic numbers of protons or neutrons
- For heavy fragment \rightarrow presence of one of this regions \rightarrow especially presence of a double magic nucleus (Z = 50 and N = 82): $^{132}_{50}\mathrm{Sn}_{82}$
- This exceptionally stable configuration determines the low edge of the mass distribution of the heavier fragment
- No such effect occurs for the lighter fragment → unaffected by shell closures

Nuclear structure (5)

- Effect 2 → modification of the fission barrier
- Very often → deformed nuclei are stable due to the presence of shells → introduction of a double-humped barrier

Nuclear structure (6)

- For these nuclei $\rightarrow E_{ex} \approx 2\text{--}3$ MeV (far below the barrier height of 6-7 MeV) \rightarrow but their half-lives for spontaneous fission are in the range of $10^{-6}\text{--}10^{-9}$ s
- These isotopes have states in the intermediate potential well \to they could decay either by fission (through a relatively thin barrier) or by γ emission back to the ground state
- They are called fission isomers or shape isomers \longleftrightarrow the word « isomer » is used because they have a long-life for γ decay
- Properties of the fission isomers controlled by the relative height of the 2 barriers →
 - For U and Pu → they are close
 - For Z < 93 (neptunium) → the left barrier is the lowest → γ decay
 - For Z > 97 (berkelium) → the right barrier is the lowest → rapid fission
- Moreover when energy states are closed in the 2 wells \rightarrow resonances

Applications

- Fission reactors → see « Introduction to reactor physics » →
 - Power reactors → extraction of the kinetic energy of the fission fragments as heat → conversion of that heat energy to electrical energy
 - Research reactors → production of neutrons for research (nuclear physics, solid-state physics,...) → particular case: MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) → nuclear reactor coupled to a proton accelerator (Accelerator-driven system or ADS)
- Fission explosives (no comment...)
- Neutron detectors based on fission reactions → Ionization chamber with fissile coating → see « Nuclear Metrology Techniques »