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History

Radioactivity was discover in 1896 by Henri Becquerel while
working on uranium salts

On Earth some elements show « natural » radioactivity due to
their lifetime comparable to the age of the Earth (principally
uranium and thorium)

Artificial radioactivity (artificial production radioactive
elements) is possible with use of particles accelerators or
nuclear reactors - first time (Iréne and Frédéric Jolliot-Curie):

“CAl+5a — +3°P +n
i’gP — ——i’?lSi + BT + v,




Law of radioactive decay (1)

Radioactive decay has a statistical character - impossible to
precisely predict when a disintegration will happen = only
probabilities may be given

If 4 conditions are fulfilled:
1. atoms are identical
2. they are independent
3. their mean life is long
4. their number is large

— the Poisson statistic can be applied:

P:c(T) _ ()\T)xe—)\T

x!
P, is the probability for x disintegrations in a time interval T
and A is the probability of disintegration per unit time = decay
(disintegration) constant (independent of the nucleus age)




Law of radioactive decay (2)

Adt is the disintegration probability of a nucleus in the time
interval dt

The survival probability of a nucleus at time t (if existing in t =0) -
P() (t) — G_At

If N, is the initial number (at t = 0) of nuclei - the number of
survival nuclei N(t) at time t is:

N(t) = N()e_)\t



Half-life and activity (1)

* The half-life T, is time is time taken for half the radionuclide's
atoms to decay -
No

N(Ty2) = 7:N06_T1/2A
-
In 2
Bz = o0

* The mean lifetime for decaying atoms 7is defined as the
arithmetic mean of all the atoms' lifetimes -

|G dt [T e M

fo ‘ ‘dt B fooo Ae— M)




Half-life and activity (2)

e Activity A(t) at time t is defined as the mean number of
disintegrations per time unit -

dN
dt
* The activity unit is Becquerel (Bg) - 1 Bg = 1 disintegration

per second (old unit = Curie (Ci) corresponding to the activity
of 1 g of 22°Ra - 1 Ci=3.7 x 1019 Bq)

A(t) = AN(t) =




Radioactive filiation (1)

* Simple case: Radioactive nucleus 1 (N, at time t = 0) decays
with decay constant A, to stable nucleus 2 -

N1 (t) N0€_)\1t
Ng(t) = NO (1 — 6_)\1t)




Radioactive filiation (2)

Two decay modes are sometimes possible > A and A\,
Total decay rate:

_ (dd_]:) __ (%)a (Ciz_]j)b — (Mo 4+ M)N = AN

The total decay constantis A\, + A\, = A,

Practically ), is observed while A\, and A, are determined by
the final number of isotopes of each mode:

Nl(t) = NQB_Att

Aa _
Noo(t) = )\—No(l e M)

t

Ab — At
Ngjb(t) — —Ng (1 — € )
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Radioactive filiation (4)

* We suppose now X, 1, X5 2 X3
* The number of X, (« parent ») decreases following an
exponential equation -
dN¢

7 = —)\1N1 — Nl(t) = Nl(O)e_)\lt

* The number of X, (« daughter ») increases due to disintegration
of X, and disintegrates with the disintegration constant A, -

dN
d—t2 = — Mo No + A1 N7 = — Ao Ny + A\ Ny (O)G_Alt

e The solution is—>

A
No(t) = Na(0)e P2t 4 —

Ao — A\

N1(0) (e_)‘lt — e_)‘2t)



Radioactive filiation (5)

* The number of X; changes as

dN;
=3 = \oN.
dt 24V2

=)

N3(t) = N3(0) + N2(0) (1 — e~ ") + N1(0) (1 -

)\26_)\175 — )\1€_>\2t
A1 — Ao

* Practically - measures of activities A, = A\;N,and A, = \,N, >
assuming N,(0) = N,(0) =0 >

A — A

Ai(t) = A (0)eM! and  As(t) A1(0) (Mt — e=t)
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Equilibria (1)

* We note that A,(t) is maximum at t = 0 and zero at t = co and
that A,(t)is zeroatt=0and t = co & A,(t) has a maximum for
dA,(t)/dt =0 -

d(A
(dtz) — O — _Ale—)\ltm _I_ )\26—)\2tm
B In )\2/)\1

‘ m = A2 — A1

* This maximum happens when the activities of parent and
daughter are equal > A,(t, ) = A,(t )

o~ AMlbm A2 (e—)\ltm B 6—)\2tm)

-

‘ y _ln)\g/)\l

m—AQ_)\l 13




Equilibria (2)

Att_ - we have « ideal equilibrium»
The ratio of activities of X, and X, is -

As(t) _ A2 (1 B e—()\g—)\l)t)
Ai(t) o — X\
Fort<t,  —->alwaysA,>A,
Fort>t, -> alwaysA, <A,
The specific relation between parent and daughter depends on
the relative values of their disintegration constants—> 3 cases -
1. A, <
2. A, > )
30 0> )




Non-equilibrium: A\, < A,

* X, isotopes disintegrate faster than filiation products X, - the
ratio of activities increases without limit

60
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Example with A\, < A,

e Disintegration of metastable tellurium -

Ty jo = 193h
131mTe \ 1311

131X6

* We have thus > A\, =2.3110%htand A\,=3.59 103 h'

(N,

AN =8 N), e

"’,f‘lz N: FOH ;31

RELATIVE ACTIVITY
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Transient equilibrium: A, > A,

e The activities ratio increases as a function of time and reaches
a constant value = for t = oc:

A2 (t) )\2
Al(t) B A2 — A1
* The daughter activity — A =09,

16 |-
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Secular equilibrium: A, > A,

The activities ratio increases as a function of the time and
reaches 1 pour t - oo:

I
(\W)
~~

S
S’

-
2
—_

 The parent and daughter activities become equal - secular
equilibrium

Example - disintegration of radium -

Ty ) = 1602 an Ty g = 3.8 ]
226Ra ; 222Rn ; 218PO

* Wehave > A\, =1.1810%jtand A\,=1.81 101 jt



Bateman equations

. A A
We consider X; = X5 = Xa—...
Generalization of previous equations -

dNZ - )\i_lN'_ldt — /\ZN@dt
General solution for N, nuclei of type 1 and

none for other types is given by the
Bateman equations -

n
An — NO E cz-e_)‘it
1=1

H?:l Ai
H’?zl(/\i — /\m)

'means that term with i = m is omitted

Neptunium

Uranium

Protactinium

Thorium

Actinium

Radium

Francium

Radon

Astatine

where ¢,,, =

Polonium

Bismuth

Lead

Thallium
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ORIGEN

Bateman formula can be implemented easily in computer code -
but if A, ~ A, for some isotope pair - cancellation can lead to
computational errors - other methods such as numerical
integration or the matrix exponential method are in use

ORIGEN (Oak Ridge Isotope GENeration in SCALE) code calculates
the decay chains by the matrix exponential method

ORIGEN was developed for the Nuclear Regulatory Commission
and the Department of Energy (USA) - easy-to-use standardized
method of isotope depletion/decay analysis for spent fuel, fissile
material and radioactive material

It can be used to solve for spent fuel characterization, isotopic
inventory, radiation source terms and decay heat



Application: Production of radioelements (1)

« Stable element placed into a reactor or an accelerator (such a
cyclotron) - nucleus captures a neutron or a charged particle
— possible production of a radioelement

* The production rate R (unit: m3st) depends on the target
atom density N, (unit: m3), on the density of current J of the
beam (unit: m2s) and on the reaction cross section o unit:
m?) > R=N,oJ

e Aso ~10% cm?andJ~ 10 cm2st - the probability to
convert a stable particle is ~ 1019 st - the number of
converted particle is small - the number of target nuclei is
constant - R is constant



Application: Production of radioelements (2)

 We consider: N = Ny N N
* We have thus:

le — Rdt — AlNldt — Nl(t) = Aﬁ(l —_ e_Alt) — Al — R(l — e_)\lt)
1
* Iftheirradiationtime T < T, > A; =RA,T

* Iftheirradiation time T > T,, > A, = R (secular equilibrium)

—
=
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E°I
%, ;.f/ \ Production ®1Cu (T,, = 3.4 h) due to
; / \\ bombardment of ®'Ni by deuteron
E2 g — use for positron emission
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0P|_|_[_|_| - tomography (PET)
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Application: Carbon-14 dating

Radiocarbon (14-C) is constantly being created in the atmosphere
by the interaction of cosmic rays with atmosphere:

UN+in = HC+1H
The resulting radiocarbon is incorporated into plants
by photosynthesis = into animals by eating the plants

During its life = a plant or animal is exchanging carbon with its
surroundings - same proportion of 14-C as the biosphere

When dying - no more 14-C acquiring and decay of 14-C in the
organic sample

The measurement of the ratio *C/C,,,, gives the sample age

As T,, = 5730 * 40 years - dating is possible for age between a
few hundred years and about 50000 years



Quantum description of radioactive decays (1)

Solving the Schrodinger equation for various time-independent
potentials - energy levels are stationary states

A system in a particular stationary state will remain in that
state for all times = no transition - no decay

If we assume one state being the mixture of two (or more)
states - ¥ = ¢4, + c,10, > probability |c,|? to be found in 1
and |c,|? to be found in 2 - for time-independent potential -
c,;and ¢, are independent on time - # with observation

We are forced to abandon the notion of pure states with well-
defined wave-functions - difficult interpretation of nuclear
structure



Quantum description of radioactive decays (2)

We assume a potential of the form V + V' where Vis the
nuclear potential that gives stationary states and V’is a very
weak additional potential that causes the transition between
the states

Neglecting V' - we obtain the static nuclear wave functions

These wave functions are used to calculate the transition
probability between the « stationary states » under the
influence of V’ = this transition probability is A

Fermi Golden Rule >

2 2 %k
A= W\Vf@\ p(Ey) where Vi, = /wfV’wid'r



Quantum description of radioactive decays (3)

 The potential V' depends on the particular type of transition
which is considered

* The transition probability is thus influenced by the density of
final states p(E;) - within an energy interval dE; the number of
states accessible to the system is dn.= p(E;)dE; = the transition
probability is larger if the number of final states accessible for
the decay is large



Width of the states (1)

Solving the Schrodinger equation for time-independent
potential V - stationary states of the nucleus )(r) & the
time-dependent wave function ¥(r,t) is

U;(r,t) = oy (r)e Eit/h
where E; is the energy of the state

The probability of finding the system in the state is |¥(r,t)|?
— independent on time for stationary state

To be consistent with the radioactive decay law we have to
introduce the decrease with time exp(-t/7;) with 7.= 1/\>

Wi(8)? = |Wi(t = 0)%e/™
The expression of ¥, (r,t) becomes -

\If,,;(’l", t) _ wi(r)e—iEit/he—t/Qn



Width of the states (2)

The resonant state (non-stationary state) can be written -

i) = witr) e ( (B - )

Complex energy: E.—i\h/2

Alternatively the state has no a definite energy - the wave
function is a superposition of components having different
energies (with A(E) the probability amplitude to find the state
at energy E) -

exp (%t(E _ “‘77%)) _ /A(E) exp (%)



Width of the states (3)

* The probability for finding the state at energy E, is given by
the absolute square of the amplitude -

1 1
A(B)|? =
AEN = (E— E;)2 +12/4
* The shape of such a distribution is Lorentzian and I’; = h/T;is

the width of the state i = full width at half maximum (FWHM)
of such a distribution

 The width is the measure of our inability to determine

precisely the energy of the state = it is not a question of
instrumental uncertainty



Width of the states (4)

e Another way to understand it > AEAt > h/2 = if At — oo we
can precisely determine the energy of the state because AE =0

* If the state lives on a average for a time 7 - we cannot
determine its energy except to within an uncertainty of AE ~ A/t

|A(E)|*

* |tis always possible to speak of transitions between distinct
levels because the widths I"of nuclear levels (typically I'< 1010
MeV) is small compared with their energy spacing (~ 103 MeV)



Types of radioactive decay

* There are 3 principal types of decay: a-, (G- and y-decay
processes

* In aand (3 processes - an unstable nucleus emits an cora (3
particle as it tries to become a more stable nucleus

* |n ~-decay process - an excited state decays toward the
ground state without changing the nuclear species



«-decay

The nucleus emit an « particle i.e. a nucleus of helium: 5He,

The *He nucleus is a tightly bound system - the kinetic
energy released is maximized

The decay process is

2XN = 575X o+ 3Hey

The number of protons and neutrons are separately
conserved

Example (with T,, = 1600 years and E,. () = 4.8 MeV):

226 222
Ra138 —> RD136 —+ 2H62



(B-decay (1)

The nucleus can correct a proton or a neutron excess by
directly converting a proton into a neutron or a neutron into a
proton

Three possible ways for this process - each of them involves
another charged particle to conserve electric charge and a
(anti-)neutrino to conserve the electronic lepton number

— B decay:n—>p+e+v

— [tdecay:p—n+et+v

— electron capture (¢):p+e —n+v

For the electron capture - an atomic electron too close to
the nucleus is swallowed

In all cases where 3*-decay is allowed energetically -
electron capture is allowed (competing process) but not the
opposite



(B-decay (2)

In 3~ and B*-decays = a particle is created (electron - « negatron » -
and positron, respectively) - they did not exist inside the nucleus
before the decay - in contrast with a-decay in which the emitted
nucleon were inside the nucleus before the decay

We also note that the emitted 5 and 3* show an energy spectrum -
the total energy is shared between the 3 bodies

In electron capture - the neutrino energy is fixed

Examples:
131 131 — —
=3 Irg — 5y Xerr + 6~ +v

13Al; — PMgs+ 8T +v
%Mngg +e — ngrgo + v

In these processes - Z and N each change by one unitbutZ+ N =
constant



v-decay

An excited state decays to a lower excited state or possibly the
ground state by emission of a photon of ~ radiation with energy
equal to the difference between the nuclear states (less a usually
negligible correction due to the recoil)

~v-decay is observed in all nuclei that have excited bound states (A >
5) and generally follows an a- or 3-decay (daughter nucleus in an
excited state)

T,, is generally small (< 10 s) but sometimes can be > (isomeric or
metastable states) - no clear distinction between states which are
isomeric or not > 10° s is isomeric and 1012 s is not = in between:
fuzzy

Competing process = internal conversion: the energy is transferred
to an atomic electron (no Zand N changes for the nucleus but the
atom becomes ionized)



Other processes

* Spontaneous fission: some nuclei spontaneously fission - a
heavy nucleus with an excess of neutrons splits roughly in half
into two lighter nuclei = the final nuclei are not rigidly
determined but are statistically distributed over the entire range
of medium-weight nuclei + neutrons + ~-rays +...(examples:
256Fm with T,, = 2.6 h or 2>*Cf with T,, = 60.5 days)

* Nucleon emission: As we move further and further from the
stability valley - the energy differences between neighboring
isobars 21 = can be larger than the nucleon binding energy (= 8
MeV) —radioactive decay by nucleon emission - occurs most
frequently in fission products having a large neutron excess -
delayed neutrons - very important in the control of nuclear
power plants (ex: 138Xe — 137Xe + n or 73Br — 7?Se + p)



Branching ratios (1)

» Often it exists several possible decay processes in competing
mode - the decay schemes may be very complicated

* We specify the relative intensities of the competing modes by
their branching ratios - example:

“Bac)ay
Eﬁﬂ'ﬁ]“ 17% H h

A B3%
1.1 u\;v\&

1600 y  0.64 May — ———

EET'"I.:'I«E-

226\c decays by o emission
(0.006%), 5~ emission (83%)
and € (17%) - then ...

E e ————
ﬁmlﬂ'ﬁ zﬁﬁ]as Y



Branching ratios (2)

Frequently - branching ratio is specified by giving the partial
decay constant or partial half- life

For 226Ac >
N = % = 0.024h~ ' = 6.6 x 1079571
Ag = 0.83)\; =55x 10"
A = 017\ =1.1x10"%"1
Ay = 6x107°)N =4 x 1071

Partial half-life (T,,, = 0.693/})) are convenient to represent
branching ratio - but only total half-life has a sense



interactive chart of nuclides

 Allinformation = interactive chart of nuclides:
http://www.nndc.bnl.gov/chart

Inferacflve Qhart of the Nuclides
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Summary of various decay processes
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