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Units and dimensions: Typical values 

• Size of the atom ≈ 10-10 m 
• Size of the nucleus ≈ 10-15 m = 1 femtometer (fm) =  fermi → all 

nuclei have radius = 2-8 fm 
• Typical ¯ or ° decay energy in the range of 1 MeV (megaelectron-

volt) = 106 eV = 1.6021765 £ 10-13 J (1 eV = energy gained by a 
single unit of charge when accelerated through a potential 
difference of 1 V) 

• Unit of mass → 1 unified atomic mass unit (u) = 1.6605390 £ 10−27 
kg → 1/12 of the mass of an unbound neutral atom of 12C (in ground 
state and at rest) 

• Practically → use of mass energy rather than mass → multiplication 
by c2 (c = 299 792 485 ms-1 ≈ 3 £ 108 ms-1) → 1 u = 931.502 MeV 

• Unit of charge → elementary charge (e) = 1.6021766209 C (proton: 
e, electron: -e) 

• Mean lifetime ¿ = 1/¸ with ¸ = probability of disintegration per unit 
time → can be 10-21 or 1019 s  
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Units and dimensions: Multiplication by a power of c 

• Mass m → mc2 (energy) 

• Momentum p → pc (energy) 

• Time t → tc (length) 

 

• Physical constants: 
– Planck constant: ћ = 1.05 £ 10-34 Js → ћc = 197.33 MeVfm 

– Proton mass: mp = 1.6726 £ 10-27 kg → mp = 938.27 MeV/c2 

– Neutron mass: mn = 1.6749 £ 10-27 kg → mn = 939.57 MeV/c2 

– Electron mass: me = 9.1094 £ 10-31 kg → me = 0.511 MeV/c2 ≈ mp/1836 
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Structure of nuclei: Nucleons 

• Atomic nuclei are quantum bound states of particles called 
nucleons 

• Two types of nucleons → positively charged proton and 
uncharged neutron  

• The mass difference between proton and neutron is known  
with a huge precision: mn – mp = 1.293 332 MeV/c2 

• Nucleons are fermions (spin ½) 

• Nucleon is not an elementary particle → an elementary 
particle has its root mean square (rms) radius = 0 
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Root mean square radius of proton and neutron (1) 

• The rms radius (rrms) of a particle (or charge radius) is defined 
as the radius of the charge distribution inside the particle →  

 

 

 

                  For a proton → 

 

 

                          with 
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For a neutron → 
 
 
  

with 



Root mean square radius of proton and neutron (2) 

 

 

 

 

 

 

• The charge density of a nucleon is measured from the analysis 
of high energy electrons scattered from it 

• Practically → measurement of charge density is made through 
their Fourier transform F(q) such as  
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Structure of nuclei: Magnetic moment 

• The spin magnetic moment is the magnetic moment induced by 
the spin of elementary particles: 

  

 

     with S: the spin, q: the charge, m: the mass, g: the gyromagnetic ratio 

• From Dirac theory → for charged fermion: g = 2, for neutral fermion: 
g = 0 (small corrections from quantum electrodynamics - QED) 

• Nucleon is not an elementary particle → gp = 5.5856947 and              
gn = -3.826085 
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Structure of nuclei: Quarks (1) 

• Nucleons are composed of 3 elementary particles: the quarks 

 

 

 

 

 

 

• Quarks have supplementary quantum number: color charge 
(red, blue, green) 

• Anti-quarks have anticolor (antired, antiblue, antigreen)  

• Due to the phenomenon of color confinement → quarks are 
never directly observed or found in isolation 

• Quarks combine to form hadrons  9 

Symbol Spin Charge Flavor 

u 1/2 +2/3 Up 

d 1/2 -1/3 Down 

c 1/2 +2/3 Charm 

s 1/2 -1/3 Strange 

t 1/2 +2/3 Top 

b 1/2 -1/3 Bottom + anti-quarks 



Structure of nuclei: Quarks (2) 

• Theory to be applied to systems of quarks → quantum 
chromodynamics (QCD) 

• Combination of 2 quarks (quark + anti-quark) → meson (pion, 
kaon,…)  

• Combination of 3 quarks with different colors → baryon (proton, 
neutron, hyperon,…) 

• Formation of tetraquarks and pentaquarks seems possible 
(seems to be observed at the CERN) 

• Proton → p = u + u + d 

• Neutron → n = u + d + d 

• Spin of the nucleon (1/2) results from the coupling of 3 spins 1/2 
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Lepton 

• Lepton is an elementary particle 

 

• Spin = 1/2  

 

• Examples:  
– Electron: charge e, mass ≈ 0.5109989  MeV/c2 ≈ 511  keV/c2  

– Positron: charge -e, mass ≈ 511  keV/c2  

– Muon (« heavy electron »): charge –e, m¹ ≈ 209 me-) 

– Neutrino: charge 0, mass ≈ 0 but not 0 → mº < 3 eV/c2, 3 flavors 
(electron, muon, tau), negative helicity (projection of spin onto the 
direction of momentum) 

– Antineutrino: same charge and mass than neutrino → really different? 
→ not clear but all experiments have shown positive helicity 
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Types of forces 

 

 

 

 

 

• Gravitational interaction is negligible compared to the other 
ones → but for systems with a huge number of particles → 
becomes dominating because of the weak total charge of 
macroscopic systems 

• In nuclei → Coulomb interaction is not negligible → becomes 
very important when the number of protons ↗ 
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Force Amplitude Range 

Strong nuclear interaction » 1 » fm 

Coulomb interaction  (or 
electromagnetic) 

» 1/137 
 

Infinite 

Weak nuclear interaction » 10-5 » 10-3 fm 

Gravitation interaction » 10-39 infinite 



Strong nuclear interaction (1) 

• During interactions → exchange of virtual particles between 
particles (Coulomb interaction → exchange of photons) 

• For strong nuclear interaction between nucleons → exchange of 
mass virtual particles (Yukawa theory) → pions (or pi mesons) 
¦+, ¦- and ¦0 (index = charge) 

• Due to time-energy uncertainty relation →  

• The energy fluctuation ¢E necessary to have a possible reaction 
is ¢E » m¦c2  

• In the time interval ¢t the pion car travel a distance » c¢t » 
~/(m¦c) with ~/mc the reduced Compton wavelength 

• This distance gives the range of the nuclear force 
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Strong nuclear interaction (2) 

14 Feynmann diagrams for n/p interactions 



Strong nuclear interaction (3) 

• Same physical mechanism for interaction between 2 protons, 
2 neutrons and 1 proton/1 neutron → exchange of same type 
particle → very similar interactions → property of charge 
independence  

• The strength of the strong interaction between any pair of 
nucleons is the same independently of the nucleon type 
(protons or neutrons) 

• Charge independence is not perfect because ¦0 is necessary 
exchanged for nn and pp interactions and np interactions can 
be done with various ¦ → as potentials are not exactly the 
same → not perfect charge independence  
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Weak nuclear interaction (1) 

• Weak nuclear interaction always neglected in all calculations 
of nuclear structure 

• This effect only appears in processes forbidden to strong 
nuclear interactions → ¯ disintegration 

• Yukawa theory can be adapted to weak interaction → weak 
gauge bosons (W+, W-, Z0) mediate the weak interactions 

 

 

 

• Short range → weakness of the interaction 
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Weak nuclear interaction (2) 

 

 

 

 

 

 

• The electroweak theory unifies weak interaction and 
electromagnetic interaction 

• This theory shows that at high energy (E > mZc
2) → the 2 

interactions have the same order of magnitude 
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Conservation laws (1) 

• A conservation law states that a particular physical quantity does not 
changed (is conserved) during a physical process 

• A conservation law is exact if it was never contradicted 

• A conservation law is approximated if the considered quantity is 
conserved in certain classes of physics processes but not in all (e.g. 
conservation of parity) 

• Principals conservation laws are: 

– conservation of energy and momentum (exact) 

– conservation of angular momentum (exact)  

– conservation of electric charge (exact) 

– conservation of baryon number (approximated) 

– conservation of lepton number (approximated) 

– … 
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Conservation laws (2) 

• Conservation of baryon number → conservation of the total 
number of nucleons (neutrons and protons) minus the total 
number of anti-nucleons (antiprotons and antineutrons) →          
p + d 9 p + p + ° is not allowed (charge YES, baryon number No) 

→ ° + d ! p + n is allowed 

• Conservation of electronic lepton number (Le) → conservation of 
the difference between the total number of [electrons and 
electron neutrinos] and the total number of [positrons and 
electronic antineutrinos] → 

 

      → ºe + n 9 e- + p is NOT allowed but → ºe + n ! e+ + n YES  

• Remark 1: it exists two other types of charged leptons → μ± and 
τ± → similar conservation laws with Lμ and Lτ 
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Conservation laws (3) 

• Remark 2: some recent experiments on neutrino oscillations 
shows that the only truly conserved number is the sum of the 3 
lepton numbers: L = Le + Lμ + Lτ 

 

• Remark 3: p 9 e+ + °  is not possible (conservation of baryon 

and lepton number) but a « possible » theory predicts the 
disintegration of proton (with a characteristic lifetime ¿p ≈ 1029 
years ≈ 1019 times the age of Universe)  

 

• Remark 4: neutron is instable → n ! p + e- + ºe (with Q = (mn - 
mp - me)

2 ≈ 0.782 MeV and ¿n ≈ 885.7 s) 
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Conservation laws: Stability of nuclei 

• Conservation of energy → 1 particle of mass m and charge q 
can spontaneously decay into i particles only if (with Q the 
liberated energy):  

 

 

• Conservation of charge → 

 

• These laws implies that electron and positron are stable (no 
particle of same charge but of smaller mass) 
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Origin of nuclei 

• Nuclei in nature were built by nuclear reactions since the « Big 
Bang »  

• Begin not well known → system at very high T → free quarks and 
gluons (bosons mediating between quarks) = quark-gluon plasma 

• Time t ↗ → T ↘ → quarks and gluons combine to form hadrons 
and nucleons → proton ! neutron and neutron ! proton → but 
as mp < mn → system with smallest mass is favored 

• t ↗ more → T ↘ → collisions → apparition of bounded systems 
(with A   7) → fixed situation = 87% of protons and 13% neutrons 

• Abundance: 74% H + 23-25% He (4p ! 4He + 2e+ + 2ºe+ n°) + …  

• Other nuclei are formed during star explosion: supernova → a lot 
of nuclei are unstable and decay into other nuclei → process of 
formation + decay is called nucleosynthesis 
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Notations: Nuclide 

• A nuclear species – nuclide –  is defined by the number of 
neutrons N and by the number of protons Z (called the atomic 
number → charge in unit of e) → the mass number A is the 
total number of nucleons (the integer closest to the mass of 
the nucleus in u) → A = N + Z → with X the chemical symbol → 

 

 

• Example: deuteron → 

• Isotopes → have same charge Z but different N: 

• Isobars → have the same mass number A → 

• isotone → have the same N but different Z → 
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Quantum numbers 

• (A,Z) define a nuclear species → not the nuclear quantum 
state 

• In atoms → individual electrons can move to higher energy 
orbits ↔ in nuclei → same for individual nucleons   

• Nucleus (A,Z) has a rich spectrum of excited states (with few 
exceptions) which can decay to the ground state by emitting 
photons (°-rays) 

• Energy levels of a nucleus (including ground state) are 
characterized by good quantum numbers (integers or half-
integers) corresponding to eigenvalues of operators (called 
constants of motions) commuting with the Hamiltonian H of 
the nucleus 

• Constants of motions are deduced from symmetries of 
dominating interactions of nucleus (strong + Coulomb) 
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Good quantum numbers 

• Invariance under rotation → total angular momentum J = 
constant of motion 

• Invariance under reflection (sometimes violated but weak 
violation in nuclei) → parity ¦ = constant of motion 

• Other good quantum number → total angular momentum 
projection Jz 

• Complete set of commuting observables → {H, J, Jz, ¦} 

• Nuclear levels are noted →  

 

 

• J is the total angular momentum quantum number, ¼ is the 
parity quantum number and Ex is the excitation energy 
compared to the ground state 

• Remark: Ex  does not depend on the quantum number M 
associated to Jz (different energy states for same Ex and J) 25 



Quantum numbers: Ground state (1) 

• Among all states of the nuclei → the most important is the ground 
state → some simple rules exist to determine its quantum state 

• To obtain ground state → fill nucleons in lowest energy first 

• To obtain ground state → pair up nucleons as you add them           
(« Katz’s rule ») 

• The ground state of all N-even and Z-even stable nuclei is 
characterized by the quantum numbers 0+ ↔ identical nucleons 
tends to pair with another nucleon of the opposite angular 
momentum → J = 0 

• The parity is a statement about what the                                    
nuclear structure of the state would look                                           
like if the spatial coordinates of all the                                         
nucleons were reversed → ¼ = + means                                             
the reversed state = the original ↔                                                       
if even-even nucleus → ¼ = +  
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Quantum numbers: Ground state (2) 

• The ground state of odd-
A nuclei (even number 
of a kind of nucleon and 
odd number of the 
other kind) is described 
by the spin and parity of 
that single odd nucleon 

• Remark: Prediction is 
correct if we recognize 
that single hole in 
subshell gives the same 
J and ¼ as single nucleon 
in same subshell 
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Quantum numbers: Ground state (3) 

• For odd-proton/odd-neutron nucleus → rules of Brennan and 
Bernstein (based on the shell model) → 

 

• Rule 1: when j1 = l1 § ½ and j2 = l2 ¨ ½ → J = |j1 - j2| 

• Rule 2: when j1 = l1 § ½ and j2 = l2 § ½ → J = |j1 § j2| 

• Rule 3: states that for configurations in which the odd nucleons 
are a combination of particles and holes → J = j1 + j2 -1 

 

• Parity is given by ¼ = -1 (l1 + l
2
) 
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Quantum numbers: Ground state (4) 

Examples of application of the rules of Brennan and Bernstein:  

• 38Cl: 17 protons and 21 neutrons → the last proton is a d3/2 
level and the last neutron in a f7/2 level → 
     jp = 2 - ½  / jn = 3 + ½ → J =|7/2 – 3/2| = 2  /  ¼ = - 

• 26Al: 13 protons and 13 neutrons → the last proton and 
neutron are in d5/2 hole states → 
     jp =  jn = 2 + ½ → J =|5/2 + 5/2| = 5  /  ¼ = + 

• 56Co: 27 protons and 29 neutrons → the last proton is in a f7/2 
hole state and the last neutron is in a p3/2 state → 
     J = 7/2 + 3/2 - 1 = 4  /  ¼ = + 
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Energy level pattern for nucleons 

30 

For shell model → nucleon levels are 
characterized by 3 numbers: 
• n: the principal number 
• l: the orbital angular momentum 
         quantum number 
• j: the total angular momentum 

quantum number such as j = l § ½ 



Approximated good quantum numbers (1) 

• Strong nuclear interaction → charge independence → particles 
affected equally by the strong force but with different charges 
(protons and neutrons) can be treated as different states of the 
same particle: the nucleon with a particular quantum number: 
the isospin (isotopic/isobaric spin) → value related to the 
number of charge states 

• For a nucleon: 2 states → isospin quantum number t = ½ → 2 
projections of the isospin → proton (p) has mt = -½ and a 
neutron (n) has mt = +½ (these projections are measured with 
respect to an arbitrary axis called the « 3-axis » in a system 
1,2,3) → t3 = mt~ 

 

31 



Approximated good quantum numbers (2) 

• Interpretation of isospin → the operator 

 

 

      gives the charge e(1/2 - mt) of the nucleon 

• Definition of raising and lowering operators → 
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Approximated good quantum numbers (3) 

• We define the total isospin T of a nucleons system as → 

 

 

 

• All properties of angular momentum can be applied to T → 

 

 

 

• The total charge operator Q of the system can be written → 
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Approximated good quantum numbers (4) 

• For a system of nucleons → isospin follows same rules than 
ordinary angular momentum vector → 2-nucleons system has 
total isospin T = 0 or 1 (corresponding to antiparallel or 
parallel orientations of the 2 isospins) → the 3-axis 
component of the total isospin vector T3 is the sum of the 3-
axis components of the individual nucleons 

• For any nucleus → 

 

 

• Example: 2-nucleons system → p-p: T3 = -1 (T = 1), n-n: T3 = +1 
(T = 1), p-n: T3 = 0 (T = 0 or T = 1) 
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Approximated good quantum numbers (5) 

• If perfect charge independence (and electromagnetic 
interaction is not considered) → the isospin quantum number 
T gives the number 2T + 1 of isobars with this particular level 
in their spectrum with same quantum numbers J and ¼ → 
notation:  
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Energy levels of 14C and 14O are 
shifted by 2.36 and 2.44 MeV ↔ 
≠ mp,n + Coulomb → 14C and 14O 
have T = 1 while 14N has T = 0 
except T = 1 for levels at 2.31 and 
8.06 MeV  



Spectrum: Nuclear levels (1) 

• ≠ types of energy levels 

• Some are bound states → no spontaneous dissociation → de-
excitation to levels with smaller energy by emitting radiation 

• Some are resonances → there are beyond the dissociation 
threshold → dissociation or de-excitation 

• Lifetimes of nuclear excited states are typically in the range 
10−15 − 10−14 s → with few exceptions only nuclei in the 
ground state are present on Earth. 

• The rare excited states with large lifetimes (> 1 s) are called 
isomeric states (or isomers or metastable states) → isomeric 
state of nucleus AX is designed by AmX  

• Isomer has generally J and ¼ very different from states with 
smaller energy  
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Spectrum: Nuclear levels (2) 
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• Ground state 0+ =  stable 
• Level 8- (1.147 MeV): ¿ = 4 s 
• Level 16+ (2.446 MeV): ¿ = 31 years 

(de-excitation to 12+ → ≠ of 4~ 

→small probability) 
 
 



Spectrum: Nuclear levels (3) 

• Extreme example → the first exited state of 180Ta has a lifetime ¿ 
= 1015 years while the ground state β-decays with ¿ = 8 hours → 
All 180Ta present on Earth is therefore in the excited state 
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• Ground state 9/2+ =  unstable but 
long 

• Level 1/2- → 7/2+ 
• Level 7/2+ (0.141 MeV): quick de-

excitation by ° emission to 9/2+ → 
application in nuclear medicine 
 
 



Nuclear radius (1) 

• Previously → definition of the charge radius →  

 

 

 

• The charge density of a nucleon is measured from the analysis 
of high energy electrons elastically scattered from it ↔ 
distance ≈ 0.1 fm → reduced de Broglie wave length ¸/2¼ = 
~/p ≈ 0.1 fm → E ≈ pc ≈ 2000 MeV 

• Initial electron wave function: exp(ikir) (free particle of 
momentum pi = ~ki); scattered electron (also free particle 
with momentum pf = ~kf): exp(ikfr) 

• As elastic collision → | pi | = | pf | 
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Nuclear radius (2) 

• According to the Fermi Golden Rule → probability of 
transition is / to the square of F (with F(0) = 1)→ 

 

 

• q = ki - kf is the momentum change of scattered electron 

• V(r) depends on the nuclear charge density Ze½ch(r’) → 

 

 

• With qr = qrsinµ and integrating on r → normalized F(q) 
(called form factor) is:  
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Nuclear radius (3) 

• If ½ch(r’) depends only on r’ 
(not on µ’and Á’) → 

 

 

 

• As | pi | = | pf | → q = f(®) 
with ® the angle between pi 
and pf → q = (2p/~) sin ®/2 

→ the measure of ® → ½ch 
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Nuclear radius (4) 

• Result for various nuclei → the central nuclear charge density is nearly 
the same for all nuclei → nucleons do not congregate at the center → 
nucleons are piled up as spheres ↔ short range of nuclear force 

• The number of nucleons by unit volume is roughly constant → with R 
the mean nuclear radius of a sphere of uniform density with the same 
charge radius as the nucleus  → 
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Nuclear radius (5) 

• We can also define the matter radius r that is the root mean 
square radius of the distribution of nucleons such as →  

 

 

 

• For a sphere of constant density 
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Nuclear radius (6) 

• From experimental measurements of ½ch and considering that 
the charge radius also follows a law in A1/3 →  
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Assuming that rch ≈ r (true 
for no-exotic nuclei) → 
R0 = 1.24 fm  



Nuclear electromagnetic moments (1) 

• Previous expressions are obtained for a sphere of constant 
density 

• More precise calculations imply to consider a density obtained 
from the Wigner-Eckart theorem: 

 

 

 

 

 

• The charge density is pair and has a rotational symmetry about 
z-axis 

• For J = 0 → ½(r) = ½(0)(r) 45 



Nuclear electromagnetic moments (2) 

• For J ≠ 0 → there is a measurable quantity which gives the 
difference between a spherical charge distribution  and the 
real charge distribution → the electric-quadrupole moment 

• In a general way the electric-multipole moment is written:  

 

 

• Electric-multipole moments are the moments of the charge 
density → as charge density is pair → only pair moments exist 

• For ¸ = 0 → we obtain the trivial value Q(0) = 2Ze / to the total 
charge 
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Nuclear electromagnetic moments (3) 

• Due to the orthogonality of Legendre polynomials → 
multipole moment is ≠ 0 only if J ≥ ¸/2  

• Moreover parity conservation implies → even ¸ 

• Only even multipole moments lower or equal to 2J give a non-
zero value of Q(¸) →in particular electric-dipole moment  of a 
nucleus is zero (considering that the parity is a good quantum 
number) 

• The first non-trivial moment is the electric-quadrupole 
moment (¸ = 2) 
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Electric-quadrupole moment 

• The electric-quadrupole moment can be written:  

 

 

• We can write  

 

 

• For Q(2) > 0 → nucleus is deformed in the direction of z → 
rugby ball shape (prolate) 

• For Q(2) < 0 → nucleus is deformed in the plane ? to z → 
cushion shape (oblate) 

• For Q(2) = 0 → no deformation of the nucleus → spherical 
shape 48 



Nucleus deformation 
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Magnetic-dipole moment (1) 

• Magnetic-multipole moments are other moments 
characteristic of magnetic properties of the nucleus 

• They come from the magnetization density 

• The most important is the magnetic-dipole moment (simply 
called magnetic moment) 

• The operator magnetic-dipole moment is 

 

 

     with gli = 1 for a proton and 0 for a neutron, and gsi are the 

     gyromagnetic ratios (gsp = 5.5856947 and gsn = -3.826085) 
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Magnetic-dipole moment (2) 

• This operator is a combination of the operators L’i (orbital 
kinetic moment) and Si (spin) of each nucleon 

• The magnetic-dipole moment is defined by (with ¹N, the Bohr 
magneton): 

 

 

• From the Wigner-Eckart theorem → the nucleus has a 
magnetic moment if J ≥ 1/2 
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Atomic mass 

• Mass is bound to energy conservation → important to define 
stability of nuclei 

• We define the atomic mass: mass of a neutral atom in ground 
state → M(A,Z) or M(AX) 

• 1 unified atomic mass unit (u) = 1.6605390 £ 10−27 kg = 931.4940 
MeV/c2 = 1/12 of M(12,6) (atom of 12C) 

• Example: 
 M(1H) = 1.007825032 u 

 mp = 1.007276467 u 

 me = 5.48579909 10-4 u 

 M(1H) = mp + me - 1 Rydberg (electron binding energy must be considered) 
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Mass excess 

• Mass atomic is often given in mass excess form:  Δ(A,Z) 
(energy expressed in MeV) → 

 

• Δ for isobar families (fixed A) as a function of Z varies only a 
little → 
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Parabolic in shape 
for odd-A and 
double parabola for 
even-A 



Nuclear mass 

• The nuclear mass is the mass of the nucleus of an isotope in 
ground state → m(A,Z) or m(AX) 

•  We have → 

 

• The electron binding energy Be decreases the total mass of the 
atom  

• Be = i Bi with Bi = ai(Z-ci )
2 (ai and ci are constant parameters for 

each electron shell  

• Be is generally neglected in the definition of nuclear mass (in first 
approximation) because it is quite smaller than usual nuclear 
energies (Be » 10-100 keV ↔ M(A,Z) » A  £ 1000 MeV) 
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Binding energy of a nucleus (1) 

• The binding energy B of a nucleus is defined as the negative of the 
difference between the nuclear mass and the sum of the masses of 
the constituents → 

 

• B is positive for all nuclei (stable or unstable) → implies that the 
nucleus does not spontaneously break down into its all constituents 
(but does not imply that it is stable) 

• We can write (1H is the hydrogen atom and Be(1) = 13.6 eV) →  

 

 

• By adding and subtracting A = N + Z → 
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Separation energy 

• Analogous to ionization energy in atomic physics → definition 
of the neutron/proton separation energy = amount of energy 
that it is needed to remove a neutron/proton from a nucleus 
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Binding energy of a nucleus (2) 

• As first approximation for stable nuclei (with A & 12) →   

57 Stable nuclei Stable and unstable nuclei 



Binding energy of a nucleus (3) 

• This property is explained by the short range of nuclear force 

• Indeed for a long range force (as Coulomb force) → the 
binding energy of a n-particles system is / to the number of 
particles pairs → B(n) = (1/2)n(n-1) 

• As the binding energy of a nucleus as not this trend → nuclear 
interaction has the saturation property → each nucleon may 
only interact with a limited number of close nucleons  

• The binding energy by nucleon is fixed by the numbers of 
neighbours → independent on the size of the nucleus 

• If the nuclei is too small → saturation is not reached 
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Binding energy of a nucleus: Bethe-Weizsäcker formula 

• Semi-empirical expression based on simplified physical arguments 
and on a fitting to data → valid for absolutely stable nuclei 

• Physical model beyond it → liquid drop model → the nucleus 
is treated as a drop of incompressible nuclear fluid of very high 
density 
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aC  ' 0.72 MeV 
aa  ' 23.285 MeV 

aV  ' 15.56 MeV 
aS  ' 17.23 MeV 



• aVA: Volume term → reflects the saturation property → each nucleon 
interacts only with nearest-neighbours → constant binding energy per 
nucleon B/A 

• -aSA
2/3: Surface term → lowers the binding energy → nucleons near the 

surface feel forces coming only from the inside of the nucleus → their 
contribution in first term is overestimated → / to the area 4πR2 ∼ A2/3 

• -aCZ(Z-1)A-1/3: Coulomb repulsion term → long range force due to protons 
→ Coulomb energy EC of a sphere of charge Ze and radius R →  

      → as this energy is / to number of protons pairs → Z2 must be replaced by 

      Z(Z-1) → aC = 0.6e2/4π²0R ≈ 0.72 MeV (with R = 1.24 fm) → it favors a 
neutron excess over protons 

• -aN(N-Z)2A-1: Asymmetry term → due to Pauli principle (isospin) the 
minimum energy in a nucleus is reached for N ≈ Z  (otherwise we could have 
Z = 2 and N = 100 ) → if proton was not charged we would exactly N = Z but 
due Coulomb repulsion N ≥ Z → for small A → N = Z and for large A → N > Z 
→ asymmetry term / to the difference between N and Z → Fermi model 
gives (N-Z)2/A 

 

 

 

 

Bethe-Weizsäcker formula (1) 
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Bethe-Weizsäcker formula (2) 

• ±: Pairing term → as seen before → nucleons have tendency to 
couple pairwise to establish stable configuration → 
– Odd A: ± = 0 by definition → less favorable than N-even and Z-even  but more 

favorable than N-odd and Z-odd 

– Z-even/N-even: all nucleons may be paired → the bonding is favored (± > 0) → 
empirical expression ± = +12A-1/2 MeV 

– Z-odd/N-odd: one neutron and one proton cannot be paired → the binding 
energy is decreased (± < 0) → empirical expression ± = -12A-1/2 MeV 

• This pairing term has important consequences on the stability of 
nuclei → Among the 275 stable known nuclei → 166 are Z-even/N-
even – 55 are Z-even/N-odd – 50 are Z-odd/N-even – 4 are Z-odd/N-
odd: 2H, 6Li, 10B, 14N (attention a lot of unstable Z-odd/N-odd nuclei 
exist) 
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Bethe-Weizsäcker formula (3) 

• The observed binding 
energies as a function of A 
and the predictions of the 
mass formula 

• Only even–odd 
combinations of N and Z 
are considered → pairing 
term vanishes 
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Bethe-Weizsäcker formula (4) 

 

 

 

 

 

 

• The parabola is centered about the point where the equation 

 

     reaches the minimum M/Z = 0 → 

 

 

• The splitting for even-A is due to pairing acting in opposite directions 
for even-even nuclei (lower parabola) and odd-odd nuclei (upper 
parabola) 63 

 
• The Bethe-Weizsäcker formula 

explains the parabolic behaviour 
for the masses → for A = constant 
→ second order polynomial in Z → 
stability valley 

 



Mass spectrometer 

• Production of an ion beam with thermal distribution of 
velocities 

• A selector passes only ions with a particular velocity v 

• Momentum selection by magnetic field B permits mass 
identification → r = mv/qB 
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Nuclei stability: Stability in particles 

• Different notions of stability 

• First definition: stable in particles → no possible dissociation in sub-
systems with smaller total energy 

• We consider (A,Z) ! (A1,Z1) + (A2,Z2) with A = A1 + A2 and Z = Z1 + Z2 

→ stable if (8 A1, Z1): 

 

 

• The nuclear mass can be replaced by the atomic mass except in 
some cases where the stability depends on the presence of the e- 

• This case corresponds to a spontaneous fission, to the emission of ®, 
neutron, proton,… → instability in particles → A changes → lifetime 
generally very short » 10-21 s 
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Nuclei stability: Absolute stability 

• More generally → a nucleus is absolutely stable if (8 mi):  

 

 

• The sum concerns all possible masses and all possible 
disintegration modes 

• If absolute stability → stability in particles 
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Nuclei stability: Instability by ¯ emission  

• Attention → the previous definitions are not sufficient 

 

• Other instabilities exist due to the weak force (¯ disintegration) 
→ instability by ¯ emission  

 

• If ¯ emission → A is constant but N and Z change 

 

• Variable lifetime from 10−6 s to 1015 years 
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Nuclei stability: Examples (1) 

• 12C: no possible splitting emitting energy from ground state, 
no ¯ emission → stable 

• 8Be: can split into 2 4He → M(8,4) - 2M(4,2) ≈ 0.092 MeV → 
unstable (lifetime ≈ 10-16 s) 

• 3H: stable in particles but by ¯ disintegration → 3He (lifetime ≈ 
12.3 years) 

• Information may be deduced from → 
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Nuclei stability: Examples (2) 

• This relation is fulfilled for nucleus 
corresponding to the maximum (Fe) 
of the curve and for nuclei at the 
left of the maximum ↔ their 
fragments have smaller B/A ratios → 
some nuclei are certainly stable 

• For heavy nuclei → completely ≠ → 
they are beyond the maximum → 
they provide energy during splitting 
→ the 2 terms of previous equation 
are negative 
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Nuclei stability: Examples (3) 

• 208Pb: various dissociations seems possible: 2 examples: 

 

 

• Practically → none of these processes is observed and 208Pb is 
stable (only one heavier nucleus is stable: 209Bi) 

• The lifetime of 208Pb is so long → disintegrations can be 
considered as negligible → stable 

• One of the reasons for this long lifetime is that the system of  
nucleons has to cross the potential barrier to split up → the 
probability of crossing may be so small that the lifetime is 
extremely long  
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Nuclei stability: Conventional stability 

• Finally the convention is to consider that a nucleus is stable if 
its lifetime is larger than the age of Universe → 

 

• Practical definition even though it is artificial 

• Example: 209Bi has ¿ = 1.9 1019 years → stable but 
disintegration was observed:   
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Stable nuclei (1) 

• For N and Z < 20 → stable nuclei close to the straight line N = Z (only 3He is 
upper) 

• Tc (Z = 43) and Pm (Z = 61) have no stable isotope 

• For N and Z > 20 → stable isotopes move away from N = Z line → increasing 
effect of Coulomb repulsion → for last stable nuclei N/Z = 1.5 72 



Stable nuclei (2) 
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Stable nuclei (3) 
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Stability valleys 

Proton drip line → Sp = 0 

Neutron drip line → Sn = 0 



Stable nuclei (4) 
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• Nuclei with an excess of neutrons 
(below the ¯ stable nucleus) decay 
via ¯ - emission 

• Nuclei with an excess of protons 
(above the ¯ stable nucleus) decay 
via ¯+ emission or electron capture 

• The dashed lines show the 
predictions of the Bethe-Weizsäcker 
formula  

• Note that for even-A → two stable 
isobars 112Sn and 112Cd 



Magic numbers (1) 

• In atomic physics → the ionization energy I (the energy needed to extract 
an electron from a neutral atom) shows discontinuities around Z = 2, 10, 
18, 36, 54 and 86 (i.e. for noble gases) → these discontinuities are 
associated with closed electron shells 

• An analogous phenomenon occurs in nuclear physics → there exist many 
experimental indications showing that atomic nuclei possess a shell-
structure → they can be constructed (like atoms) by filling successive 
shells of an effective potential well (shell model) 

• Separation energies present discontinuities at special values of N or Z → 
these numbers are called magic numbers 

• These numbers are 2 – 8 – 20 – 28 – 50 – 82 – 126 

• The discontinuity in the separation energies is due to the excess binding 
energy for magic nuclei as compared to that predicted by the Bethe-
Weizsäcker formula 
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Magic numbers (2) 

• For the same reason (shell effect not considered in the liquid 
drop model) → the difference between the experimental 
binding energy Bexp and the binding energy B calculated from 
the Bethe-Weizsäcker formula is maximum for these N values 
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This difference is 
also observed as a 
function of Z 



Magic numbers (3) 

• Equivalent variations or discontinuities appear for other 
quantities as radius, electric and magnetic moments,… 

• Nuclei with magic numbers of neutrons or protons have a 
closed shell that encourages a spherical shape 

• Nuclei having both magic neutrons and protons are particularly 
stable → they are called doubly magic nuclei → 4He (Z = 2), 16O 
(Z = 8), 40Ca (Z = 20), 208Pb (Z = 82) 

• Some nuclei having magic number can be instable → but 
generally with a radioactivity smaller than waited → 28O (Z = 8), 
48Ni, 56Ni, 78Ni (Z = 28), 100Sn, 132Sn (Z = 50) 

• The following magic number (not observed) could be 184  
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Magic numbers (4) 
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Particular types of nuclei (1) 

• Exotic nuclei: Instable nuclei characterized by a number of 
neutrons or protons vary far from the stability valley (examples: 
24O,…) 

• Halo nuclei: Exotic nuclei with a radius appreciably larger than 
that predicted by the rule R = R0A-1/3 → they are characterized 
by a core nucleus (with normal radius) surrounded by a halo of 
orbiting protons or neutrons → they have necessarily very weak 
separation energy (examples: 8He, 22C …) 

• Transuranium nuclei (also called transuranic nuclei) nuclei with 
atomic number greater than 92 (Z of uranium, last natural 
element):   
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Particular types of nuclei (2) 

Example of halo nuclei: 11Li 
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Particular types of nuclei (3) 

• Superheavy nuclei: Hypothetic nuclei with life time larger 
than the last transuranium nuclei due to the proximity of the 
next magic number (126) → island of stability 
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Transuranium nuclei 


