Chapter II: Quantum physics

Contents

- 1. Introduction
- 2. Postulates
- 3. Problems in one dimension
- 4. Problems in three dimensions
- 5. Angular momentum operators
- 6. Fermi's golden rule

Introduction (1)

- Quantum mechanics is a fundamental theory in physics \rightarrow describes nature and explain properties of microscopic molecules, atoms and subatomic particles
- Small objects have characteristics of both particles and waves
- Work of Planck in 1900 (analyzing blackbody radiation) and Einstein in 1905 (analyzing the photoelectric effect) \rightarrow light energy is delivered not smoothly and continuously as a wave but instead in concentrated bundles or « quanta »
- In 1924 de Broglie postulated that associated with a « particle » moving with momentum p is a « wave » of wavelength $\lambda = h/p$ (h = Planck's constant) $\rightarrow \lambda$ = de Broglie wavelength

Introduction (2)

- Probabilistic character of quantum mechanics \rightarrow results of measurements are given as a collection of possibilities \rightarrow each of them associated to a given probability
- The goal of quantum physics is to explain and foresee the evolution in time of a physical system (collection of particles)
- Principles of quantum mechanics are expressed in a series of postulates
- Remarks : in general cases \rightarrow kinetic energy of particles is much smaller than rest energy \rightarrow nonrelativistic quantum mechanics

Postulates (1)

First postulate:

At each instant the state of a physical system is represented by a ket $|\psi\rangle$ in the space of states

Comments:

- The space of states is a vector space
- $-$ The space of states includes the concept of inner product \rightarrow the inner product associates a complex number to any two states \rightarrow

$$
(\ket{\psi}, \ket{\phi}) \equiv \langle \psi | \phi \rangle = \int dx \psi^*(x) \phi(x)
$$

 $-$ A function $f(x)$ can be evaluated in the $|\psi\rangle$ system \rightarrow expectation value of $f \rightarrow$
 $\langle \psi | f | \psi \rangle = \int dx \psi^*(x) f(x) \psi(x)$

Postulates (2)

Second postulate:

Every observable attribute of a physical system is described by an operator that acts on the kets that describe the system

Comments:

 $-$ By convention an operator A acting on a ket $|\psi\rangle$ is denoted by left multiplication \rightarrow

$$
A:|\psi\rangle\rightarrow|\psi'\rangle=A\,|\psi\rangle
$$

– In the context of wave-mechanics \rightarrow state is replaced by wavefunction $\psi(x) \rightarrow$ example of momentum operator (1D) $p = -i\hbar d/dx \rightarrow$

$$
p|\psi\rangle = p\psi(x) = -i\hbar \frac{d\psi(x)}{dx}
$$

Postulates (3)

Third postulate:

The only possible result of the measurement of an observable A is one of the eigenvalues of the corresponding operator A

Comments:

- Origin of the word « quantum »
- $-$ For every operator \rightarrow there are special states that are not changed by the action of an operator (except for being multiplied by a constant) \rightarrow they are the eigenstates and the constant numbers are the eigenvalues of the operator:

$$
A\ket{\psi_a}=a\ket{\psi_a}
$$

Postulates (4)

Fourth postulate:

When a measurement of an observable A is made on a state $|\psi\rangle$ the probability of obtaining an eigenvalue *aⁿ* is given by the square of the inner product of $|\psi\rangle$ with the eigenstate $|a_{n}\rangle$ \rightarrow | $\langle a_n | \psi \rangle$ |²

Comments:

- $-$ The states are (normally) assumed to be normalized to unity \rightarrow $|\langle \psi | \psi \rangle| = 1$ and $|\langle a_j | a_k \rangle| = \delta_{jk}$
- $-$ The complex number $|<\!\!a_n|\psi\!\!>$ | is known as the « probability amplitude » or « amplitude » to measure a_n as the value for *A* in the state $|\hspace{.04cm} \psi \hspace{.02cm} >$

Postulates (5)

Fifth postulate:

Immediately after the measurement of an observable *A* has yielded a value *aⁿ* , the state of the system is the normalized eigenstate|*an*>

Comments:

– This is known as the « collapse of the wavepacket »

Postulates (6)

Sixth postulate:

The state $|\psi(t)\rangle$ of each non-relativistic quantum system is a solution of the Schrödinger equation depending on the time \rightarrow

$$
i\hbar \frac{d}{dt}\ket{\psi(t,\bm{r})}=H\ket{\psi(t,\bm{r})}
$$

Comments:

 $-$ *H* is the Hamiltonian operator \rightarrow it represents the total energy of the particle of mass m in the potential field $V \rightarrow$ time-independent or stationary Schrödinger equation \rightarrow

$$
H\psi(\boldsymbol{r}) = E\psi(\boldsymbol{r}) \quad \text{with}
$$

$$
H = -\frac{\hbar^2}{2m}\Delta\Psi + V(\boldsymbol{r})
$$

Problems in one dimension: Free particle (1)

No forces \rightarrow $V(x) = 0 \rightarrow$

- First term $\exp \rightarrow \psi$ wave travelling in the positive x direction
- Second term $\exp \rightarrow \psi$ wave travelling in the negative x direction

Problems in one dimension: Free particle (2)

- Intensities of the waves are given by $|A|^2$ and $|B|^2$
- No boundary conditions \rightarrow no restrictions on the energy $E \rightarrow \text{all}$ values of *E* give solutions to the equation
- No convergence at $+\infty$ or $-\infty \rightarrow$ normalization condition cannot be applied in this case
- Different normalization system \rightarrow source such as an accelerator located at $x = -\infty$ emitting particles at a rate *I* (particles s⁻¹) with momentum $p = \hbar k$ in the positive *x* direction \rightarrow particles traveling in the positive *x* direction \rightarrow *B* = 0 \rightarrow particle current *j* = $(\hbar k/m) |A|^2$

Problems in one dimension: Step potential $E > V_0(1)$

$$
V(x) = 0 \t x < 0, \text{ region 1}
$$

= V_0 x > 0, region 2 with $V_0 > 0$

- For $x < 0 \rightarrow$ as free particle with $k = k_1 = (2mE/\hbar)^{1/2}$
- For $x > 0 \rightarrow$ $k_2^2 = \frac{2m(E-V_0)}{\hbar^2}$ $\psi_2(x) = Ce^{ik_2x} + De^{-ik_2x}$
- Boundary conditions give \rightarrow A+*B* = *C*+*D* and k_1 (*A*-*B*) = k_2 (*C*-*D*)
- Particle comes from source at $x = -\infty \rightarrow A$ term represents the incident wave / *B* term is the reflected wave / *C* term is the transmitted wave / *D* = 0 (no possibility of reflection after the step)

Problems in one dimension: Step potential $E > V_0$ (2)

• Reflection coefficient or probability \rightarrow

$$
R = \frac{|B|^2}{|A|^2} = \left(\frac{1 - k_2/k_1}{1 + k_2/k_1}\right)^2
$$

• Transmission coefficient

$$
T = \frac{k_2}{k_1} \frac{|C|^2}{|A|^2} = \frac{4k_2/k_1}{(1 + k_2/k_1)^2}
$$

• Application in nucleon-nucleon scattering problems

Image taken from: K.S. Krane, *Introductory Nuclear Physics*, Wiley, Oboken, 1988

Problems in one dimension: Step potential *E* < *V⁰*

In region 2 \rightarrow

 $k_2^2 = \frac{2m(V_0 - E)}{\hbar^2}$ $\psi_2(x) = Ce^{k_2x} + De^{-k_2x}$

- As first term $\rightarrow \infty$ for $x \rightarrow \infty \rightarrow C = 0$
- Important difference compared to classical mechanics \rightarrow All classical particles are reflected at the boundary \leftrightarrow the quantum mechanical wave packet can penetrate a short distance into the forbidden region

Image taken from: K.S. Krane, *Introductory Nuclear Physics*, Wiley, Oboken, 1988

Problems in one dimension: Barrier potential $E > V_0(1)$

$$
V(x) = 0 \t x < 0, \text{ region 1}
$$

= V_0 $0 \ge x \ge a, \text{ region 2}$
= 0 $x > a, \text{ region 3}$

Solutions in regions 1, 2 and 3 \rightarrow

$$
\psi_1(x) = Ae^{ik_1x} + Be^{-ik_1x}
$$

\n
$$
\psi_2(x) = Ce^{ik_2x} + De^{-ik_2x}
$$

\n
$$
\psi_3(x) = Fe^{ik_3x} + Ge^{-ik_3x}
$$

\n
$$
k_1^2 = k_3^2 = \frac{2mE}{\hbar^2} \qquad k_2^2 = \frac{2m(E - V_0)}{\hbar^2}
$$

Problems in one dimension: Barrier potential $E > V_0(2)$

- We use continuity conditions at *x* = 0 and at *x* = *a*
- We assume particles coming from $x = -\infty \rightarrow G = 0$
- After calculations \rightarrow transmission coefficient becomes

Problems in one dimension: Barrier potential $E < V_0(1)$

Expressions in region 1 and 3 are identical and in region 2 \rightarrow

$$
\psi_2(x) = Ce^{k_2x} + De^{-k_2x} \qquad \qquad k_2^2 = \frac{2m(V_0 - E)}{\hbar^2}
$$

- As x varies between 0 and *a* in region $2 \rightarrow C$ and $D \neq 0$
- After calculations \rightarrow transmission coefficient becomes

$$
T = \left(1 + \frac{1}{4} \frac{V_0^2}{E(V_0 - E)} \sinh^2 k_2 a\right)^{-1}
$$

Classically $T = 0 \rightarrow$ the particle is not permitted to enter the forbidden region (negative kinetic energy) \leftrightarrow the quantum wave can penetrate the barrier \rightarrow nonzero probability to find the particle beyond the barrier. 18 means 18 means 18

Problems in one dimension: Barrier potential $E > V_0(2)$

- This phenomenon is called barrier penetration or quantum mechanical tunneling or tunnel effect
- Important applications in nuclear physics $\rightarrow \alpha$ decay and fission

Image taken from: K.S. Krane, *Introductory Nuclear Physics*, Wiley, Oboken, 1988

1D problem: Infinite well (1)

$$
V(x) = \infty \quad x < 0, \, x > a
$$
\n
$$
= 0 \quad 0 \le x \le a
$$

Image taken from: K.S. Krane, *Introductory Nuclear Physics*, Wiley, Oboken, 1988

- The walls are absolutely impenetrable \rightarrow particle is trapped between $x = 0$ and $x = a$
- Inside the solution of the Schrödinger equation is \rightarrow $\psi(x) = A \sin kx + B \cos kx$
- Continuity condition at $x = 0 \rightarrow \psi(0) = 0 \rightarrow$ true only for $B = 0$
- At $x = a \rightarrow$ the continuity condition gives \rightarrow

$$
A\sin kx = 0
$$

1D problem: Infinite well (2)

- As $A = 0$ is not acceptable \rightarrow sin $ka = 0$ \rightarrow *ka* = $n\pi$ for $n = 1, 2, 3,...$
- Quantification condition on energy \rightarrow

$$
E_n = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2 \pi^2}{2ma^2} n^2
$$

Corresponding states ψ are bound states (potential confines particle in a certain region of space) \rightarrow

$$
\psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}
$$

Image taken from: K.S. Krane, *Introductory Nuclear Physics*, Wiley, Oboken, 1988

1D problem: Finite well (1)

$$
V(x) = V_0 \t|x| > a/2
$$

$$
= 0 \t|x| < a/2
$$

• Bound-state solutions (with $E < V_0$) are

$$
\psi_1(x) = Ae^{k_1x} + Be^{-k_1x} \quad \text{for } x < -a/2
$$

\n
$$
\psi_2(x) = Ce^{ik_2x} + De^{-ik_2x} \quad \text{for } -a/2 \le x \le a/2
$$

\n
$$
\psi_3(x) = Fe^{k_1x} + Ge^{-k_1x} \quad \text{for } x > a/2
$$

$$
k_1^2 = \frac{2m(V_0 - E)}{\hbar^2} \qquad k_2^2 = \frac{2mE}{\hbar^2}
$$

1D problem: Finite well (2)

- Wave function has to be finite in region $1 \rightarrow$ for $x = -\infty \rightarrow B = 0$
- Wave function has to be finite in region $3 \rightarrow$ for $x = \infty \rightarrow F = 0$
- Due to continuity at $x = \pm a/2 \rightarrow$

$$
k_2 \tan \frac{k_2 a}{2} = k_1
$$
 $-k_2 \cot \frac{k_2 a}{2} = k_1$

Eq. cannot be resolved directly \rightarrow numerical or graphical methods \rightarrow graphical solutions easiest with eq. in the form \rightarrow

$$
\alpha \tan \alpha = (P^2 - \alpha^2)^{1/2} \longrightarrow -\alpha \cot \alpha = (P^2 - \alpha^2)^{1/2}
$$

$$
\alpha = \frac{k_2 a}{2} \qquad P = \left(\frac{mV_0 a^2}{2\hbar^2}\right)^{1/2}
$$

1D problem: Finite well (3)

- Right side \rightarrow circle of radius $P \leftrightarrow$ left side \rightarrow tangent function
- Solutions are given by the points where the circle intersects the tangent
- Therefore the number of solutions is determined by the radius $P \to$ by the depth $V₀$ of the well (for infinite well \to infinite number of bound states)
- For $P < \pi/2$: only one bound state \leftrightarrow for $\pi/2 < P < \pi$: two bound states
- Technique that allows to estimate the depth of the nuclear potential \rightarrow for deuteron: only one bound state

1D problem: Finite well (4)

Solutions for *P* = 6 (as an example) \rightarrow 4 solutions at α = 1.345, 2.679, 3.985, 5.226

Images taken from: K.S. Krane, *Introductory Nuclear Physics*, Wiley, Oboken, 1988

1D problem: Simple Harmonic Oscillator (1)

$$
V(x) = \frac{1}{2}kx^2
$$

• Any reasonably well-behaved potential can be expanded in a Taylor series about the point $x_0 \rightarrow$

$$
V(x) = V(x_0) + \left(\frac{dV}{dx}\right)_{x=x_0} (x - x_0) + \frac{1}{2} \left(\frac{d^2V}{dx^2}\right)_{x=x_0} (x - x_0)^2 + \dots
$$

- If x_0 is a potential minimum \rightarrow the second term = 0 and since the first term is a constant \rightarrow the interesting term is the third term
- Near its minimum the system behaves like a simple harmonic oscillator \rightarrow The study of the simple harmonic oscillator is important for a large number of systems

1D problem: Simple Harmonic Oscillator (2)

• To solve the Schrödinger equation \rightarrow change of $\psi \rightarrow$

$$
\psi(x) = h(x) \exp(-\alpha^2 x^2/2)
$$

- *h*(*x*) is a simple polynomial function in *x* and $\alpha^2 = (km)^{1/2}/\hbar$
- The degree of the polynomial \rightarrow the highest power of x that appears is determined by the quantum number *n* that labels the energy states \rightarrow

$$
E_n = \hbar \omega_0 \left(n + \frac{1}{2} \right) \quad \text{with } n = 0, 1, 2, \dots
$$

• where $\omega_0 = (k/m)^{1/2}$ is the classical angular frequency of the oscillator

1D problem: Simple Harmonic Oscillator (3)

- Results for the probabilities resemble those of finite well
- Energy levels are equally spaced
- Potential is infinitely deep \rightarrow number of bound states is infinite

3D problem: Infinite Cartesian Well (1)

 $V(x) = \infty$ $x < 0, x > a, y < 0, y > a, z < 0, z > a$ $= 0$ $0 \le x \le a$, $0 \le y \le a$, $0 \le z \le a$

- The particle is confined to a cubic box of dimension *a*
- Inside the well \rightarrow the Schrödinger equation is

$$
-\frac{\hbar^2}{2m}\left(\frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2}\right) = E\psi(x, y, z)
$$

With solutions \rightarrow

 $\psi_{n_x,n_y,n_z}(x,y,z) = \sqrt{\frac{8}{a^3}} \sin \frac{n_x \pi x}{a} \sin \frac{n_y \pi y}{a} \sin \frac{n_z \pi z}{a}$ $E_{n_x,n_y,n_z} = \frac{\hbar^2 \pi^2}{2m a^2} \left(n_x^2 + n_y^2 + n_z^2 \right)$

3D problem: Infinite Cartesian Well (2)

- n_x n_y n_z are independent integers > 0
- The lowest state (ground state) has quantum numbers ($n_{\mathsf{x}'}$, $n_{\mathsf{y}'}$ *nz*) = (1,1,1)
- The probability distribution has a maximum at the center of the box falling gradually to 0 at the walls like $sin²$

Image taken from: K.S. Krane, *Introductory Nuclear Physics*, Wiley, Oboken, 1988

3D problem: Infinite Cartesian Well (3)

- The first excited state has 3 possible sets of quantum numbers: (2,1,1), (1,2,1) and (1,1,2)
- Each of these distinct and independent states has a different wave function \rightarrow a different probability density \rightarrow different expectation values of the physical observables
- Attention \rightarrow they have the same energy \rightarrow situation called degeneracy
- Degeneracy is extremely important for atomic structure \rightarrow how many electrons can be in each atomic subshell

3D problem: Infinite Spherical Well (1)

- In general \rightarrow use of spherical coordinates with potential depending only on *r* (not θ or ϕ)
- Separable solutions of the form $\psi(r,\theta,\phi) = R(r)\Theta(\theta)\Phi(\phi)$
- The central potential *V*(*r*) appears only in the radial part of the equation $R(r) \rightarrow$ the angular parts can be solved directly
- Differential equation for $\varPhi(\phi)$ (with m_{l}^{2} the separation constant) \rightarrow

$$
\frac{d^2\Phi}{d\phi^2} + m_l^2\Phi = 0
$$

The solution is

$$
\Phi_{m_l}(\phi) = \frac{1}{\sqrt{2\pi}} \exp(i m_l \phi)
$$

The m_l = 0, \pm 1 \pm 2,...

3D problem: Infinite Spherical Well (2)

• The equation for $\Theta(\theta) \rightarrow$

$$
\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + \left[l(l+1) - \frac{m_l^2}{\sin^2\theta} \right] \Theta = 0
$$

- Where $l = 0, 1, 2, 3...$ and $m_l = 0, \pm 1 \pm 2,...$
- The solutions $\Theta_{lm}(\theta)$ are expressed as a polynomial of degree *l* in sin θ or cos θ
- Together and normalized, $\Phi_{m_l}(\phi)$ and $\Theta_{lm_l}(\theta)$ give the spherical harmonics $\mathsf{Y}_{lm_l}\!(\theta,\phi)$
- These functions give the angular part of the solution to the Schrödinger equation for any central potential *V*(*r*)
- For example \rightarrow give the spatial properties of atomic orbitals responsible for molecular bonds

3D problem: Infinite Spherical Well (3)

Image taken from: K.S. Krane, *Introductory Nuclear Physics*, Wiley, Oboken, 1988

3D problem: Infinite Spherical Well (4)

• For a given $V(r) \rightarrow$ radial equation is

$$
-\frac{\hbar^2}{2m}\left(\frac{d^2R}{dr^2} + \frac{2}{r}\frac{dR}{dr}\right) + \left[V(r) + \frac{l(l+1)\hbar^2}{2mr^2}\right]R = ER
$$

- The $/(l+1)$ term is an addition to the potential \rightarrow « centrifugal potential » acts like a potential that keeps the particle away from the origin when *l >* 0
- Example of infinite spherical well \rightarrow

$$
V(x) = \infty \quad r > a
$$

= 0 \quad r < a

• Inside the well \rightarrow solution are expressed in terms of the spherical Bessel functions *j l* (*kr*)

3D problem: Infinite Spherical Well (5)

- Continuity condition at *r* = *a* to find the energy eigenvalues \rightarrow *j l* (*ka*) = 0
- Transcendental equation \rightarrow numerical solutions \rightarrow tables of the spherical Bessel functions to find the zeros for any given value of *l*
- For example \rightarrow $l = 0 \rightarrow$ from the tables $j_0(x) = 0$ at $x = 3.14$, 6.28, 9.42, 12.57,…
- For $l = 1 \rightarrow$ first few zeros of *j1* (*x*) at x = 4.49, 7.73, 10.90, 14.07

Image taken from: K.S. Krane, *Introductory Nuclear Physics*, Wiley, Oboken, 1988

3D problem: Infinite Spherical Well (6)

- Since $E = \hbar^2 k^2 / 2m \rightarrow$ solutions for the allowed values of *E* energies
- Repeating process for $l = 2$, $l = 3,... \rightarrow$ construction of the spectrum of the energy states

Image taken from: K.S. Krane, *Introductory Nuclear Physics*, Wiley, Oboken, 1988

3D problem: Infinite Spherical Well (7)

- The levels are also degenerate → since *E* depends only on *l* → the wave functions with different m_l values all have the same energy
- Since m_l is restricted to the values 0, \pm 1, \pm 2, ..., \pm *l* \rightarrow there are exactly 2*l* + 1 possible Y*lm^l* for a given *l* → each level has a degeneracy of 2*l* + 1

3D problem: Simple Harmonic Oscillator (1)

- Central oscillator potential $\rightarrow V(r)=1/2kr^2$
- For all central potentials \rightarrow the angular part of the solution to the Schrodinger equation is $\mathsf{Y}_{lm}(\theta,\phi) \to$ we have only to find the solution to the radial equation
- As in 1D \rightarrow the solution is the product of an exponential and a finite polynomial
- The energy levels are given by

$$
E_n = \hbar \omega_0 \left(n + \frac{3}{2} \right) \quad \text{with } n = 0, 1, 2, \dots
$$

3D problem: Simple Harmonic Oscillator (2)

- No dependence on *l* for the energy but not all *l* values are permitted
- From the mathematical solution of the radial equation \rightarrow *l* can be at most equal to *n* and takes only even or only odd values as *n* is even or odd
- Example \rightarrow For $n = 5$, the permitted values of *l* are 1, 3, and 5
- Since *E* do not depend on $m_l \rightarrow$ additional degeneracy of 2/+ 1 for each *l*
- For $n = 5$ level has a degeneracy of $[(2 * 1 + 1) + (2 * 3 + 1) +$
- $(2 * 5 + 1)$] = 21
- Degeneracy equals to $1/2(n+1)(n+2)$

3D problem: Simple Harmonic Oscillator (3)

Images taken from: K.S. Krane, *Introductory Nuclear Physics*, Wiley, Oboken, 1988

Commutator

Mathematical definition of Commutator \rightarrow

 $[A, B] = AB - BA$

- This is equal to 0 if they commute and something else if they do not commute
- It is known that you cannot know the value of two physical values at the same time if they do not commute (Heisenberg's principle)
- If we can find a set of operators commuting with $H \rightarrow$ this set is complete in the sense that all energy eigenstates are uniquely labelled by the eigenvalues of the above operators
- A key property of central potential problems is that the angular momentum operators commute with the Hamiltonian

(Orbital) Angular momentum (1)

- In solutions of the 3D Schrödinger equation \rightarrow prominent role of the quantum number *l*
- In atomic physics \rightarrow label the different electron wave functions and give information about their spatial behaviour
- This angular momentum quantum number has the same function in all 3D problems involving central potentials *V*(*r*)
- In classical physics \rightarrow *l* = *r* \times *p*
- In quantum mechanics \rightarrow components of **p** have to be replaced by their equivalent operators:

$$
p_i = -i\hbar \frac{\partial}{\partial x}
$$

(Orbital) Angular momentum (2)

- Result for which a central potential is considered \rightarrow having a wave function $R(r)$ Y $_{lm}$ (θ , ϕ) \rightarrow independent of the form of $R(r)$
- It is simple to calculate $l^2 \rightarrow$

 $\langle l^2 \rangle = \hbar l(l+1)$

- As in classical physics for central potentials \rightarrow the angular momentum is a constant of the motion
- The atomic substates with a given *l* value are labeled using spectroscopic notation \rightarrow same spectroscopic notation in nuclear physics: s for $l = 0$, p for $l = 1$, ...

Image taken from: K.S. *Introductory Nuclear Physics*,

Wiley, Oboken, 1988

(Orbital) Angular momentum (3)

- Direction of $l \rightarrow b$ arrier imposed by the uncertainty principle in quantum mechanics \rightarrow it is permitted to know exactly only one component of *l* at a time \rightarrow when one component is known the other two components are completely indeterminate
- By convention \rightarrow *z* component is chosen \rightarrow

$$
\langle l_z\rangle=\hbar m_l
$$

with m_l = 0, \pm 1 \pm 2,...

Spin angular momentum

- Spin angular momentum = Intrinsic angular momentum = Spin
- Nucleons (like electrons) have spin quantum number *s* = ½
- Usual calculations for angular momenta \rightarrow

$$
\langle s^2 \rangle = \hbar s (s+1)
$$

$$
\langle s_z \rangle = \hbar m_s \quad (m_s = \pm \frac{1}{2})
$$

• Useful to imagine the spin as a vector **s** with possible *z* components = \pm ½ \hbar

Total angular momentum (1)

• The total angular momentum *j* combines both the spin and orbital angular momentum of a particle or system \rightarrow

$$
\boldsymbol{j}=\boldsymbol{l}+\boldsymbol{s}
$$

• Behaviour of total angular momentum \rightarrow

$$
\langle \mathbf{j}^2 \rangle = \hbar j(j+1)
$$

$$
\langle j_z \rangle = \langle j l_z + s_z \rangle = \hbar m_j
$$

• We have $m_j = -j$, $-j + 1, \ldots, j - 1, j$ (*j* is the total angular momentum quantum number)

Total angular momentum (2)

- As $m_s = \pm \frac{1}{2} \rightarrow m_i = m_l + m_s = m_l \pm \frac{1}{2}$
- m_l is always an integer $\rightarrow m_j$ is half-integral \rightarrow *j* is half-integral \rightarrow

$$
j = l + \frac{1}{2}
$$
 or $j = l - \frac{1}{2}$

- The *j* value is noted as a subscript in spectroscopic notation
- For $l = 1$ (p states) \rightarrow two possible *j* values: $l + 1/2 = 3/2$ and $l - 1/2 = 1/2$
- These states are written as $p_{3/2}$ and $p_{1/2}$

General addition of angular momenta

- General rules for the addition of two angular momenta J_1 and $J_2 \rightarrow J = J_1 + J_2$
- When j_1 and j_2 (corresponding quantum numbers) are "added" the maximal and minimal values of j are $j_{max} = j_1 + j_2$ and $j_{min} = |j_1 - j_2|$
- The allowed *j*-values in this interval are $j = |j_1 j_2|$, $|j_1 j_2|$ + $1, \ldots, j_1 + j_2$
- If both j_1 and j_2 are half-integral or if both are integers \rightarrow the possible quantum numbers *j* are integers \leftrightarrow in the opposite case the resulting *j*-values become half-integral
- Properties known as triangular inequality and noted \rightarrow

$$
|j_1 - j_2| \le j \le j_1 + j_2
$$

Parity (1)

- The parity operation causes a reflection of all of the coordinates through the origin: $r \rightarrow -r$
- In Cartesian coordinates $\rightarrow x \rightarrow -x / y \rightarrow -y / z \rightarrow -z$
- In spherical coordinates $\rightarrow r \rightarrow r / \theta \rightarrow \pi \theta / \phi \rightarrow \phi + \pi$
- If a system is left unchanged by the parity operation \rightarrow none of the properties should change as a result of the reflection
- The values of the observable quantities depend on $|\psi|^2 \rightarrow$

If
$$
V(r) = V(-r) \rightarrow |\psi(r)|^2 = |\psi(-r)|^2
$$

Parity (2)

- Consequence $\rightarrow \psi(\textit{-r}) = \pm \psi(\textit{r})$
- In case $\psi(-r) = +\psi(r) \rightarrow$ positive or even parity
- In case $\psi(-r) = -\psi(r) \rightarrow$ negative or odd parity
- If the potential $V(r)$ is unchanged by the parity operation \rightarrow the resulting wave functions must have either even or odd parity (mixed-parity wave functions are not permitted)
- For finite well \rightarrow potential symmetric with respect to the parity operation: $V(x) = V(-x) \rightarrow e$ ven or odd parity for the solutions $V_0 = 36(2\hbar^2/ma^2)$

Parity (3)

• In 3D the parity operation applied to $Y_{lm}(\theta, \phi)$ gives \rightarrow

$$
Y_{lm_l}(\pi-\theta,\phi+\pi) = (-1)^l Y_{lm_l}(\theta,\phi)
$$

• Central potentials depend only on the magnitude of *r* are thus invariant with respect to parity \rightarrow their wave functions have odd arity if *l* is odd and even parity if *l* is even

Parity (4)

- The wave function for a system of many particles = the product of the wave functions for the individual particles \rightarrow the parity of the combined wave function is even if the combined wave function represents any number of evenparity particles or an even number of odd-parity particles \leftrightarrow it is odd if there is an odd number of odd-parity particles
- Thus nuclear states can be assigned a definite parity (odd or even) \rightarrow indicated along with the total angular momentum for that state \rightarrow example:

$$
\frac{3}{2}^+ \text{ or } \frac{5}{2}^-
$$

Fermi's golden rule

- Fermi's golden rule is a formula that describes the transition rate (probability of transition per unit time) from one energy eigenstate of a quantum system into other energy eigenstates effected by a weak perturbation
- We consider the system to begin in an eigenstate $|i\rangle$ of a given Hamiltonian *H⁰*
- We consider the effect of a (possibly time-dependent) perturbing Hamiltonian *H'* .
- The transition probability per unit of time λ from the state $|i\rangle$ to a set of final states $|f\rangle$ is given to first order in the perturbation by

$$
\lambda = \frac{2\pi}{\hbar} |\bra{f}H'\ket{i}|^2\rho
$$

• *ρ* is the density of final states (number of continuum states per unit of energy) 54