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Introduction (1)

Quantum mechanics is a fundamental theory in physics -
describes nature and explain properties of microscopic
molecules, atoms and subatomic particles

Small objects have characteristics of both particles and waves

Work of Planck in 1900 (analyzing blackbody radiation) and
Einstein in 1905 (analyzing the photoelectric effect) - light
energy is delivered not smoothly and continuously as a wave
but instead in concentrated bundles or « quanta »

In 1924 de Broglie postulated that associated with a « particle »
moving with momentum p is a « wave » of wavelength A = h/p
(h = Planck’s constant) - A = de Broglie wavelength



Introduction (2)

Probabilistic character of qguantum mechanics - results of
measurements are given as a collection of possibilities -
each of them associated to a given probability

The goal of quantum physics is to explain and foresee the
evolution in time of a physical system (collection of particles)

Principles of quantum mechanics are expressed in a series of
postulates

Remarks : in general cases = kinetic energy of particles is
much smaller than rest energy - nonrelativistic quantum
mechanics



Postulates (1)

First postulate:

At each instant the state of a physical system is represented by a
ket [¢)> in the space of states

Comments:
— The space of states is a vector space

— The space of states includes the concept of inner product - the inner
product associates a complex number to any two states -

<wmw:w@:/wwmmm

— A function f(x) can be evaluated in the | > system — expectation

value of f >
Wﬂw:/wwwmwww



Postulates (2)

Second postulate:

Every observable attribute of a physical system is described by an
operator that acts on the kets that describe the system

Comments:
— By convention an operator A acting on a ket |¢> is denoted by left

multiplication -
Az ly) = [) = Aly)

— In the context of wave-mechanics - state is replaced by wavefunction
Y(x) > example of momentum operator (1D) p = -ihd/dx >

plY) =p(z) = —iﬁdqflf)




Postulates (3)

Third postulate:

The only possible result of the measurement of an observable A is
one of the eigenvalues of the corresponding operator A

Comments:
— Origin of the word « quantum »

— For every operator - there are special states that are not changed by
the action of an operator (except for being multiplied by a constant) -
they are the eigenstates and the constant numbers are the eigenvalues

of the operator:
Ala) = alig)



Postulates (4)

Fourth postulate:

When a measurement of an observable A is made on a state |¢Y>
the probability of obtaining an eigenvalue a, is given by the square
of the inner product of |1)> with the eigenstate |a, >

> <a, >

Comments:
— The states are (normally) assumed to be normalized to unity -
|<y|¢>|=1and |<a;|a,>| = §
— The complex number | <a,|1>] is known as the « probability amplitude »
or « amplitude » to measure a, as the value for A in the state |¢>



Postulates (5)

Fifth postulate:

Immediately after the measurement of an observable A has yielded
a value a,, the state of the system is the normalized eigenstate|a, >

Comments:
— This is known as the « collapse of the wavepacket »



Postulates (6)

Sixth postulate:

The state |y(t)> of each non-relativistic quantum system is a
solution of the Schrodinger equation depending on the time -

L d
Zha |¢(t,?“)> =H |w(tar)>

Comments:

— His the Hamiltonian operator = it represents the total energy of the
particle of mass m in the potential field V - time-independent or
stationary Schrodinger equation -

He(r) = E(r)  with

h



Problems in one dimension: Free particle (1)

 No forces - V(x) =
Hy(x) Ey(x)

d21b B 2mE
)
‘w( ) = Ae Zk:’j—I—Bte_?’]“m“%D = (C'sinkx + D cos kzx

2mE
;2

* First term exp - wave travelling in the positive x direction

k% = A, B, C and D are constants

* Second term exp - wave travelling in the negative x direction
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Problems in one dimension: Free particle (2)

Intensities of the waves are given by |A|% and |B]|?

No boundary conditions - no restrictions on the energy £ - all
values of E give solutions to the equation

No convergence at +oo or -oo - normalization condition cannot be
applied in this case

Different normalization system = source such as an accelerator
located at x = -oo emitting particles at a rate / (particles s1) with
momentum p = hk in the positive x direction - particles traveling
in the positive x direction - B = 0 - particle currentj = (hk/m)|A|?



Problems in one dimension: Step potential £ >V, (1)

V(r) = 0 <0, region 1
= Vo x>0, region 2 with V,>0

For x <0 -> as free particle with k = k, = (2mE/h)Y/?

For x>0
2m(E — Vo)

| | 2
Yo(x) = Ceth2® | Detha® ky = 72

Boundary conditions give - A+B = C+D and k,(A-B) = k,(C-D)

Particle comes from source at x = -oo - A term represents the
incident wave / B term is the reflected wave / C term is the
transmitted wave / D = 0 (no possibility of reflection after the
step)



Problems in one dimension: Step potential £ >V, (2)

e Reflection coefficient or probability -

s 1BP (1—/~c2/k1)2

A2 1+ ko/k1
* Transmission coefficient
T — kg |C|2 o 4'ICZ/'Ifl

kA2 (14 ka/k)?

* Application in nucleon-nucleon scattering problems

—:I-1- A =2w/k, 1-F -
L -‘-_ & W _.' '_._"‘ g . . _ P e § led\ _
e—— Ay = 2/, —
E r
Yo
Image taken from: K.S. Krane, I
Introductory Nuclear Physics, +=0 N

Wiley, Oboken, 1988



Problems in one dimension: Step potential E< V,

* Inregion2 -
2m(Vy — F)

¢2(x) _ Cekgm 4 De—kzm kg — hQ

e Asfirstterm — ocoforx —>00—>C=0

* Important difference compared to classical mechanics - All
classical particles are reflected at the boundary <> the
guantum mechanical wave packet can penetrate a short
distance into the forbidden region

Image taken from: K.S. Krane, =0
Introductory Nuclear Physics,
Wiley, Oboken, 1988



Problems in one dimension: Barrier potential £ >V, (1)

V(i) = 0 x <0, region 1
= Vo 02>2x > a, region 2

0 x> a,region 3

Solutions in regions 1, 2 and 3 -

¢1($) — Aeikla? _|_ Be—’iklm

¢2($> — Ceikgﬂj‘ _|_ De—’ikgﬂf}

¢3($) — Fe?:kgaﬁ _I_ Ge—ikgaj‘
MmME 9 2m(E — V())

]{% = k% 7 kQ T h2



Problems in one dimension: Barrier potential £ > V,(2)

* We use continuity conditionsatx=0and atx=a
 We assume particles coming fromx=-00 > G=0
e After calculations = transmission coefficient becomes

1 V2 -
T=1[(14+"= 0 in’ k
(+4E(E %)S”“ )

ANANN Aaan
IVAVAVAVAA R A

Image taken from: K.S. Krane,
Introductory Nuclear Physics,
Wiley, Oboken, 1988 =0 x=a




Problems in one dimension: Barrier potential £ <V, (1)

Expressions in region 1 and 3 are identical and in region 2 -

a(x) = CeM® 4 De™r2" k2 = 2m<‘;§2‘ E)

As x varies between Oand ainregion2 > Cand D#0

After calculations = transmission coefficient becomes

1 V02 . 1.2 -
T=1[1+ - h* k
( —+ 1 E(VO — E) SIn Qa)

Classically T=0 - the particle is not permitted to enter the
forbidden region (negative kinetic energy) <> the quantum
wave can penetrate the barrier - nonzero probability to find
the particle beyond the barrier.



Problems in one dimension: Barrier potential £ > V,(2)

* This phenomenon is called barrier penetration or quantum
mechanical tunneling or tunnel effect

Important applications in nuclear physics - « decay and
fission

Image taken from: K.S. Krane,
Introductory Nuclear Physics,
Wiley, Oboken, 1988



1D problem: Infinite well (1) . .
) R
V('CC) — 0. r < O r > a {:3::”.::' Image taken from: K.S.
’ ~ Krane, /ntrodgctor){
= 0 0<z<a . oanm™
—O—

The walls are absolutely impenetrable - particle is trapped
between x=0and x=a

Inside the solution of the Schrodinger equation is -
Y(x) = Asinkx + Bcoskx

Continuity condition at x=0 - 1(0) =0 - true only for B=0
At x = a - the continuity condition gives -

Asinkx =0



1D problem: Infinite well (2) \

e AsA=0is not acceptable > sinka=0
—> ka =nmforn=1,2,3,...

* (Quantification condition on energy -

Excited J 7

h2 k 2 h2 7T 2 2 states
= = n

E _
" 2m 2ma?

* Corresponding states 1) are bound
states (potential confines particle in a
certain region of space) >

Ground |
2 . nnx e )
Qpn p— — S111 — B
a a Image taken from: K.S. Krane,

Introductory Nuclear Physics,
Wiley, Oboken, 1988 21
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1D problem: Finite well (1)

Vi) = Vo x| >a/2
= 0 z| < a/2
* Bound-state solutions (with E<V,) are
P (z) = Aef1® 4 Be hi® for x < —a/2
bo(z) = Cetka® 4 pe=ika for —a/2 <z <a/2
Y3(z) = Fef® + Ge M® for z > a/2

2m(VO — E) 2 2mE
k% — h2 k2 T hQ




1D problem: Finite well (2)

* Wave function has to be finite in region 1 - forx=-o0o - B=0
* Wave function has to be finite in region 3 > forx=00 > F=0
* Due to continuity at x = ta/2 >

k a kga
ko tan % — kq “ —ks cot 7 = kq

* Eq. cannot be resolved directly - numerical or graphical
methods = graphical solutions easiest with eq. in the form -

atana = (P2 —o?)? {umm) —acota=(P?—a?)"

a—@ P mVya? t/2
B O\ 2R2
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1D problem: Finite well (3)

Right side - circle of radius P <= left side - tangent function

Solutions are given by the points where the circle intersects
the tangent

Therefore the number of solutions is determined by the
radius P - by the depth V, of the well (for infinite well -
infinite number of bound states)

For P < /2: only one bound state <> for 7/2 < P < 7: two
bound states

Technique that allows to estimate the depth of the nuclear
potential - for deuteron: only one bound state



1D problem: Finite well (4)
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Vo = 36027 Imal)

Solutions for P =6 (as an
example) - 4 solutions at o

=1.345, 2.679, 3.985, 5.226

n= 3 ML £ ]E.HHHFJEIIHED'F:I
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Images taken from: K.S. Krane,
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1D problem: Simple Harmonic Oscillator (1)

1
Viz) = =ka?
2
* Any reasonably well-behaved potential can be expanded in a
Taylor series about the point x, -
dV 1 [d?V
Viz)=V(xg) + (—) (x —x0) + = (—) (x — 20)* + ...
dx ) ,_,. 2 \dz? ) ,_.

* If x,is a potential minimum - the second term = 0 and since
the first term is a constant - the interesting term is the third
term

* Near its minimum the system behaves like a simple harmonic
oscillator - The study of the simple harmonic oscillator is
important for a large number of systems



1D problem: Simple Harmonic Oscillator (2)

To solve the Schrodinger equation - change of ¥ -
() = h(x) exp (—a’z?/2)

h(x) is a simple polynomial function in x and a2 = (km)Y2/h

The degree of the polynomial - the highest power of x that
appears is determined by the quantum number n that labels
the energy states -

1
E,, = hwg (n—|—§> withn=0,1,2, ...

where w, = (k/m)*/? is the classical angular frequency of the
oscillator



1D problem: Simple Harmonic Oscillator (3)

1 [ ¢ (x)

1] 4 b, g~ 14 g

1 g PR R T T
Images taken from: 3 Sy, - Wig-1d{gald _ Jy ooty
K.S. Krane, . hes ..rlff4..."'3|'n"f"‘.|[iin:'1.r'* 12ax] e .y
Introductory Nuclear : _— ) - .
Physics, Wiley, 4 Thuy (LARVE = )lba's? — 48a’x + 12)e "

Oboken, 1988 E, = huy(n + 1)

$(x) = (2T ) VI (ax) e
where H {ax)is a Hermite polynomial

* Results for the probabilities
resemble those of finite well

* Energy levels are equally
spaced

* Potential is infinitely deep -
number of bound states is
infinite
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3D problem: Infinite Cartesian Well (1)
Vi) = oo zz<0,x>a, y<0,y>a, 2<0,2z>a
= 0 0<x<a, 0<y<a, 0<2z<a

* The particle is confined to a cubic box of dimension a
* Inside the well = the Schrédinger equation is

h2 a2¢ a2w aZw
o (8$2 T 7 T W) = EY(z,y, 2)

* With solutions >
B 8 . NgTT | NyTY . MN,TZ
Vnyyny,m. (,9y,2) = 3 sin sin sin

Enm,ny,nz = (nm +n?+ nz)




3D problem: Infinite Cartesian Well (2)

#.2,1)

b 21
* n, n,n,areindependent — 20 s
integers >0 3 3,22 17
 The lowest state (ground state) L (3,21 5
has quantum numbers (n,, n, o 222 U_
= 3 - 11
nz ) - (lllll) , 2214 i
* The probability distribution has
. i, 1.1
a maximum at the center of ; ‘*
the box falling gradually to 0 at l 1.1 ;
the walls like sin?
Ceganaracy I_.IIJ_."I-'I._:,-,_E'E-; ..... Eru:rg:.l
|EiEq)
Image taken from: K.S. Krane,
Introductory Nuclear Physics,
Wiley, Oboken, 1988 30



3D problem: Infinite Cartesian Well (3)

The first excited state has 3 possible sets of quantum
numbers: (2,1,1), (1,2,1) and (1,1,2)

Each of these distinct and independent states has a different
wave function - a different probability density - different
expectation values of the physical observables

Attention - they have the same energy - situation called
degeneracy

Degeneracy is extremely important for atomic structure -
how many electrons can be in each atomic subshell



3D problem: Infinite Spherical Well (1)

In general - use of spherical coordinates with potential
depending only on r (not 6 or ¢)

Separable solutions of the form (r,0,¢) = R(r)©(0)®(¢)

The central potential V(r) appears only in the radial part of the
equation R(r) - the angular parts can be solved directly

Differential equation for &(¢) (with m? the separation constant) -

d?P 5
d¢2 + ml (D = 0
The solution is
1
b, — exp (¢m

Them;=0, = 1=x2,.



3D problem: Infinite Spherical Well (2)

The equation for ©(0) >
1 d d® m?
in— I(1+1) — —L =
sin@d@(sm d9)+{(+ e ]@ )
Where /=0,1,2,3...and m;=0, =1 £ 2,...

The solutions @,ml(é’) are expressed as a polynomial of degree
[in sinf or cosf

Together and normalized, @ml(gb) and 6, (0) give the spherical
harmonics Y, (6, ¢)

These functions give the angular part of the solution to the
Schrodinger equation for any central potential V(r)

For example = give the spatial properties of atomic orbitals
responsible for molecular bonds



3D problem: Infinite Spherical Well (3)

r M. }l:"n-l.-t.'E'- '#:I = E.:"nll.-{ﬂ.:lqlﬂ”[*.:l
i) 0 (1/4x )"
1 0 {3/47) cos 8
1 + 1 F(3/8x ) Ysinf et ™
2 0 (5/162 ) {Jcos’ - 1)
2 + 1 F(15/8%) " *sinfcos § e *'*
2 42 (15/32a) gin’ @ g+
1
B, ($) = o g™
] 2+ (L= m ]V ]
i:iu"m.-l: }- E [:tp-_l_ m,ﬂ}! 'Fl" I:. :I

where P78 is the associated Legendre polynomial

Image taken from: K.S. Krane,
Introductory Nuclear Physics,
Wiley, Oboken, 1988
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3D problem: Infinite Spherical Well (4)

For a given V(r) = radial equation is
h? (d°R  2dR [(Il+1)h?
( +——>+[V(T)—I— Gy R=ER

“om \ dr2 7 dr 2mr2

The /(/+1) term is an addition to the potential - « centrifugal
potential » acts like a potential that keeps the particle away
from the origin when />0

Example of infinite spherical well >
Viz) = oo r>a
= 0 r<a

Inside the well - solution are expressed in terms of the
spherical Bessel functions j(kr)



3D problem: Infinite Spherical Well (5)

Continuity conditionatr=a to
find the energy eigenvalues -

S0 K
Jilka) =0 akr) ==
Transcendental equation - i (ke = sim kr - cos kr
numerical solutions - tables (ke)” K
of the spherical Bessel TR L L LT
functions to find the zeros for (kr) '[j”:'_ o
any given value of / L) s — Lkr) kr = O
For example - /=0 - from | "_"1"5"'?;_1]
the tables j,(x) =0 at x = 3.14, Jelkr) = n A j'” S .
6.28,9.42,12.57,.. ey

l &4 \F
_ A k) = L (kr)
For /=1 - first few zeros of fekr) = | -!c.| 'I.rdr.] ol

j_’l(X) at X= 4491 7731 10901 Image taken from: K.S. Krane,

1 4 07 Introductory Nuclear Physics,
: Wiley, Oboken, 1988 36



3D problem: Infinite Spherical Well (6)

e Since E = h?k?/2m - solutions for the allowed values of E
energies

* Repeating process for /=2, /=3,... & construction of the
spectrum of the energy states

i 4.00
e i, p (3,0
1 L W s
4 3 & 38
]| (141 i
d 2,11 °.78
3 - £.04
/ - 4.9
| i2,0 100
8 b2y 1,1 f'd
Image taken from: K.S. Krane, 3 0 2.05
Introductory Nuclear Physics, 1 1.00

Wiley, Oboken, 1988 Degenaracy inf} Ernergy
20+ 1 {ESEp)



3D problem: Infinite Spherical Well (7)

* The levels are also degenerate - since E depends onlyon /=
the wave functions with different m, values all have the same
energy

* Since mis restricted to the values 0, = 1, & 2, ..., ==/ - there

are exactly 2/ + 1 possible Y, for a given | - each level has a
degeneracy of 2/+ 1



3D problem: Simple Harmonic Oscillator (1)

Central oscillator potential > V(r)=1/2kr?

For all central potentials - the angular part of the solution to
the Schrodinger equation is Y, (0, ¢) - we have only to find
the solution to the radial equation

As in 1D = the solution is the product of an exponential and a
finite polynomial
The energy levels are given by

3
E,, = hwg (n—|—§> withn=0,1, 2, ...



3D problem: Simple Harmonic Oscillator (2)

No dependence on [ for the energy but not all / values are
permitted

From the mathematical solution of the radial equation - / can
be at most equal to n and takes only even or only odd values
as n is even or odd

Example - For n =5, the permitted values of [are 1, 3, and 5

Since E do not depend on m, - additional degeneracy of 2/ +
1 for each /

For n =5 level has a degeneracyof [(2*1+1)+(2*3+1)+
(2*5+1)]=21
Degeneracy equals to 1/2(n+1)(n+2)



3D problem: Simple Harmonic Oscillator (3)

" £ E, R
0 0 oy (2o pmt o) e atrl sl

1 : e (2T /T n ) ar) e

: 0 thay (2a2 T AT a2 — alpt) et
22 e G e

: : Thy a5 2 Y Gar — a'r) e

’ 3 Thay (4?22 AN05 2y’ ) a—ateia

) . Thay (VI WIS 0 — falr? + Loty e
4 2 L gy, @a® T AT08 e Y Tar? — atr) e w2

4 4 Tha, (8?2 13TO8 71/ 4) ated o o072

(5, 1)

(5,3

5,5

0y a2 £.4]

(3,1 13,3

(2,00 2.21

Images taken from: K.S. Krane,
Introductory Nuclear Physics,
Wiley, Oboken, 1988
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Commutator

Mathematical definition of Commutator —>
[A, B] — AB — BA

This is equal to 0 if they commute and something else if they do not
commute

It is known that you cannot know the value of two physical values at
the same time if they do not commute (Heisenberg’s principle)

If we can find a set of operators commuting with H = this set is
complete in the sense that all energy eigenstates are uniquely
labelled by the eigenvalues of the above operators

A key property of central potential problems is that the angular
momentum operators commute with the Hamiltonian



(Orbital) Angular momentum (1)

In solutions of the 3D Schrodinger equation - prominent
role of the quantum number /

In atomic physics = label the different electron wave
functions and give information about their spatial behaviour

This angular momentum quantum number has the same
function in all 3D problems involving central potentials V(r)

In classical physics > I=r x p

In quantum mechanics - components of p have to be
replaced by their equivalent operators:

. 0
Di = —?fl%



(Orbital) Angular momentum (2)

* Result for which a central potential is considered - having a
wave function R(r)Y,,, (6, ¢) = independent of the form of R(r)

* Itis simple to calculate I? >
(lz) = hl(l+ 1)
* Asin classical physics for central potentials - the angular
momentum is a constant of the motion

 The atomic substates with a given / value are labeled using
spectroscopic notation - same spectroscopic notation in
nuclear physics: sfor/=0,pfor/=1, ...

£ value 0 1 2 3 4 5 6
Symbol S p d f g h 1

Image taken from: K.S. Krane,
Introductory Nuclear Physics,
Wiley, Oboken, 1988



(Orbital) Angular momentum (3)

Direction of / = barrier imposed by the uncertainty principle in
guantum mechanics - it is permitted to know exactly only one
component of / at a time - when one component is known the
other two components are completely indeterminate

By convention - z component is chosen -

<lz> — hml

withm,=0, =1+ 2,...



Spin angular momentum

Spin angular momentum = Intrinsic angular momentum = Spin
Nucleons (like electrons) have spin quantum number s = %
Usual calculations for angular momenta -

(%) = hs(s + 1)
(s,) = hms (Mg = j:%)

Useful to imagine the spin as a vector s with possible z
components = + %h



Total angular momentum (1)

The total angular momentum j combines both the spin and orbital
angular momentum of a particle or system -

J=1l+s
Behaviour of total angular momentum -
(5%) = hj(j + 1)
(Jz) = (jls + 52) = him;

We have m; =+, -j+1,...,j-1,j(jis the total angular momentum
guantum number)



Total angular momentum (2)

Asm=tV>m=m+m=m +%
m, is always an integer - m; is half-integral - j is half-integral -

. 1 , 1

jzl—|—§ or JIl_i

The j value is noted as a subscript in spectroscopic notation
For /=1 (p states) - two possible j values: [ +1/2 =3/2 and
[-1/2=1/2

These states are written as p;/, and p,,



General addition of angular momenta

General rules for the addition of two angular momenta J; and
J,>J=J,+J,

When j, and j, (corresponding quantum numbers) are “added”
the maximal and minimal values of jarej, . =j, +j, and

jmin = |jl -j2|

The allowed j-values in this interval are j = |j, - j,|, |j; - Jj,| +
1,..,J; ),

If both j, and j, are half-integral or if both are integers - the

possible quantum numbers j are integers €< in the opposite
case the resulting j-values become half-integral

Properties known as triangular inequality and noted -

71— 721 <3< j1+ 72



Parity (1)

The parity operation causes a reflection of all of the
coordinates through the origin: r — -r

In Cartesian coordinates > x — x/y —>-y/z— -z
In spherical coordinates >r —r/0 > 7w-0/¢p — ¢+ 7

If a system is left unchanged by the parity operation - none
of the properties should change as a result of the reflection

The values of the observable quantities depend on |1]|? =

If V(r)=V(-r)— @) = |[(—r)



Parity (2)

Consequence = (-r) = £=(r)
In case (-r) = +1)(r) - positive or even parity
In case (-r) = -y(r) - negative or odd parity

If the potential V(r) is unchanged by the parity operation -
the resulting wave functions must have either even or odd
parity (mixed-parity wave functions are not permitted)

For finite well & potential symmetric with respect to the
parity operation: V(x) = V(-x) = even or odd parity for the
SOIUtionS _ Vo = 36(2#%/ma?)

odd —

n=3 i WA R E3 = 15.88(2/%/ma?)
even T
\ "= S e, Ty
n= e —

: \} Es = 27.31(252/ma?)

Ez = 7.18(2#%/ma?)

Ey = 1.81(24%ma?)




Parity (3)

In 3D the parity operation applied to Y, (0, ¢) gives -

Yim, (m—0,0p+m) = (_1)lYlmz (0, 9)

Central potentials depend only on the magnitude of r are thus
invariant with respect to parity - their wave functions have
odd arity if / is odd and even parity if / is even



Parity (4)

 The wave function for a system of many particles = the
product of the wave functions for the individual particles -
the parity of the combined wave function is even if the
combined wave function represents any number of even-
parity particles or an even number of odd-parity particles <>
it is odd if there is an odd number of odd-parity particles

* Thus nuclear states can be assigned a definite parity (odd or
even) - indicated along with the total angular momentum for
that state - example:

37 5°
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Fermi’s golden rule

Fermi's golden rule is a formula that describes the transition rate
(probability of transition per unit time) from one energy eigenstate of
a quantum system into other energy eigenstates effected by a

weak perturbation

We consider the system to begin in an eigenstate |i> of a
given Hamiltonian H,

We consider the effect of a (possibly time-dependent) perturbing
Hamiltonian H'.

The transition probability per unit of time A from the state |i> to a
set of final states |f> is given to first order in the perturbation by

2T ,
A= 2| (f ' Ji) 2

p is the density of final states (number of continuum states per unit
of energy)



