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Introduction (1) 

• Quantum mechanics is a fundamental theory in physics → 
describes nature and explain properties of microscopic 
molecules, atoms and subatomic particles 

• Small objects have characteristics of both particles and waves 

• Work of Planck in 1900 (analyzing blackbody radiation) and 
Einstein in 1905 (analyzing the photoelectric effect) → light 
energy is delivered not smoothly and continuously as a wave 
but instead in concentrated bundles or « quanta » 

• In 1924 de Broglie postulated that associated with a « particle » 
moving with momentum p is a « wave » of wavelength ¸ = h/p 
(h = Planck’s constant) → ¸ = de Broglie wavelength 
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Introduction (2) 

• Probabilistic character of quantum mechanics → results of 
measurements are given as a collection of possibilities → 
each of them associated to a given probability 

• The goal of quantum physics is  to explain and foresee the 
evolution in time of a physical system (collection of particles) 

• Principles of quantum mechanics are expressed in a series of 
postulates 

 

• Remarks : in general cases → kinetic energy of particles is 
much smaller than rest energy → nonrelativistic quantum 
mechanics 
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Postulates (1) 

First postulate: 
At each instant the state of a physical system is represented by a 
ket |Ã> in the space of states  

 

Comments: 
– The space of states is a vector space 

– The space of states includes the concept of inner product → the inner 
product associates a complex number to any two states → 

 

 

– A function f(x) can be evaluated in the |Ã > system → expectation 
value of f → 
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Postulates (2) 

Second postulate: 
Every observable attribute of a physical system is described by an 
operator that acts on the kets that describe the system 

 

Comments:  
– By convention an operator A acting on a ket |Ã> is denoted by left 

multiplication → 

 

– In the context of wave-mechanics → state is replaced by wavefunction 
Ã(x) →  example of momentum operator (1D) p = -i~d/dx →  
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Postulates (3) 

Third postulate: 
The only possible result of the measurement of an observable A is 
one of the eigenvalues of the corresponding operator A  

 

Comments: 
– Origin of the word « quantum » 

– For every operator → there are special states that are not changed by 
the action of an operator (except for being multiplied by a constant) → 
they are the eigenstates and the constant numbers are the eigenvalues 
of the operator: 
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Postulates (4) 

Fourth postulate: 
When a measurement of an observable A is made on a state |Ã> 
the probability of obtaining an eigenvalue an is given by the square 
of the inner product of |Ã> with the eigenstate |an > 
→|<an|Ã>|2  

 

Comments: 
– The states are (normally) assumed to be normalized to unity →    

|<Ã|Ã>| = 1 and |<aj|ak>| = ±jk 

– The complex number |<an|Ã>| is known as the « probability amplitude » 
or « amplitude » to measure an as the value for A in the state |Ã> 
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Postulates (5) 

Fifth postulate: 
Immediately after the measurement of an observable A has yielded 
a value an, the state of the system is the normalized eigenstate|an > 

 

Comments: 
– This is known as the « collapse of the wavepacket » 
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Postulates (6) 

Sixth postulate: 
The state |Ã(t)> of each non-relativistic quantum system is a 
solution of the Schrödinger equation depending on the time → 

 

 

Comments: 
– H is the  Hamiltonian operator → it represents the total energy of the 

particle of mass m in the potential field V → time-independent or  
stationary Schrödinger equation → 
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Problems in one dimension: Free particle (1) 

• No forces → V(x) = 0 → 

 

 

 

 

 

 

 

• First term exp → wave travelling in the positive x direction  

• Second term exp → wave travelling in the negative x direction  
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Problems in one dimension: Free particle (2) 

• Intensities of the waves are given by |A|2 and |B|2  

 

• No boundary conditions → no restrictions on the energy E → all 
values of E give solutions to the equation 

 

• No convergence at +1 or -1 → normalization condition cannot be 
applied in this case 

 

• Different normalization system → source such as an accelerator 
located at x = -1 emitting particles at a rate I (particles s-1) with 
momentum p = ~k in the positive x direction → particles traveling 
in the positive x direction → B = 0 → particle current j = (~k/m)|A|2  
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Problems in one dimension: Step potential E > V0 (1) 

• For  x < 0 → as free particle with k = k1 = (2mE/~)1/2  

• For  x > 0 →  

 

 

• Boundary conditions give → A+B = C+D and k1(A-B) = k2(C-D) 

• Particle comes from source at x = -1 → A term represents the 
incident wave / B term is the reflected wave / C term is the 
transmitted wave / D = 0 (no possibility of reflection after the 
step) 
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Problems in one dimension: Step potential E > V0 (2) 

• Reflection coefficient or probability → 

 

 

• Transmission coefficient 

 

 

• Application in nucleon-nucleon scattering problems   
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Problems in one dimension: Step potential E < V0 

• In region 2 → 

 

 

• As first term ! 1 for x ! 1 → C = 0 

• Important difference compared to classical mechanics → All 
classical particles are reflected at the boundary ↔ the 
quantum mechanical wave packet can penetrate a short 
distance into the forbidden region  
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Problems in one dimension: Barrier potential E > V0 (1) 

Solutions in regions 1, 2 and 3 →  
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Problems in one dimension: Barrier potential E > V0 (2) 

• We use continuity conditions at x = 0 and at x = a 

• We assume particles coming from x = -1 → G = 0 

• After calculations → transmission coefficient becomes 
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Problems in one dimension: Barrier potential E < V0 (1) 

• Expressions in region 1 and 3 are identical and in region 2 → 

 

 

• As x varies between 0 and a in region 2 → C and D  0 

• After calculations → transmission coefficient becomes 

 

 

 

• Classically T = 0 → the particle is not permitted to enter the 
forbidden region (negative kinetic energy) ↔ the quantum 
wave can penetrate the barrier → nonzero probability to find 
the particle beyond the barrier. 
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Problems in one dimension: Barrier potential E > V0 (2) 

• This phenomenon is called barrier penetration or quantum 
mechanical tunneling or tunnel effect 

• Important applications in nuclear physics → ® decay and 
fission 
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1D problem: Infinite well (1) 

• The walls are absolutely impenetrable → particle is trapped 
between x = 0 and x = a 

• Inside the solution of the Schrödinger equation is → 

 

• Continuity condition at x = 0 → Ã(0) = 0 → true only for B = 0 

•  At x = a → the continuity condition gives → 
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1D problem: Infinite well (2) 

• As A = 0 is not acceptable → sin ka = 0 
→ ka = n¼ for n = 1,2,3,… 

• Quantification condition on energy → 

 

 

 

• Corresponding states Ã are bound 
states (potential confines particle in a 
certain region of space) → 
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probability amplitude  
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1D problem: Finite well (1) 

• Bound-state solutions (with E < V0) are  
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1D problem: Finite well (2) 

• Wave function has to be finite in region 1 → for x = -1 → B = 0  

• Wave function has to be finite in region 3 → for x = 1 → F = 0  

• Due to continuity at x = ±a/2 → 

 

 

 

• Eq. cannot be resolved directly → numerical or graphical 
methods → graphical solutions easiest  with eq. in the form → 
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1D problem: Finite well (3) 

• Right side → circle of radius P ↔ left side → tangent function 

• Solutions are given by the points where the circle intersects 
the tangent 

• Therefore the number of solutions is determined by the 
radius P → by the depth V0 of the well (for infinite well →  
infinite number of bound states) 

• For P < ¼/2: only one bound state ↔ for ¼/2 < P < ¼: two 
bound states  

• Technique that allows to estimate the depth of the nuclear 
potential → for deuteron: only one bound state 
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1D problem: Finite well (4) 
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Solutions for  P = 6 (as an 
example) → 4 solutions at ® 
= 1.345, 2.679, 3.985, 5.226 

Images taken from: K.S. Krane, 
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1D problem: Simple Harmonic Oscillator (1) 
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• Any reasonably well-behaved potential can be expanded in a 
Taylor series about the point x0 → 

 

 

• If x0 is a potential minimum → the second term = 0 and since 
the first term is a constant → the interesting term is the third 
term 

• Near its minimum the system behaves like a simple harmonic 
oscillator → The study of the simple harmonic oscillator is 
important for a large number of systems 



1D problem: Simple Harmonic Oscillator (2) 

• To solve the Schrödinger equation → change of Ã → 

 

 

• h(x) is a simple polynomial function in x and ®2 = (km)1/2/~ 

• The degree of the polynomial → the highest power of x that 
appears is determined by the quantum number n that labels 
the energy states → 

 

 

• where !0 = (k/m)1/2 is the classical angular frequency of the 
oscillator 
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1D problem: Simple Harmonic Oscillator (3) 
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• Results for the probabilities 
resemble those of finite well 

• Energy levels are equally 
spaced 

• Potential is infinitely deep → 
number of bound states is 
infinite 

Images taken from: 
K.S. Krane, 
Introductory Nuclear 
Physics, Wiley, 
Oboken, 1988 



3D problem: Infinite Cartesian Well (1) 

• The particle is confined to a cubic box of dimension a 

• Inside the well → the Schrödinger equation is  

 

 

 

• With solutions → 
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3D problem: Infinite Cartesian Well (2) 

• nx, ny, nz are independent 
integers > 0 

• The lowest state (ground state) 
has quantum numbers (nx, ny, 
nz ) = (1,1,1)  

• The probability distribution has 
a maximum at the center of 
the box falling gradually to 0 at 
the walls like sin2  

30 

Image taken from: K.S. Krane, 
Introductory Nuclear Physics, 
Wiley, Oboken, 1988 



3D problem: Infinite Cartesian Well (3) 

• The first excited state has 3 possible sets of quantum 
numbers: (2,1,1), (1,2,1) and (1,1,2) 

• Each of these distinct and independent states has a different 
wave function → a different probability density → different 
expectation values of the physical observables  

• Attention → they have the same energy → situation called 
degeneracy 

• Degeneracy is extremely important for atomic structure → 
how many electrons can be in each atomic subshell 
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3D problem: Infinite Spherical Well (1) 

• In general → use of spherical coordinates with potential 
depending only on r (not µ or Á) 

• Separable solutions of the form Ã(r,µ,Á) = R(r)£(µ)©(Á)  

• The central potential V(r) appears only in the radial part of the 
equation R(r) → the angular parts can be solved directly 

• Differential equation for ©(Á) (with ml
2 the separation constant) → 

 

 

• The solution is 

 

 

• The ml = 0, § 1 § 2,… 
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3D problem: Infinite Spherical Well (2) 

• The equation for £(µ) → 

 

 

• Where l = 0,1,2,3… and ml = 0, § 1 § 2,… 

• The solutions £lml
(µ) are  expressed as a polynomial of degree 

l in sinµ or cosµ  

• Together and normalized, ©ml
(Á) and £lml

(µ) give the spherical 
harmonics Ylml

(µ, Á) 

• These functions give the angular part of the solution to the 
Schrödinger equation for any central potential V(r)  

• For example → give the spatial properties of atomic orbitals 
responsible for molecular bonds 
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3D problem: Infinite Spherical Well (3) 
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3D problem: Infinite Spherical Well (4) 

• For a given V(r) → radial equation is 

 

 

• The l(l+1) term is an addition to the potential → « centrifugal 
potential » acts like a potential that keeps the particle away 
from the origin when l > 0 

• Example of infinite spherical well → 

 

 

• Inside the well → solution are expressed in terms of the 
spherical Bessel functions jl(kr) 
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3D problem: Infinite Spherical Well (5) 
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• Continuity condition at r = a to 
find the energy eigenvalues → 
jl(ka) = 0 

• Transcendental equation → 
numerical solutions → tables 
of the spherical Bessel 
functions to find the zeros for 
any given value of l 

• For example → l = 0 → from 
the tables j0(x) = 0 at x = 3.14, 
6.28, 9.42, 12.57,… 

•  For l = 1 → first few zeros of 
j1(x) at x = 4.49, 7.73, 10.90, 
14.07 

Image taken from: K.S. Krane, 
Introductory Nuclear Physics, 
Wiley, Oboken, 1988 



3D problem: Infinite Spherical Well (6) 

• Since E = ~2k2/2m → solutions for the allowed values of E 

energies 

• Repeating process for l = 2, l = 3,… → construction of the 
spectrum of the energy states 
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3D problem: Infinite Spherical Well (7) 

• The levels are also degenerate → since E depends only on l → 
the wave functions with different ml values all have the same 
energy 

 

• Since ml is restricted to the values 0, § 1, § 2, …, §l → there 
are exactly 2l + 1 possible Ylml

 for a given l → each level has a 
degeneracy of 2l + 1  
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3D problem: Simple Harmonic Oscillator (1) 

• Central oscillator potential → V(r)=1/2kr2 

• For all central potentials → the angular part of the solution to 
the Schrodinger equation is Ylml

(µ, Á) → we have only to find 
the solution to the radial equation 

• As in 1D → the solution is the product of an exponential and a 
finite polynomial 

• The energy levels are given by 
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3D problem: Simple Harmonic Oscillator (2) 

• No dependence on l for the energy but not all l values are 
permitted  

• From the mathematical solution of the radial equation → l can 
be at most equal to n and takes only even or only odd values 
as n is even or odd  

• Example → For n = 5, the permitted values of l are 1, 3, and 5  

• Since E do not depend on ml → additional degeneracy of 2l + 
1 for each l  

• For n = 5 level has a degeneracy of [(2 * 1 + 1) + (2 * 3 + 1) + 

• (2 * 5 + 1)] = 21 

• Degeneracy equals to 1/2(n+1)(n+2) 
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3D problem: Simple Harmonic Oscillator (3) 
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Commutator 

• Mathematical definition of Commutator → 

 

 

• This is equal to 0 if they commute and something else if they do not 
commute 

•  It is known that you cannot know the value of two physical values at 
the same time if they do not commute (Heisenberg’s principle) 

• If we can find a set of operators commuting with H → this set is 
complete in the sense that all energy eigenstates are uniquely 
labelled by the eigenvalues of the above operators 

• A key property of central potential problems is that the angular 
momentum operators commute with the Hamiltonian 
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(Orbital) Angular momentum (1) 

• In solutions of the  3D Schrödinger equation → prominent 
role of the quantum number l 

• In atomic physics → label the different electron wave 
functions and give information about their spatial behaviour  

• This angular momentum quantum number has the same 
function in all 3D problems involving central potentials V(r) 

• In classical physics → l = r £ p 

• In quantum mechanics → components of p have to be 
replaced by their equivalent operators:  
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(Orbital) Angular momentum (2) 

• Result for which a central potential is considered → having a 
wave function R(r)Ylml

(µ, Á) → independent of the form of R(r) 

• It is simple to calculate l2 → 

 

• As in classical physics for central potentials → the angular 
momentum is a constant of the motion 

• The atomic substates with a given l value are labeled using 
spectroscopic notation → same spectroscopic notation in 
nuclear physics: s for l = 0, p for l = 1, … 
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(Orbital) Angular momentum (3) 

• Direction of l → barrier imposed by the uncertainty principle in 
quantum mechanics → it is permitted to know exactly only one 
component of l at a time → when one component is known the 
other two components are completely indeterminate 

 

• By convention → z component is chosen → 

 

 

     with ml = 0, § 1 § 2,… 
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Spin angular momentum 

• Spin angular momentum = Intrinsic angular momentum = Spin 

• Nucleons (like electrons) have spin quantum number s = ½ 

• Usual calculations for angular momenta → 

 

 

 

• Useful to imagine the spin as a vector s with possible z 
components = § ½~ 
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Total angular momentum (1) 

• The total angular momentum j combines both the spin and orbital 
angular momentum of a particle or system → 

 

• Behaviour of total angular momentum → 

 

 

 

• We have mj = -j, -j + 1,. . . , j - 1, j ( j is the total angular momentum 
quantum number) 
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Total angular momentum (2) 

• As ms = §½ → mj = ml + ms = ml  § ½ 

• ml  is always an integer → mj is half-integral → j is half-integral →  

 

 

• The j value is noted as a subscript in spectroscopic notation 

• For l = 1 (p states) → two possible j values: l + 1/2 = 3/2 and         
l – 1/2 = 1/2  

• These states are written as p3/2 and p1/2 
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General addition of angular momenta 

• General rules for the addition of two angular momenta J1 and 
J2 → J = J1 + J2 

• When j1 and j2 (corresponding quantum numbers) are “added” 
the maximal and minimal values of j are jmax = j1 + j2 and          
jmin = |j1 - j2| 

• The allowed j-values in this interval are j = |j1 - j2|, |j1 - j2| + 
1,…, j1 + j2  

• If both j1 and j2 are half-integral or if both are integers → the 
possible quantum numbers j are integers ↔ in the opposite 
case the resulting j-values become half-integral 

• Properties known as triangular inequality and noted → 
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Parity (1) 

• The parity operation causes a reflection of all of the 
coordinates through the origin: r ! -r 

• In Cartesian coordinates → x ! -x / y ! -y / z ! –z 

• In spherical coordinates → r ! r / µ ! ¼ - µ / Á ! Á + ¼ 

• If a system is left unchanged by the parity operation → none 
of the properties should change as a result of the reflection 

• The values of the observable quantities depend on |Ã|2 → 
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Parity (2) 

• Consequence → Ã(-r) = §Ã(r)  

• In case Ã(-r) = +Ã(r) → positive or even parity 

• In case Ã(-r) = -Ã(r) → negative or odd parity 

• If the potential V(r) is unchanged by the parity operation → 
the resulting wave functions must have either even or odd 
parity (mixed-parity wave functions are not permitted) 

• For finite well → potential symmetric with respect to the 
parity operation: V(x) = V(-x) → even or odd parity for the 
solutions 
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Parity (3) 

• In 3D the parity operation applied to Ylml
(µ, Á)  gives → 

 

 

 

• Central potentials depend only on the magnitude of r are thus 
invariant with respect to parity → their wave functions have 
odd arity if l is odd and even parity if l is even 
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Parity (4) 

• The wave function for a system of many particles = the 
product of the wave functions for the individual particles → 
the parity of the combined wave function is even if the 
combined wave function represents any number of even-
parity particles or an even number of odd-parity particles ↔ 
it is odd if there is an odd number of odd-parity particles 

• Thus nuclear states can be assigned a definite parity (odd or 
even) → indicated along with the total angular momentum for 
that state → example:  
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Fermi’s golden rule 

• Fermi's golden rule is a formula that describes the transition rate 
(probability of transition per unit time) from one energy eigenstate of 
a quantum system into other energy eigenstates effected by a 
weak perturbation 

• We consider the system to begin in an eigenstate |i> of a 
given Hamiltonian H0   

• We consider the effect of a (possibly time-dependent) perturbing 
Hamiltonian H' .  

• The transition probability per unit of time ¸ from the state |i> to a 
set of final states |f> is given to first order in the perturbation by 

 

 

• ρ is the density of final states (number of continuum states per unit 
of energy) 54 


