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General remarks (1)

• Most of ® and ¯ decays and generally most nuclear reactions leave 
the final nucleus in an excited state → emission of one (or more) °

• Unlike the 2 other types of decay → no change in the element with 
° decay → decay from an excited state to a lower (possibly ground) 
state

• °-rays are photons (or electromagnetic radiation) like X-rays or 
visible light 

• Due to energy difference between nuclear states → °-rays have 
generally energies in the range 0.1 – 10 MeV → corresponding to ¸
in 104 – 100 fm

• The analyze of °-ray emission (° spectroscopy) is the standard 
technique for nuclei studies

• Competition with internal conversion → e- emission 3



General remarks (2)
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Energy release in ° decay
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• We consider the decay of a nucleus of mass M at rest from an initial 
excited state Ei to a final state Ef

• To conserve linear momentum → final nucleus is not at rest → recoil 
momentum corresponding to recoil energy (non-relativistic) →

• Conservation of total energy and momentum →

• Using E° = cp° → 

• We define ¢E = Ei - Ef →

• Very small correction → for M = 50 uma and E° = 1 MeV → 
¢E/2Mc2 = 10 eV



Classical theory of radiation: introduction

• The emission of electromagnetic waves can be treated as a classical 
wave phenomenon or else as a quantum phenomenon

• For radiation from individual atom or nucleus → the quantum 
description is more appropriate but can be easily understood with 
classical description

• Static (= constant in time) distributions of charges and currents gives 
static electric fields → studied in chapter 3 in terms of multipole 
moments

• If the charge and current distributions vary in time (particularly with 
sinusoidal variation with circular frequency !) → radiation field is 
produced

• Radiation field can be analyzed in terms of its multipole character
6



Classical theory of radiation: multipole character (1) 

• Classical mechanics → the electrostatic potential of a charge 
distribution ½e(r) is given by: 

• When treating radiation → we are only interested in the potential 
outside the charge (= nucleus) which is localized → r’¿ r →  the 
denominator can be expanded in power series

• The norm |r’ - r| = (r2-r’2-2rr’cosµ)1/2 = r(1+(r’/r)2-2(r’/r)cosµ)1/2 → 
considering R = r’/r and ² = R2 -2Rcosµ (that is considered as small) → 

7



Classical theory of radiation: multipole character (2)

• Replacing R in this expression →

• In the coefficients to the powers of R → Legendre polynomials 
Pl(cosµ) →

• The potential becomes
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Classical theory of radiation: multipole character (3)

• The various terms in the expansion are the multipoles →

• This type of expansion can be carried out for magnetic potential and 
for electromagnetic time-dependent field 9



Classical theory of radiation: multipole character (4)

• The potential can also be written →

• Q0 is the total charge, Q1 is the dipole moment, Q2 is the quadrupole 
moment, …

• In classical theory → the higher l’s diminish in influence as r grows 
in quantum theory → the higher l’s are associated with weaker 

transitions
10



Classical theory of radiation: electric dipole field (1)
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• In a static electric dipole → we have a positive charge q located on 
the z-axis at z = l and a charge of the opposite sign on the z-axis at   
z = −l → pure electric dipole:

• Under a parity operation r ! −r the configuration is opposite to its 
original configuration → the parity of the electric dipole radiation is 
¦(E1) = −1

+q

-qx

y

z



Classical theory of radiation: electric dipole field (2)

• We can produce electromagnetic radiation fields by varying the 
dipole moments → we can allow the charges to oscillate along the 
z-axis → r(t) = 2lcos(!t) → electric dipole radiation field

• The power radiated is given by the integral of the energy flux (as 
given by the Poynting vector) over all solid angles → Larmor
equation for a non-relativistic accelerated charge (with a the 
acceleration) → 

• For an electric dipole →
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Classical theory of radiation: magnetic dipole field

• A static magnetic dipole can be represented as a circular current 
loop of current I enclosing area S → the magnetic moment is ¹ = IS 
and is oriented along the surface normal 1n

• Under a parity operation r ! −r there no change of sign → ¦(r !
−r) = ¦(x ! -x) ¦(y ! -y) → ¦(M1) = +1

• To produce electromagnetic radiation → we vary the current such as 
¹(t) = IScos(!t) → the average power radiated is

13
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Classical theory of radiation: generalization to 
multipoles (1)

• Without considering a detailed discussion of electromagnetic theory 
(see J. D. Jackson, Classical Electrodynamics) → these properties can 
be extended to multipole radiation in general

• We define the order of the radiation 2L (L = 1 for dipole, L = 2 for 
quadrupole,…) and we note E for electric and M for magnetic

• The parity of the radiation field is 

• Electric and magnetic multipoles of the same order have opposite 
parity
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Classical theory of radiation: generalization to 
multipoles (2)

• The radiated power is (with ¾ = E or M): 

• m(¾L) is the amplitude of the time-varying electric or magnetic 
multipole moment and the double factorial (2L+1)!! indicates   
(2L+1) £ (2L-1) £ … £ 3 £ 1

• The generalized multipole moment m(¾L) differs for L = 1 from the 
electric dipole moment d and the magnetic dipole moment ¹
through some relatively unimportant numerical factors of order 
unity
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Quantum mechanical theory: transition from classic (1)

• Classical theory to quantum theory → quantization of the sources of 
radiation field = the multipole elements

• In previous equation → replacement of the multipole moments by 
appropriate multipole operators changing nucleus from its initial 
state Ãi to final state Ãf

• As for ¯ emission → decay probability is governed by a matrix 
element → the matrix element of the multipole operator →

• The integration is performed over the volume of the nucleus

• The function of mfi is to change the nuclear state Ãi into Ãf while 
simultaneously creating a photon of proper energy, parity and 
multipole order 16



Quantum mechanical theory: transition from classic (2)

• If we consider the classical radiated power P(¾L) as the energy 
radiated per unit time in form of the photon (each which energy ~!) 

→ the probability per unit time for photon emission (= decay 
constant) is:  

• To evaluate this expression → evaluation of mfi is needed → thus 
knowledge of initial and final wave functions

• Simplification → the transition is due to a single proton that 
changes its state (from one shell-model state to another for 
instance) = Weisskopf assumption
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Quantum mechanical theory: electric transitions (1)

• For electric transitions → the multipole operator includes a term of 
the form erL YLM(µ, Á) (with YLM the spherical harmonics) → for L = 1 
it reduces to ercosµ (dipole) and for L = 2 to er2(3cosµ - 1) 
(quadrupole) as expected

• For the radial part of the wave functions → Ãi and Ãf are constant 
for r < R (nucleus radius) and equal to 0 for r > R → the radial part of 
the transition probability becomes 

where the denominator is included for normalization 
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Quantum mechanical theory: electric transitions (2)

• By assuming that the angular integrals can be replaced by unity →

• Considering R = R0A1/3 (with R0 = 1.2 fm by convention) → we obtain 
the following estimates for the lower multipole orders  (with ¸ in s-1

and E in MeV) →
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Quantum mechanical theory: magnetic transitions (1)

• For magnetic transitions →  the radial integral includes a term rL-1 →
it becomes: 

• The magnetic operator also includes a factor depending on the 
nuclear magnetic moment of the proton (¹p) → if we also neglect 
several factors of order unity (mp being the proton mass)→ 
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Quantum mechanical theory: magnetic transitions (2)

• It is usual to consider:

• In these conditions the following estimates for the lower multipole 
orders are obtained →
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Quantum mechanical theory: Weisskopf estimates (1)

• These estimates for E and M transitions are known as Weisskopf
estimates

• They can be not very accurate (compared with measured results) 
but they provide reasonable relative comparison of the transition 
rates

• If an observed ° decay rate is many orders of magnitude smaller 
than the Weisskopf estimates → poor match-up of initial and final 
wave functions slows the transition

• If the transition rate is much greater than Weisskopf estimates → 
more than one single nucleon is responsible for the transition

• Some observations → lower multipolarities are dominant (L by 1 
→ ¸ by 10 -5) and for a given L → ¸(E)/¸(M) ≈ 100 for heavy 
nuclei) 22



Quantum mechanical theory: Weisskopf estimates (2)
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Quantum mechanical theory: « full quantum » (1)

• Use of the Fermi Golden Rule →

• ½(E) = dn/dE (with n the number of states) is the density of states per 
unit of energy of the emitted photon et per unit of solid angle

• Vint is the operator of interaction between the nucleus and its 
electromagnetic field

• The |j;ni state characterizes systems formed of a nuclear state |ji of 
energy E and of a photon state |ni → in the initial state |ii there is no 
photon → in final state |fi one photon is emitted with an energy →
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Quantum mechanical theory: « full quantum » (2)

• By considering nucleus + radiation to be enclosed in a cavity of 
volume V = L3 and quantization of the momentum p (or equivalently 
the wave number k) in all 3 directions → ki = (2¼/L)ni with ni being 
an integer → similar calculation as made for ¯ decay allows to write 
for all space →

• If we consider just a small solid angle d instead of 4¼ and since the 
photon energy E = ~ck = ~! ≈ Ei - Ef →
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Quantum mechanical theory: « full quantum » (3)

• Then we have to look for the potential of the interaction → the 
interaction of a nucleus formed of Z protons and N neutrons with 
the electromagnetic field can be expressed in terms of vector 
potential A →

• In this equation → B is the magnetic induction, S and gsj are the spin 
and the gyromagnetic ratio of the particle, glj = 1/0 for 
proton/neutron

• The first term characterize the electric transitions and the second 
one the magnetic transitions

26



Quantum mechanical theory: « full quantum » (4)

• Considering the quantization of the operators A and B → we obtain 
the second quantization of the Vint operator →

• ak and a†k are called annihilation and creation operators → they 
annihilates/create  one photon of wave number k

• Ha and He are the absorption and emission operators

• It is possible to show that →
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Quantum mechanical theory: « full quantum » (5)

• The transition probability per unit time is thus →

• The He operator is / to the electromagnetic multipolar operator 
mfi(¾L) → as defined previously

• To calculate the transition probability for a given ¾L → it is 
necessary to evaluate

• The easiest way to evaluate previous quantity is to consider that 
only one nucleon participate to the transition → we come back to 
the Weisskopf approximation

28



Quantum mechanical theory: Weisskopf units

• Very often true transitions are expressed in Weisskopf units → 
allows to estimate the difference between simple values resulting 
from the Weisskopf approximation and the true result (generally 
obtained from experiment)

• The Weisskopf unit for E¸ is

• The Weisskopf unit for M¸ is

29



Selection rules (1)

• A classical electromagnetic field produced by oscillating charges and 
currents transmits energy and also angular momentum → in 
quantum limit each photon carries a definite angular momentum

• As written above the multipole operator includes a factor YLM(µ, Á) 
which is associated with angular momentum L → a multipole of 
order L transfers an angular momentum of L~ per photon

• We first consider a ° transition from an initial state of angular 
momentum Ii and parity ¼i to a final state If and ¼f (with for the 
moment Ii ≠ If)

• Conservation of angular momentum implies →
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Selection rules (2)

• In other words →

• For instance → Ii = 3/2 and If = 5/2 → L = 1, 2, 3, 4 → mixture of 
dipole, quadrupole, octupole and hexadecapole

• Now if we are looking for the parity → electric or magnetic type is 
determined by the relative parity of initial and final levels 
→ if no change in parity (¢¼ = no) → the radiation has even parity

→ if parity change during transition (¢¼ = yes) → the radiation has odd parity

• As written above →

• Electric transitions have even parity if L = even magnetic 
transitions have even parity if L = odd 31



Selection rules (3)

• Consequently ¢¼ = no transitions consists of even electric 
multipoles and odd magnetic multipoles ¢¼ = yes transitions 
consists of odd electric multipoles and even magnetic multipoles

• In previous example → let us assume that ¼i = ¼f  → ¢¼ = no → L = 1 
must be magnetic, L = 2 must be electric, L = 3 must be magnetic and 
L = 4 must be electric → allowed transitions are M1, E2, M3 and E4

• In conclusion → angular momentum and parity selection rules are →

32



Selection rules: particular cases

• There is no monopole transition (L = 0) → indeed the monopole 
moment is just the electric charge → no variation in time →              
if Ii = If the lowest multipole order is L = 1

• If either Ii or If = 0 → simple case → only a pure multipole is emitted 
→ example 2+ ! 0+ → pure electric quadrupole E2 transition

• If Ii = If = 0 → selection rules gives L = 0 which is forbidden → only 
internal conversion is permitted (see below)

• Usually several multipoles may be emitted → Weisskopf estimations 
permit to determine which multipole is likely to be emitted → in our 
previous example → assuming a medium-weight nucleus (A = 125 
→ A2/3 = 25) and E = 1 MeV → Weisskopf equations give ¸ in the 
ratio → ¸(M1): ¸(E2): ¸(M3): ¸(E4) = 1: 1.4£ 10-3: 2.1£ 10-10: 1.3£

10-13 → principally M1 transition + small mixture of E2 33



Internal conversion: generalities

• Internal conversion (internal-conversion-electron emission or ce) is 
an electromagnetic process in competition with ° emission

• The electromagnetic field interacts with an atomic electron → 
emission of this electron from the atom

• No electron creation during this process but emission of an existing 
e- → ce decay is (slightly) altered by a modification of the chemical 
environment and of the atomic orbits

• Attention → it is not a two-step process → no emission of photon 
knocking loose an orbiting electron → such process has a negligible 
probability of occurrence
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Internal conversion: energy release in ce (1)

• The transition energy ¢E is converted as kinetic energy of the 
emitted electron Te less its binding energy Bi

• The ce spectrum thus consists of a number or discrete individual 
components corresponding to each orbital or Bi

• The ce electrons are labelled according to the electron shell from 
which they come: K, L, M,…

• If very high resolution observations are made → the substructure 
can be seen → for instance for L (n = 2): LI, LII, LIII

• Following a ce → atom is left with a vacancy → filling of this vacancy 
by electron from higher shells → emission of characteristic X-rays
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Internal conversion: energy release in ce (2)
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Internal conversion: shell nomenclature
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Binding energies (1)
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Energies are given in keV



Binding energies (2)



Internal conversion: example

• 203Hg ! 203Tl → ¯ emission 
followed by emission of a ° of 
279.19 keV

• Electron spectrum is the sum of ¯
spectrum + ce lines

• The energy of the lines 
corresponds to 279.19 - Bi(Tl)

40
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Internal conversion: lines intensities (1)

• Variable intensity for each conversion electron → depends on the 
multipole character

• Probability of ce have to be considered when calculating ° emission 
→ the total decay probability ¸t has two components: one from °
emission (¸°) and another arising form ce (¸e) →

• From this we define the internal conversion coefficient →

• The total decay probability becomes →

• We also define partial coefficients for the individual atomic shells →

• Of course subshell coefficients can also be defined (®LI, ®LII,…) 41



Internal conversion: lines intensities (2)

• Precise calculation of ® coefficients is beyond the level of the course 
→ only some ingredients are given here

• We use as usually the Fermi Golden Rule →

• The density of state ½(Ee) is expressed as (Te is e- kinetic energy) →

• The interaction potential is the difference between the potentials 
for nucleus with finite radius and zero radius and also couples the 
nuclear and atomic Hamiltonians
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Internal conversion: lines intensities (3)

• The initial state includes a bound electron and the final state 
includes a free electron → the initial and final total wave 
functions accounts for nuclear and electron wave functions: 

with       the free-particle wave function = exp(-ikere) 

• The         are proper wave functions of the nuclear Hamiltonian 
and       is the proper wave function of the electron Hamiltonian 
corresponding to an energy -Bi(nl)

• All of the specifically nuclear information is contained in          → 
the same electromagnetic operator mfi(¾L) governs both °
emission and internal conversion → the nuclear part of the matrix 
element is identical for both processes →
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Internal conversion: lines intensities (4)

• Consequently the ® coefficients are independent of the details on 
nuclear structure → the ® depend on the atomic number Z of the 
atom, on the energy of the transition E and on the multipolarity L
(hence indirectly on nuclear structure)

• Nonrelativistic calculations give (with n the principal quantum 
number of the bound electron wave function) →
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Internal conversion: lines intensities (5)

• We note that the factor (Z/n)3 comes from the term          that 
appears in the equation the hydrogenic wave function shows a 
factor (Z/n)3/2 in its normalization constant

• (e2/4¼²²0~c) ' 1/137 is the fine structure constant

• Two approximations in previous results 
→ generally in nuclear physics electrons must be treated relativistically

→ a simple hydrogenic wave function does not properly take account the effect 
that occurs when the electron penetrates the nucleus  

• However these expressions illustrate some features of ® coefficients

1. Increase as Z3 → ce process is more important for heavy nuclei than for light 
nuclei → example: the 1.27-MeV E2 transition in    Ne has ®K = 6.8 £ 10-6

and the 1.22-MeV E2 transition in     W has ®K = 2.5 £ 10-3 → ratio of 0.0027 
≈ (10/74)3 = 0.0025 

45



Internal conversion: lines intensities (6)

2. The ® coefficients rapidly with E on the opposite the probability for °
emission rapidly with E → example: in 56Co there are 3 M1 transitions 
with E = 158 keV (®K = 0.011), 270 keV (®K = 0.0034), 812 keV (®K = 0.00025) 
→ decrease in about E-5/2

3. The ® coefficients rapidly for L (for the higher L → ce emission is more 
probable than ° emission) → example: in 99Tc the M1 transition (E = 141 keV) 
has ®K = 0.10 while the M4 transition (E = 143 keV) has ®K = 30 → ratio of 300 
compared to the theoretical ratio of (2mec

2/E)3 ≈ 370

4. The ® coefficients for higher atomic shells (n > 1) like 1/n3 → for a given 
transition we expect ®K/®L ' 8 but using correct electronic wave functions 
causes this estimate to vary considerably however many experiments 
show ®K/®KL in [3,6] → useful estimation

46

We expect relatively large K-shell ® coefficients for low-
energy, high-multipolarity transitions in heavy nuclei



Internal conversion: examples of lines intensities (tin)

47

Results obtained  with correct atomic wave functions → more precise 



Internal conversion: E0 emission

• E0 is forbidden by electromagnetic radiation because the nuclear 
monopole moment cannot radiate to points external to the nucleus

• E0 is important for 0+ ! 0+ transition

• In this particular case → the nucleus can be seen as a spherically 
symmetric ball of charge → only possible motion is pulsation → no 
alteration of the electric field at points external to the sphere → no 
radiation

• But electronic orbits (the s states) that do not vanish near r = 0 (i.e. 
the electron is inside the nucleus) can sample the varying potential 
within the pulsating nucleus → transfer of energy to the electron is 
possible → small probability but important when other modes are 
forbidden

• As no ° is emitted → impossible to define ® coefficient 48



Internal conversion: example of E0 emission

Energy levels of 72Ge
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Pair creation (1)

• For large enough transition energy → decay occurs by emission of 
an electron-positron pair →

• Conservation of energy implies →

• The threshold for this process is obviously →
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Pair creation (2)

• Pair creation process is generally negligible compared to 
electromagnetic transitions (not a first-order effect in 
electromagnetic field)

• It can become principal mode transition when other transitions are 
forbidden or very inefficient → 0+ ! 0+ transition for light nuclei 
and large energy transition

• For 0+ ! 0+ ce is in competition with pair creation → for light nuclei 
and large energy transition ce is very inefficient → pair creation

51

¢E = 6.05 MeV → 100% pair creation 



Lifetime for ° emission

• Evaluation of partial decay rate for ° emission → example of 72-Se
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Lifetime for ° emission: full disintegration spectrum of 72-Br

• M
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Lifetime for ° emission: example of 72-Se (1)

• We consider the 1317-keV level → measured half-life T1/2 = 8.7 ps → 
the total decay ¸t = ln(2)/T1/2 = 8.0 £ 1010 s-1

• This decay rate is the sum of the decay rates of the 3 transitions that 
depopulate the 1317-keV state → ¸t = ¸t,1317 + ¸t,455 + ¸t,380 =    
¸°,1317 (1 + ®1317) + ¸°,455 (1 + ®455) + ¸°,380 (1 + ®380)

• From standard data → the ® coefficients can be neglected (< 0.01) 
→ ¸t = ¸°,1317 + ¸°,455 + ¸°,380

• The relative intensities have been measures to be ¸°,1317 : ¸°,455 :
¸°,380 = 51 : 39 : 10 → the partial decay rates are →
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Lifetime for ° emission: example of 72-Se (2)

• For the 937-keV level → measured half-life T1/2 = 15.8 ns → the total 
decay ¸t = ln(2)/T1/2 = 4.39 £ 107 s-1

• This decay rate is the sum of the decay rates of 2 transitions →        
¸t = ¸t,937 + ¸t,75 = ¸e,937 + ¸°,75 (1 + ®75) indeed the 937-keV 
transition is a 0+ ! 0+ transition 

• From standard data → the ® coefficient for the 75-keV transition is 
2.4

• Experimentally we have ¸°,75 : ¸e,937 = 73 : 27 → ¸e,937 = 4.3 £ 106 s-1

and ¸°,75 = 1.16 £ 107 s-1

• For the 862-keV transition → ¸°,862 = 2.0 £ 1011 s-1
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Lifetime for ° emission: example of 72-Se (3)

• From selections rules → we consider the Weisskopf estimates for 
the E2 transition →

• The measured value are frequently at least an order of magnitude 
larger than the Weisskopf estimates → evidence of collective 
aspects of nuclear structure
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Lifetime for ° emission: comparison Weisskopf exp. (1)

• Number of cases versus the ratio between the observed decay rate 
and the value calculate form Weisskopf formulas for E2 and E1
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Lifetime for ° emission: comparison Weisskopf exp. (2)

• Mean life (= 1/¸) versus the energy for M4 transition → good 
agreement between experiments (points) and theory (line) → 
especially the E-9 dependence is well observed
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Lifetime for ° emission: °-spectroscopy

• For more explanations 
about °-spectroscopy → 
see « Nuclear Metrology 
Techniques »

59
°-ray spectrum
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°-ray absorption: principles (1)

• Inverse process of °-ray emission is °-ray absorption → a nucleus at 
rest and in its ground state absorb a photon  of energy E° → jumps 
to an excited state at an energy ¢E above the ground state →

• E°
2/2Mc2 = ER is the recoil energy

• We assume a source of °-rays of continuously variable energy → if 
the energy of the excited state was sharp → the absorption takes 
place only for a ° energy equal to the resonant value ¢E + ER

• However the energy of the excited state is not sharp any state 
that has a mean live ¿ has a width ¡ = ~/¿ → the absorption takes 

place even when the ° energy differs somewhat from the resonant 
value 60



°-ray absorption: principles (2)

• We consider a beam of °-rays through a cloud of bare nuclei (to 
avoid scattering and absorption processes due to atomic electrons) 
→ the resonant absorption cross section is 

with ¾0 the cross section calculated from fundamental principles

61

• For typical nuclear states of 
mean lives ns to ps → ¡ is in the 
range of 10-6 to 10-3 eV



°-ray absorption: principles (3)

• Schematic view of a resonant absorption experiment →

• E° is varying → resonance curve
→ at energies far from the resonance nuclei are transparent to the radiation → 
no absorption

→ at the resonance transmitted intensity reaches a minimum
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°-ray absorption: Doppler broadening (1)

• In practice it is unlikely to observe natural linewidth ¡ → additional 
contribution to the observed linewidth is the Doppler broadening ¢

• Indeed nuclei are not at rest → they are in thermal motion at any 
temperature T → photons emitted or absorbed in the lab frame are 
Doppler shifted with energies 

where vx is the velocity component along the photon direction

• The motion of nuclei is usually represented by a Maxwell 
distribution → we obtain the distribution of energies →

• This gives a Gaussian distribution of width 
63



°-ray absorption: Doppler broadening (2)

• For a 100 keV-transition and for a medium-weight nucleus →          
¢ = 0.1 eV  (at room T → kT ≈ 0.025 eV) → Doppler broadening 
dominates natural linewidth (even cooling at T = 4 K → ¢ = 0.01 eV) 
→ the width observed in experiment as previously shown is a 
combination of natural linewidth plus additional dominating 
Doppler broadening
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°-ray absorption: practical experiment (1)

• Tunable source of photons does not exist in practice (only 
continuous electromagnetic spectrum from Bremsstrahlung 
produced by charged-particle acceleration → see « Nuclear 
Metrology Techniques »)

• Practically → ordinary sources of ° radiation emitting at discrete 
energies → to obtain resonant absorption → radioactive source has 
to emit a ° ray of an energy within at most 0.1 eV of the desired 
resonant energy ¢E + ER → almost impossible

• It make sense to use a source in which the ° ray is emitted in the 
same downward transition that it must be excited upward by 
resonant absorption
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°-ray absorption: practical experiment (2)

• Example → ¯ decay of 198Au to 198Hg emitting a 412 keV-energy °
ray that interacts with a target of stable 198Hg → possibility of 
absorption from the ground state to the 412 keV excited state

• For this 412 state ¿ = 32 ps → ¡ = 2 £ 10-5 eV ER = 0.46 eV → 
attention: the recoil affects both the emitted and absorbed 
transitions → the emitted radiation has energy ¢E - ER and for the 
absorption energy of ¢E + ER must be supplied at room T → 
Doppler width ¢ = 0.36 eV

• From these data → minimal overlap between emission and 
absorption lines → very little probability of resonant excitation

• Contrast with atomic radiations → optical transitions have energies 
of a few eV → ER ≈ 10-12 eV (ER(Hg) = 2.7 £ 10-12 eV) → complete 
overlap → easy to perform 66



°-ray absorption: practical experiment (3)

67

198Hg

ER = 0.46 eV

¢ = 0.36 eV

¢  ¢

412 keV

¡ = 0.00002 eV



°-ray absorption: practical experiment (4)

• Several techniques exist to overcome the energy difference 2ER

between source and absorption transitions

1. Raising the T → increasing Doppler broadening and the overlap

2. Move the source toward the absorber at high speed v to Doppler shift the 
emitted energy by 2ER → the Doppler shifted energy being E°(1+v/c) → the 
required speed is v = 2cER/E° → for 198Hg v = 670 m/s (realized by attaching 
the source to the tip of a rotor)

3. Use the Mössbauer effect: recoilless ° ray emission
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Mössbauer effect: principles

• Emitting and absorbing nuclei are bound in a crystal lattice → 
typical binding energies of an atom in a lattice ≈ 1 - 10 eV → not 
enough recoil energy available for the atom to leave its lattice site 
→ the entire solid lattice absorbs the recoil momentum → the mass 
appearing in recoil energy formula becomes the mass of the entire 
solid making ER very small → recoil-free event

• Moreover a certain fraction of the atoms in a lattice is in the 
vibrational ground state of thermal motion → very little thermal 
broadening effect

• It results very narrow and overlapping emission and absorption 
lines characterized by natural linewidth
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Mössbauer effect: experimental demonstration

• To demonstrate Mössbauer effect → we move the source and 
absorber relative to one another at low speed → if the speed is such 
that the Doppler shift is greater than ¡ → resonance is destroyed

• Mössbauer experiments this in 1958 for 191Ir (E° = 129 keV / ¡ = 3 £
10-6 eV) → total linewidth for absorber and emitter is 6 £ 10-6 eV → 
the necessary speed to destroy resonance is ≈ 5 £ 10-11 c ≈ 15 mm/s 
(→ quite smaller than 670 m/s) 

70



Mössbauer effect: choice of the source (1)

• The effectiveness of the Mössbauer effect is more complex that the 
simple question of lattice binding energy exceeding the recoil 
energy → indeed solids can absorb energy in many other ways than 
removing atoms from their lattice sites → at low energies and T it is 
made through lattice vibrations called phonons (propagation of 
phonons is responsible for mechanical and acoustic waves) → the 
energy in a decay can be taken up by phonons

• Mössbauer effect occurs because there is a finite probability of a 
decay involving no phonon

• Definition of the recoil-free fraction f (or Mössbauer-Lamb factor) = 
fraction of nuclei in the lattice that emits (or absorbs) with no recoil 
(thus involving no phonons) → entire crystal acts as the recoiling 
body → due to the large mass → recoil-free
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Mössbauer effect: choice of the source (2)

• This recoil-free fraction is

• In this expression → hx2i is the mean-square vibrational amplitude 
of the emitting nucleus and ¸ is the wavelength of the °-ray

• if E° = → f → for the 14.4 keV transition of 57Fe → f = 0.92 
for the 129 keV transition of 191Ir → f = 0.10

• Recoilless processes are needed for both in source and absorber → 
total fraction is obtained by the products of the 2 factors → Fe 
shows a much larger effect than Ir

• Mössbauer effect is particularly detected in isotopes with low lying 
excited states

72



Mössbauer effect: choice of the source (3)

• Similarly the resolution is dependent upon the lifetime of the 
excited state 

• Energy and resolution limit the number of isotopes for which 
Mössbauer effect is detected

• In red → elements which have known Mössbauer isotopes in 
black boxes → elements used in practice → principally 57Fe  73



Mössbauer effect: Mössbauer spectroscopy

• When source and absorber atoms are in different local 
environments → their nuclear energy levels are different

• For 57Fe → ¡ = 5 £ 10-9 eV → compared to the Mössbauer ° ray 
energy (14.4 keV) → resolution of 1 in 1012 or(i.e. the equivalent of 
one sheet of paper in the distance between the Sun and the Earth) 
→ detection of the hyperfine interactions in the nucleus

74



Mössbauer effect: typical energies 
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Physical phenomenon Energy range, eV

Mössbauer γ-ray emission/

absorption . . . . . . . . . . . . 103–105

Chemical binding energies . . . . . . 1–10

‘Free' atom recoil energies . . . . . 10−4–10−1

Lattice vibration phonon energies . . 10−3–10−1

Natural linewidths, 2Γ . . . . . . . 10−9–10− 6

Isomer shift . . . . . . . . . . . . 0–10−6

Quadrupole splitting . . . . . . . . 0–10−6

Magnetic hyperfine splitting . . . . 0–10−6
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