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Summary

1. General principles

2. Energy and momentum conservations

3. Theory of ® emission

4. Angular momentum and parity
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General principles (1)

• The nucleus emit an ® particle i.e. a nucleus of helium:

• Alpha emission is a Coulomb repulsion effect → becomes important 
for heavy nuclei (Coulomb repulsion in heavy nuclei due to the 
larger number of protons present) → Bethe-Weizsäcker formula → 
Coulomb force with size at a faster rate (in » Z2) than does the 
specific nuclear binding force (in » A)

• The ® emission is particularly favored (compared to other particles) 
due to 
– Its very stable and tightly bound structure

– Its small mass

– Its small charge

• Theoretically some heavier particles as 8Be or 12C may be emitted or 
the fission into equal daughter nuclides may happen → but very 
penalized
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General principles (2)

• For a nucleus to be an ® emitter → not enough for the ® decay 
to be energetically possible → the disintegration constant must 
also not be too small → the ® emission would occur so rarely 
that it may never be detected (T½  < 1016 years)

• Moreover if ¯ decay is present → can mask the ® decay 

• Most nuclei with A > 190 and many with 150 < A < 190 are 
energetically possible emitters but ½ of them effectively meet 
the 2 other conditions
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Energy conservation (1)

• The ® emission process (between ground state levels) is:

• Rutherford shows in 1908 that the ® particle is a nucleus of 4He 
→ constituted of 2 protons and 2 neutrons

• Energy conservation with the initial decaying nucleus X at rest →

• Due to the linear momentum conservation → X’ and ® are in 
motion → T is the kinetic energy

• Equivalently we write → 
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Energy conservation (2)

• Q = (mX - mX’ - m®)c2 = the net energy released in the decay → 
the decay occurs spontaneously only if Q > 0

• Q can be calculated from atomic masses (even we discuss 
about nuclear processes) because the electron masses cancel 
in the subtraction

• For a typical ® emitter (232-U) → Q may be calculated from the 
known masses for various emitted particles:
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Energy conservation (3)

• Only ® emission is possible in this case → ® is very stable → ® 

has a relatively small mass compared with the mass of its 
separate constituents

• The Q value is also the total kinetic energy given to the decay 
fragments Q = TX’ + T®

• For Q > 0 → we find back the condition mX > mX’ + m® of 
instability in particles 

• Remark: ® disintegration towards excited levels of X’ are 
possible → the excitation energy of the nucleus X’ has to be 
subtracted from Q
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Linear momentum conservation

• As the original nucleus is at rest → X’ and ® move with equal 
and opposite momenta → p® = pX’

• As the ® decay released typically 5 MeV → we can use 
nonrelativistic kinematics → m®T® = mX’TX’ →

• As X’ is a heavy nucleus → A À 4 →

• Typically the ® carries 98% of the Q energy and X’ carries 2% 
(recoil energy) corresponding for ® = 5 MeV to TX’ = 100 keV
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Released energy (1)

• Introducing the binding energies the energy released during the ®
decay may be written →

• Thus Q > 0 becomes →

• (B/A)m is the mean binding energy by nucleon of parent and daughter 
nuclei and ¢ is their difference (≈ 30 keV for heavy nuclei) 9



Released energy (2)

• As B(4,2) ≈ 28 MeV → we have thus approximately →

• Du to the term ¢ → ® decay becomes frequent for nuclei with 
A > 200 for which B/A is < 7.8 MeV

• This also explains why the ® emission is favored compared to 
other nuclei as deuteron (B(2,1)/2 ≈ 1.11 MeV) or tritium 
(B(3,1)/3 ≈ 2.83 MeV) → indeed the ® particle has tightly 
bound structure → a pair of neutrons and a pair of protons 
inside a nucleus is favored to form an ®-cluster
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Theory of ® emission (1)

• General features of ® emission theory have been developed 
by Gamow, Gurney and Condon in 1928

• The ® particle is assumed to move in a spherical region 
determined by the daughter nucleus → one-body model

• The ® particle is preformed inside the parent nucleus → there 
is no proof that it is well the case but it works quite well

• Deeply inside the heavy nucleus → attractive nuclear force 
dominates the Coulomb repulsion force

• Outside the nucleus → only remains the Coulomb force

• Between the 2 (close to the nucleus surface) → number of 
neighbours → nuclear attractive force → equilibrium 
with repulsion force → potential barrier

• To be emitted the ® particle has to cross this potential barrier 
by tunnel effect 11



• The probability of disintegration per time unit W is supposed 
to be / to the probability of crossing the barrier → W/|T|2

with T the transmission coefficient

• The transmission probability is given by the WKB 
approximation
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realistic potential

X

Y + ®
E = Q

Theory of ® emission (2)



WKB approximation

• For decay between ground state levels (e.g. 0+) → we have to 
resolve u’’(r) − 2¹/~2 (V(r) - E) u(r) = 0 (with ¹ ≈ m®mX’/mX the 

reduced mass  of the ® nucleus and the daughter nucleus)

• By choosing u(r) = exp(iS(r)) with S(r) slowly varying →
S(r)’2 = 2¹/~2 (E - V(r))

• Si E < V(r) → 
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G = Gamow factor



Theory of ® emission (3)

• WKB approximation applied to ® emission → r1 = R (the radius 
of the nucleus), r2 = 2(Z-2)e2/4¼²0E, with

• Transforming r = r2cos2u →
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Theory of ® emission (4)

• For a heavy nucleus emitting 5 MeV ® → r2 ≈ 0.6 Z fm > R ≈ 
1.25 A1/3 fm

• Assuming R/r2 ≈ 0 → we obtain the Gamow approximation →

where ´ the Sommerfeld factor is (® = 1/137)

• The mean lifetime ¿ = W-1 approximately follows → 
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Theory of ® emission (5)

16E® is the kinetic energy of the ® particle in MeV 



Theory of ® emission (6)

• The ® emitters with short mean lifetime have large 
disintegration energy  (and conversely) observed in 1911: 
Geiger-Nutall rule

• Examples: 232-Th: T½ = 1.4 £ 1010 years, Q = 4.08 MeV and 
218-Th: T½  = 1.0 £ 10-7 s, Q = 9.85 MeV

• A factor 2 in energy implies a factor 1024 in half-life

• Correct tendency for all isotopes but very good only for Z and N
both even nuclei
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Theory of ® emission (7)
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Theory of ® emission (8)

• When A > 212 → adding neutrons to a nucleus reduces the disintegration 
energy → due to the Geiger-Nuttall rule → increase of the half-life → the 
nucleus becomes more stable

• The discontinuity near A = 212 occurs where N = 126 → another example of 
nuclear shell structure.
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Theory of ® emission (9)

• Geiger-Nutall rule enables us to understand why other decays into 
light particles are not commonly seen (even though they are allowed 
by the Q value)

• Geiger-Nutall rule is able to reproduce T½ within 1-2 orders of 
magnitude over a range of more than 20 orders

• Approximations in previous calculations:

1. Initial and final wave functions ( Fermi Golden Rule) are not 
considered

2. The nucleus is assumed to be spherical with R ≈ 1.25 A1/3 fm → 
heavy nuclei (specially with A ≥ 230) have strongly deformed shape

3. The angular momentum carried by the ® particle is neglected
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Angular momentum and parity (1)

• In previous calculations → transition between ground state 
levels (e.g. 0+) → but an initial state can populate different final 
states in the daughter nucleus → « fine structure » of ® decay

• In that case we have to consider the angular momentum Ji and 
Jf of the of the initial and final nuclear state → and 
consequently the angular momentum of the ® particle ℓ®

• Consequently → ® decay must follow the laws of the 
conservation of angular momentum and of parity
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Angular momentum and parity (2)

• Definition of the total angular momentum J for i nucleons:

with Li and the orbital angular momentum operator and Si the   

spin operator of the ith nucleon

• In the particular case of ® decay → this expression may be written 
(with I® and ℓ® the spin and angular momentum of the ® particle and 
Ji and Jf written for initial and final nuclear states) →

• The ® particle wave function is then represented by a Yℓm with ℓ = ℓ®
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Angular momentum and parity (3)

• As the 4He nucleus consists of 2 protons and 2 neutrons all in 1s 
state → their spins coupled pairwise → I® = 0

• The composition of the 3 remaining angular momenta leads to →

• The conservation of parity implies →

• Moreover as the parity ¼® of ® particle is + (even-even nucleus) → 
the parity conservation rule becomes →

• If the initial and final parities are the same → ℓ® must be even 
If the parities are different → ℓ® must be odd

• In particular for an initial state 0+ (frequent case) → ℓ® = Jf 23



Angular momentum and parity (4)

• Another consequence of the introduction of ℓ® → the barrier 
of potential is raised and becomes (particle in a well):

• The additional term is always > 0 → of the barrier thickness 
→ the probability transition 

• Moreover the Q value when the final state is not the ground 
state: Q! Q - Ex with Ex the energy of the excited state → 
application of the Geiger-Nutall rule → a smaller Q value 
implies a large mean lifetime → a small transition probability 
→ a small intensity in the decay branch

• These 2 reasons implies a of the probability transition when 
the final state is not the ground state
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Angular momentum and parity (5)
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The 3+ state is 
forbidden by the 
parity selection 
rule → 0 ! 3 
decay must have 
ℓ® = 3 → the parity 
has to change 



Angular momentum and parity (6)
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