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General principles (1)

The nucleus emit an « particle i.e. a nucleus of helium: §1He2

Alpha emission is a Coulomb repulsion effect - becomes important
for heavy nuclei (Coulomb repulsion in heavy nuclei due to the
larger number of protons present) - Bethe-Weizsacker formula -
Coulomb force 21 with size at a faster rate (in ~ Z?) than does the
specific nuclear binding force (in ~ A)

The ov emission is particularly favored (compared to other particles)
due to

— Its very stable and tightly bound structure

— Its small mass

— Its small charge

Theoretically some heavier particles as 8Be or *>C may be emitted or
the fission into equal daughter nuclides may happen - but very
penalized



General principles (2)

For a nucleus to be an a emitter - not enough for the o decay
to be energetically possible - the disintegration constant must
also not be too small - the o emission would occur so rarely

that it may never be detected (T,, < 10%® years)
Moreover if 3 decay is present - can mask the o decay

Most nuclei with A > 190 and many with 150 < A < 190 are
energetically possible emitters but % of them effectively meet
the 2 other conditions



Energy conservation (1)

The o« emission process (between ground state levels) is:
A A—4 ~1
ZXN = 7 oXN g2+

Rutherford shows in 1908 that the « particle is a nucleus of 4He
— constituted of 2 protons and 2 neutrons

Energy conservation with the initial decaying nucleus X at rest -

mxc? =myx.c® + Tx: +myc® + T,
Due to the linear momentum conservation - X’ and o are in

motion = T is the kinetic energy
Equivalently we write -

Tx: +T, = (mx —mx: —my)c’



Energy conservation (2)

* Q= (my-my -m_ )c?=the net energy released in the decay -
the decay occurs spontaneously only if @ >0
Q can be calculated from atomic masses (even we discuss

about nuclear processes) because the electron masses cancel
in the subtraction

* For atypical a emitter (232-U) - Q may be calculated from the
known masses for various emitted particles:

Energy Energy
Emitied Releass Emitbed Boelesse
Particle (AdeV) Pariucle G EL
m =12 “He L3541
'H —,12 *He — 159
H 10.M “He — 619
"H — 1{i.24 “Li - 379

“Hae — Gy “Li —1.94



Energy conservation (3)

Only o emission is possible in this case - « is very stable - «
has a relatively small mass compared with the mass of its
separate constituents

The Q value is also the total kinetic energy given to the decay
fragmentsQ=T, + T,

For Q > 0 - we find back the condition my > m,, + m_, of
instability in particles

Remark: o disintegration towards excited levels of X" are
possible - the excitation energy of the nucleus X’ has to be
subtracted from Q



Linear momentum conservation

As the original nucleus is at rest > X’ and a move with equal
and opposite momenta - p_, = py.

As the o decay released typically 5 MeV - we can use
nonrelativistic kinematics > m, T, = m, T, -

_ @
14+ ma/mx:
As X' is a heavy nucleus > A> 4 -

T. = Q(1—4/A), Tx, =4Q/A

Typically the « carries 98% of the Q energy and X’ carries 2%
(recoil energy) corresponding for a =5 MeV to T,. = 100 keV

«



Released energy (1)

Introducing the binding energies the energy released during the «
decay may be written -

Q:B(4,2)+B(A—4,Z—2)—B(A,Z)
Thus Q > 0 becomes -
B(4,2) > B(A,Z)—B(A—4,7 —2)

) AB(i,Z) _(A_ZL)B(A;éif—Z)
_ 4(3(‘1’2)>m+@4—2)a

(B/A),, is the mean binding energy by nucleon of parent and daughter
nuclei and A is their difference (= 30 keV for heavy nuclei)



Released energy (2)

 As B(4,2) = 28 MeV - we have thus approximately -

~ 7 MeV

(B(i, Z)>m _ B(ill, 2)

Du to the term A - « decay becomes frequent for nuclei with
A > 200 for which B/A is < 7.8 MeV

This also explains why the e emission is favored compared to
other nuclei as deuteron (B(2,1)/2 = 1.11 MeV) or tritium
(B(3,1)/3 = 2.83 MeV) = indeed the « particle has tightly

bound structure - a pair of neutrons and a pair of protons
inside a nucleus is favored to form an a-cluster



7

‘He ()—3

Theory of o emission (1) - ™ .

General features of o emission theory have been developed
by Gamow, Gurney and Condon in 1928

The o particle is assumed to move in a spherical region
determined by the daughter nucleus - one-body model

The o particle is preformed inside the parent nucleus - there
is no proof that it is well the case but it works quite well

Deeply inside the heavy nucleus = attractive nuclear force
dominates the Coulomb repulsion force

Outside the nucleus - only remains the Coulomb force

Between the 2 (close to the nucleus surface) - number of
neighbours N = nuclear attractive force N - equilibrium
with repulsion force - potential barrier

To be emitted the o particle has to cross this potential barrier
by tunnel effect



Theory of a emission (2)
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* The probability of disintegration per time unit W is supposed
to be o to the probability of crossing the barrier > W | T|?
with T the transmission coefficient

* The transmission probability is given by the WKB
approximation



WKB approximation

For decay between ground state levels (e.g. 0*) - we have to
resolve u”’(r) = 2u/h? (V(r) - E) u(r) = 0 (with x = m_m,./m, the
reduced mass of the a nucleus and the daughter nucleus)

By choosing u(r) = exp(iS(r)) with S(r) slowly varying -
S(r)'?=2p/R*(E - V(r))

SIE<VI > u(r) exp{ /\/ )df,«}

G = Gamow factor

—eXp{ f \/ d?"}—exp(—QG)




Theory of a emission (3)

* WKB approximation applied to a emission - r, = R (the radius
of the nucleus), r, = 2(Z-2)e?/4me E, with

0 r< R
2(Z —2)e? /4megr 1T > R

B\ 2 [ 1/2
|T|2 — exp {—2 (%) /R (% — 1) d?“}

* Transforming r = r,cos?u %

2 g 1/2
/ (— — 1) dr = rg |arccos/ — — 1 — —
R T T9 7"2

V(r) =




Theory of a emission (4)

For a heavy nucleus emitting5MeVa - r,=0.6Zfm>R=
1.25 AY3 fm

Assuming R/r, = 0 - we obtain the Gamow approximation -
TJ? ~ exp(—2m)
where 1 the Sommerfeld factor is (o = 1/137)

2112
= (4 — 2)«
n=( ) =
The mean lifetime 7= W1 approximately follows =
/4 — 2

vVE
with Co = 27 (logy €)a/2uc?



Theory of a emission (5)
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E is the kinetic energy of the « particle in MeV



Theory of a emission (6)

The o emitters with short mean lifetime have large
disintegration energy (and conversely) €= observed in 1911:
Geiger-Nutall rule

Examples: 232-Th: T,, = 1.4 x 10%% years, Q = 4.08 MeV and
218-Th: T,, =1.0 x 10”75, Q =9.85 MeV

A factor 2 in energy implies a factor 10%* in half-life

Correct tendency for all isotopes but very good only for Zand N
both even nuclei

A (MY Mramsred Calculated
130 295 1" 13 % 107"
2x Al 1B 10? £.3 » 107"
224 111 L. 1% = 101
124 .45 1844 g0 = 10
12K 5.52 &0 107 1.4 w10
23] 4.17 14 ® 101 R

13z 4.0 4.4 = 10" L o L0* v



Theory of o emission (7)
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Theory of a emission (8)
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e When A > 212 - adding neutrons to a nucleus reduces the disintegration
energy - due to the Geiger-Nuttall rule = increase of the half-life - the
nucleus becomes more stable

* The discontinuity near A = 212 occurs where N =126 - another example of

nuclear shell structure. .



Theory of a emission (9)

* Geiger-Nutall rule enables us to understand why other decays into
light particles are not commonly seen (even though they are allowed
by the Q value)

* Geiger-Nutall rule is able to reproduce T,, within 1-2 orders of
magnitude over a range of more than 20 orders

* Approximations in previous calculations:

1. Initial and final wave functions (¢ Fermi Golden Rule) are not
considered

2. The nucleus is assumed to be spherical with R = 1.25 AY3 fm >
heavy nuclei (specially with A > 230) have strongly deformed shape

3. The angular momentum carried by the « particle is neglected



Angular momentum and parity (1)

In previous calculations - transition between ground state
levels (e.g. 0*) = but an initial state can populate different final
states in the daughter nucleus - « fine structure » of o decay

In that case we have to consider the angular momentum J; and
J; of the of the initial and final nuclear state - and
consequently the angular momentum of the « particle €

Consequently - « decay must follow the laws of the
conservation of angular momentum and of parity



Angular momentum and parity (2)

* Definition of the total angular momentum J for j nucleons:

J = Z

with L; and the orbital angular momentum operator and §; the

spin operator of the i" nucleon

* Inthe particular case of a decay - this expression may be written
(with I, and €_ the spin and angular momentum of the « particle and

J;and J; written for initial and final nuclear states) -
J;, = Jf +1I,+£€,

* The « particle wave function is then represented by a Y,,, with € =€



Angular momentum and parity (3)

As the *He nucleus consists of 2 protons and 2 neutrons all in 1s
state - their spins coupled pairwise >/ =0

The composition of the 3 remaining angular momenta leads to -
Ji = Jp| < lo < T+ Ty
The conservation of parity implies -
T = Tymg(—1)%
Moreover as the parity m, of a particle is + (even-even nucleus) -
the parity conservation rule becomes -

(—1)' = mimy
If the initial and final parities are the same - €_ must be even <>
If the parities are different - €_ must be odd

In particular for an initial state 0* (frequent case) > €, = J;



Angular momentum and parity (4)

Another consequence of the introduction of € - the barrier
of potential is raised and becomes (particle in a well):

V(r) + b2 lo(Ly + 1) /2mir?

The additional term is always >0 - A of the barrier thickness
— the probability transition

Moreover the Q value Y when the final state is not the ground
state: Q — Q - E, with E, the energy of the excited state -
application of the Geiger-Nutall rule - a smaller Q value
implies a large mean lifetime - a small transition probability
— a small intensity in the decay branch

These 2 reasons implies a Y of the probability transition when
the final state is not the ground state



Angular momentum and parity (5)
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Angular momentum and parity (6)
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