Chapter VI: Alpha decay

Summary

- 1. General principles
- 2. Energy and momentum conservations
- 3. Theory of α emission
- 4. Angular momentum and parity

General principles (1)

- The nucleus emit an lpha particle i.e. a nucleus of helium: ${}^4_2{
 m He}_2$
- Alpha emission is a Coulomb repulsion effect \rightarrow becomes important for heavy nuclei (Coulomb repulsion in heavy nuclei due to the larger number of protons present) \rightarrow Bethe-Weizsäcker formula \rightarrow Coulomb force \nearrow with size at a faster rate (in $\sim Z^2$) than does the specific nuclear binding force (in $\sim A$)
- The α emission is particularly favored (compared to other particles) due to
 - Its very stable and tightly bound structure
 - Its small mass
 - Its small charge
- Theoretically some heavier particles as ⁸Be or ¹²C may be emitted or the fission into equal daughter nuclides may happen → but very penalized

General principles (2)

- For a nucleus to be an α emitter \rightarrow not enough for the α decay to be energetically possible \rightarrow the disintegration constant must also not be too small \rightarrow the α emission would occur so rarely that it may never be detected (T_{γ} < 10¹⁶ years)
- Moreover if β decay is present \rightarrow can mask the α decay
- Most nuclei with A > 190 and many with 150 < A < 190 are energetically possible emitters but ½ of them effectively meet the 2 other conditions

Energy conservation (1)

• The α emission process (between ground state levels) is:

$${}_{Z}^{A}X_{N} \rightarrow {}_{Z-2}^{A-4}X_{N-2}' + \alpha$$

- Rutherford shows in 1908 that the α particle is a nucleus of ⁴He \rightarrow constituted of 2 protons and 2 neutrons
- Energy conservation with the initial decaying nucleus X at rest →

$$m_X c^2 = m_{X'} c^2 + T_{X'} + m_\alpha c^2 + T_\alpha$$

- Due to the linear momentum conservation → X' and α are in motion → T is the kinetic energy
- Equivalently we write →

$$T_{X'} + T_{\alpha} = (m_X - m_{X'} - m_{\alpha})c^2$$

Energy conservation (2)

- $Q = (m_X m_{X'} m_{\alpha})c^2$ = the net energy released in the decay \rightarrow the decay occurs spontaneously only if Q > 0
- Q can be calculated from atomic masses (even we discuss about nuclear processes) because the electron masses cancel in the subtraction
- For a typical α emitter (232-U) \rightarrow Q may be calculated from the known masses for various emitted particles:

Emitted Particle	Energy Release (MeV)	Emitted Particle	Energy Release (MeV)
n	-7.26	⁴ He	+ 5.41
H	-6.12	⁵ He	-2.59
2 H	-10.70	⁶ He	-6.19
3H	-10.24	⁶ Li	-3.79
³ He	- 9.92	⁷ Li	-1.94

Energy conservation (3)

- Only α emission is possible in this case $\rightarrow \alpha$ is very stable $\rightarrow \alpha$ has a relatively small mass compared with the mass of its separate constituents
- The Q value is also the total kinetic energy given to the decay fragments $Q = T_{X'} + T_{\alpha}$
- For $Q > 0 \rightarrow$ we find back the condition $m_{\chi} > m_{\chi'} + m_{\alpha}$ of instability in particles
- Remark: α disintegration towards excited levels of X' are possible \rightarrow the excitation energy of the nucleus X' has to be subtracted from Q

Linear momentum conservation

- As the original nucleus is at rest \rightarrow X' and α move with equal and opposite momenta \rightarrow p_{α} = $p_{X'}$
- As the α decay released typically 5 MeV \rightarrow we can use nonrelativistic kinematics $\rightarrow m_{\alpha}T_{\alpha} = m_{X'}T_{X'} \rightarrow$

$$T_{\alpha} = \frac{Q}{1 + m_{\alpha}/m_{X'}}$$

• As X' is a heavy nucleus \rightarrow A \gg 4 \rightarrow

$$T_{\alpha} = Q(1 - 4/A), T_{X'} = 4Q/A$$

• Typically the α carries 98% of the Q energy and X' carries 2% (recoil energy) corresponding for α = 5 MeV to $T_{X'}$ = 100 keV

Released energy (1)

• Introducing the binding energies the energy released during the α decay may be written \rightarrow

$$Q = B(4,2) + B(A-4,Z-2) - B(A,Z)$$

• Thus Q > 0 becomes \rightarrow

$$B(4,2) > B(A,Z) - B(A-4,Z-2)$$

$$= A \frac{B(A,Z)}{A} - (A-4) \frac{B(A-4,Z-2)}{A-4}$$

$$= 4 \left(\frac{B(A,Z)}{A}\right)_{m} + (A-2)\Delta$$

• $(B/A)_m$ is the mean binding energy by nucleon of parent and daughter nuclei and Δ is their difference (\approx 30 keV for heavy nuclei)

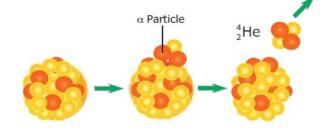
Released energy (2)

• As $B(4,2) \approx 28$ MeV \rightarrow we have thus approximately \rightarrow

$$\left(\frac{B(A,Z)}{A}\right)_m < \frac{B(4,2)}{4} \approx 7 \text{ MeV}$$

- Du to the term $\Delta \rightarrow \alpha$ decay becomes frequent for nuclei with A > 200 for which B/A is < 7.8 MeV
- This also explains why the α emission is favored compared to other nuclei as deuteron (B(2,1)/2 \approx 1.11 MeV) or tritium (B(3,1)/3 \approx 2.83 MeV) \rightarrow indeed the α particle has tightly bound structure \rightarrow a pair of neutrons and a pair of protons inside a nucleus is favored to form an α -cluster

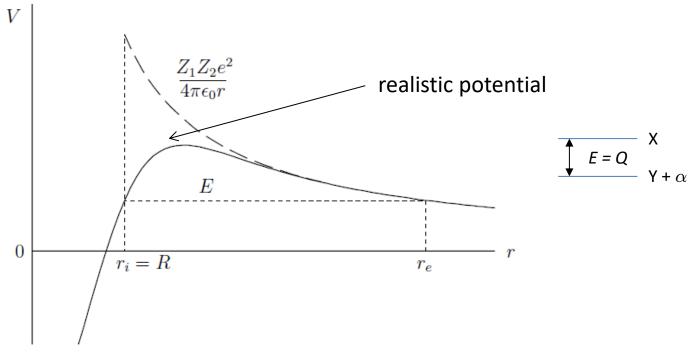
Theory of α emission (1)



- General features of α emission theory have been developed by Gamow, Gurney and Condon in 1928
- The α particle is assumed to move in a spherical region determined by the daughter nucleus \rightarrow one-body model
- The α particle is preformed inside the parent nucleus \rightarrow there is no proof that it is well the case but it works quite well
- Deeply inside the heavy nucleus → attractive nuclear force dominates the Coulomb repulsion force
- Outside the nucleus → only remains the Coulomb force
- Between the 2 (close to the nucleus surface) → number of neighbours

 → nuclear attractive force
 → equilibrium with repulsion force → potential barrier
- To be emitted the α particle has to cross this potential barrier by tunnel effect

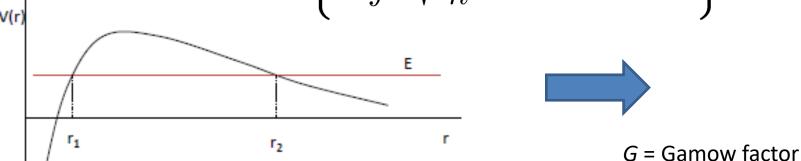
Theory of α emission (2)



- The probability of disintegration per time unit W is supposed to be ∞ to the probability of crossing the barrier $\rightarrow W \propto |T|^2$ with T the transmission coefficient
- The transmission probability is given by the WKB approximation

WKB approximation

- For decay between ground state levels (e.g. 0^+) \rightarrow we have to resolve $u''(r) - 2\mu/\hbar^2 (V(r) - E) u(r) = 0$ (with $\mu \approx m_{\alpha} m_{\chi'}/m_{\chi}$ the reduced mass of the α nucleus and the daughter nucleus)
- By choosing $u(r) = \exp(iS(r))$ with S(r) slowly varying \rightarrow
- $S(r)^{'2} = 2\mu/\hbar^{2} (E V(r))$ Si $E < V(r) \rightarrow u(r) = \exp\left\{-\int \sqrt{\frac{2\mu}{\hbar^{2}}(V(r) E)}dr\right\}$

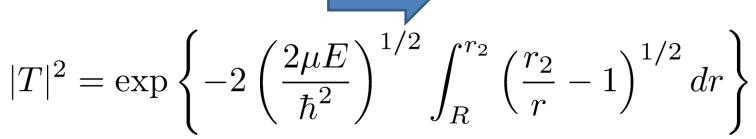


$$|T|^2 = \left| \frac{u(r_2)}{u(r_1)} \right|^2 = \exp\left\{ -2 \int_{r_1}^{r_2} \sqrt{\frac{2\mu}{\hbar^2}} (V(r) - E) dr \right\} = \exp\left(-2G \right)$$

Theory of α emission (3)

• WKB approximation applied to α emission $\rightarrow r_1 = R$ (the radius of the nucleus), $r_2 = 2(Z-2)e^2/4\pi\epsilon_0 E$, with

$$V(r) = \begin{cases} 0 & r < R \\ 2(Z-2)e^2/4\pi\epsilon_0 r & r \ge R \end{cases}$$



• Transforming $r = r_2 \cos^2 u \rightarrow$

$$\int_{R}^{r_2} \left(\frac{r_2}{r} - 1\right)^{1/2} dr = r_2 \left[\arccos\sqrt{\frac{R}{r_2}} - \sqrt{\frac{R}{r_2}} \sqrt{1 - \frac{R}{r_2}} \right]_{r_2}$$

Theory of α emission (4)

- For a heavy nucleus emitting 5 MeV $\alpha \rightarrow r_2 \approx 0.6 Z \text{ fm} > R \approx 1.25 A^{1/3} \text{ fm}$
- Assuming $R/r_2 \approx 0 \Rightarrow$ we obtain the Gamow approximation \Rightarrow $|T|^2 \approx \exp(-2\pi\eta)$

where η the Sommerfeld factor is (α = 1/137)

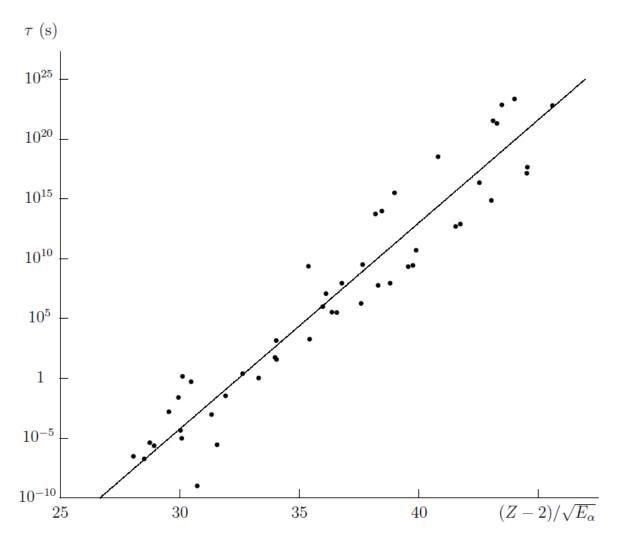
$$\eta = (Z - 2)\alpha\sqrt{\frac{2\mu c^2}{E}}$$

• The mean lifetime $\tau = W^{-1}$ approximately follows \rightarrow

$$\log_{10} \tau \approx C_1 + C_2 \frac{Z - 2}{\sqrt{E}}$$

with
$$C_2 = 2\pi (\log_{10} e) \alpha \sqrt{2\mu c^2}$$

Theory of α emission (5)



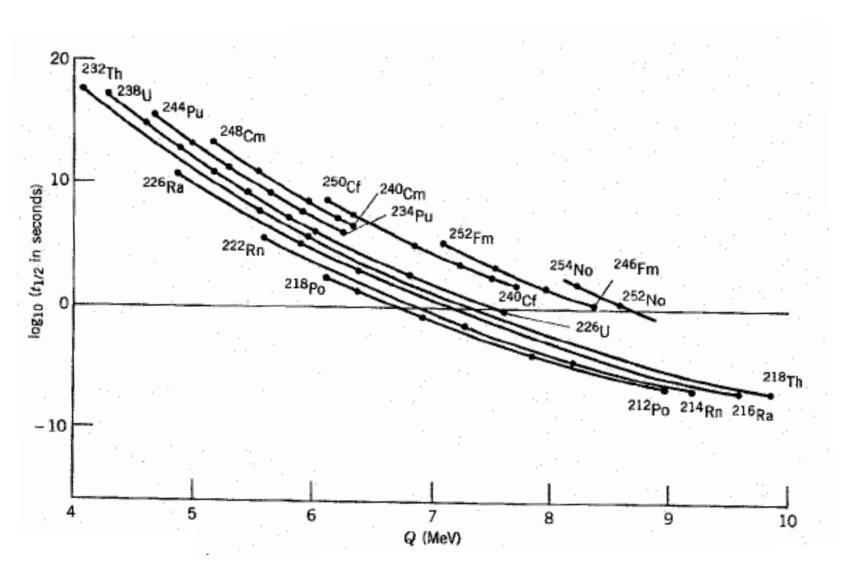
 ${\it E}_{\alpha}$ is the kinetic energy of the lpha particle in MeV

Theory of α emission (6)

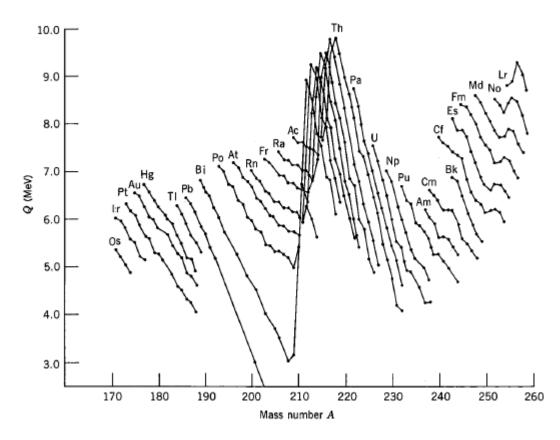
- The α emitters with short mean lifetime have large disintegration energy (and conversely) ← observed in 1911: Geiger-Nutall rule
- Examples: 232-Th: $T_{\gamma_2} = 1.4 \times 10^{10}$ years, Q = 4.08 MeV and 218-Th: $T_{\gamma_3} = 1.0 \times 10^{-7}$ s, Q = 9.85 MeV
- A factor 2 in energy implies a factor 10²⁴ in half-life
- Correct tendency for all isotopes but very good only for Z and N both even nuclei

A	Q (MeV)	t _{3/2} (s)	
		Measured	Calculated
220	8.95	10"5	3.3×10^{-7}
222	8.13	2.8×10^{-3}	6.3×10^{-5}
224	7.31	1.04	3.3×10^{-2}
226	6.45	1854	6.0×10^{1}
228	5.52	6.0×10^{7}	2.4×10^{6}
230	4.77	2.5×10^{12}	1.0×10^{11}
232	4.08	4.4×10^{17}	2.6×10^{16}

Theory of α emission (7)



Theory of α emission (8)



- When A > 212 → adding neutrons to a nucleus reduces the disintegration energy → due to the Geiger-Nuttall rule → increase of the half-life → the nucleus becomes more stable
- The discontinuity near A = 212 occurs where $N = 126 \rightarrow$ another example of nuclear shell structure.

Theory of α emission (9)

- Geiger-Nutall rule enables us to understand why other decays into light particles are not commonly seen (even though they are allowed by the Q value)
- Geiger-Nutall rule is able to reproduce $T_{\frac{1}{2}}$ within 1-2 orders of magnitude over a range of more than 20 orders
- Approximations in previous calculations:
- Initial and final wave functions (←) Fermi Golden Rule) are not considered
- 2. The nucleus is assumed to be spherical with R \approx 1.25 $A^{1/3}$ fm \rightarrow heavy nuclei (specially with A \geq 230) have strongly deformed shape
- 3. The angular momentum carried by the α particle is neglected

Angular momentum and parity (1)

- In previous calculations → transition between ground state levels (e.g. 0⁺) → but an initial state can populate different final states in the daughter nucleus → « fine structure » of α decay
- In that case we have to consider the angular momentum J_i and J_f of the of the initial and final nuclear state \rightarrow and consequently the angular momentum of the α particle ℓ_{α}
- Consequently $\rightarrow \alpha$ decay must follow the laws of the conservation of angular momentum and of parity

Angular momentum and parity (2)

Definition of the total angular momentum J for i nucleons:

$$oldsymbol{J} = \sum_{i=1}^A (oldsymbol{L}_i + oldsymbol{S}_i)$$

with \mathbf{L}_i and the orbital angular momentum operator and \mathbf{S}_i the spin operator of the i^{th} nucleon

In the particular case of α decay \rightarrow this expression may be written (with \mathbf{I}_{α} and $\mathbf{\ell}_{\alpha}$ the spin and angular momentum of the α particle and \mathbf{J}_{i} and \mathbf{J}_{f} written for initial and final nuclear states) \rightarrow

$$oldsymbol{J}_i = oldsymbol{J}_f + oldsymbol{I}_lpha + oldsymbol{\ell}_lpha$$

• The lpha particle wave function is then represented by a $Y_{\ell m}$ with $\ell = \ell_{lpha}$

Angular momentum and parity (3)

- As the ⁴He nucleus consists of 2 protons and 2 neutrons all in 1s state \rightarrow their spins coupled pairwise $\rightarrow I_{\alpha} = 0$
- The composition of the 3 remaining angular momenta leads to ightarrow $|J_i-J_f| \leq \ell_lpha \leq J_i + J_f$
- The conservation of parity implies →

$$\pi_i = \pi_f \pi_\alpha (-1)^{\ell_\alpha}$$

• Moreover as the parity π_{α} of α particle is + (even-even nucleus) \rightarrow the parity conservation rule becomes \rightarrow

$$(-1)^{\ell_{\alpha}} = \pi_i \pi_f$$

- If the initial and final parities are the same $\to \ell_\alpha$ must be even \longleftrightarrow If the parities are different $\to \ell_\alpha$ must be odd
- In particular for an initial state 0+ (frequent case) $ightarrow oldsymbol{\ell}_{lpha}$ = J_f

Angular momentum and parity (4)

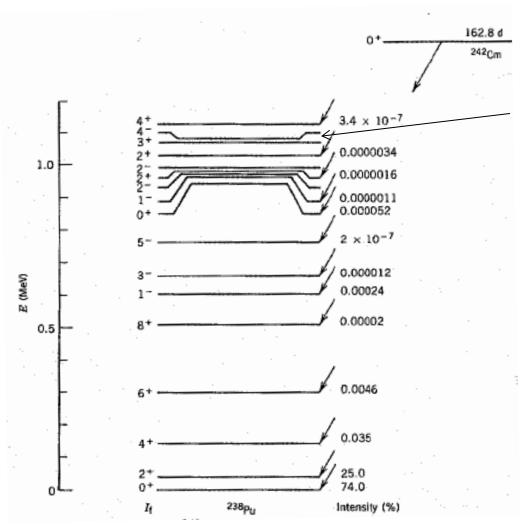
• Another consequence of the introduction of $\ell_{\alpha} \rightarrow$ the barrier of potential is raised and becomes (particle in a well):

$$V(r) + \hbar^2 \ell_{\alpha} (\ell_{\alpha} + 1) / 2mr^2$$

- The additional term is always > 0 → ¬ of the barrier thickness
 → the probability transition □
- Moreover the Q value \searrow when the final state is not the ground state: $Q \rightarrow Q E_x$ with E_x the energy of the excited state \Rightarrow application of the Geiger-Nutall rule \Rightarrow a smaller Q value implies a large mean lifetime \Rightarrow a small transition probability \Rightarrow a small intensity in the decay branch
- These 2 reasons implies a

 of the probability transition when
 the final state is not the ground state

Angular momentum and parity (5)



The 3^+ state is forbidden by the parity selection rule $\rightarrow 0 \rightarrow 3$ decay must have $\ell_{\alpha} = 3 \rightarrow$ the parity has to change

Angular momentum and parity (6)

