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Introduction (1)

Impossible to study exactly nuclei with more than 2 or 3
nucleons = resolution of the Schrodinger equation with too
many variables -

ZT+ZVZJ+ U

7>1=1

Ev

Even for 2 or 3 nucleons - study is imprecise - the exact
nature of nuclear forces is not known (there exist 3-body
interactions = no classical analog)

Moreover relativistic effects are difficult to evaluate



Introduction (2)

* Approach for nuclei - a deliberately oversimplified approach
is chosen - development of models - mathematically
tractable and rich in physical insight

* Good model >

— It must reasonably well account for previously measured nuclear
properties

— |t must predict additional properties that can be measured in new
experiments
e Attention - it exists no model capable to describe
simultaneously all properties of the nucleus - each model
has a limited range of applications



Introduction (3)

Models

l
| |

Independent particles Collective

Many particles Fermi-gas Shell-model Liquid drop Vibration / Rotation

(]

« Collective » properties of the

Individual propert.ies .Of nucleons - nucleus = the nucleons
nucleops are moving .|n a « mean » strongly interact - properties
potential - they are independent are due to the nucleons in a

whole



Liquid drop model (1)

Liquid drop model developed by Gamow

Nuclei are approximatively spherical - the volume if the sphere is
o A = each nucleon takes up an equal volume independently of
the considered nucleus - the nuclear density is independent of A
— the « nuclear material » is incompressible as a liquid drop

The atomic nucleus behaves like the molecules in a drop of liquid

Nuclear scale - the fluid is made of nucleons (protons
and neutrons) which are held together by the strong nuclear force

The nuclear forces on the nucleons on the surface are different
from those on nucleons in the interior of the nucleus (the interior
nucleons are completely surrounded by other attracting nucleons)
— analogy with the forces that form a drop of liquid



Liquid drop model: applications (1)

* Important success of the liquid drop model - Bethe-Weizsacker
formula (also called semi-empirical mass formula — SEMF)
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Liquid drop model: applications (2)

* Expression of the mass parabola - the more stable nucleus
corresponds to the minimum of the parabola -

g _ myn —m(PH)] + acA™Y3 + 4a, A 1

2ac0A~1/3 4+ 8a, A1 ~ 21+0.0078A42/3

* C(Calculation of energy released during nuclear reaction -

Q Z mz znztzal Z( )fznal

e Study of spontaneous fission



Vibrational model (1)

Collective model - the nucleus is considered as a liquid drop
(extension of the liquid drop model) vibrating at high
frequency

The average shape of the nucleus is spherical but the
instantaneous shape is not

Instantaneous coordinate R(t) of a point on the nuclear
surface at (6,¢) in terms of spherical harmonics -

+A
R(t) = RoAY? + > > axu(t)Yau(0, ¢)

A>1 p=—\

with «, , the amplitude of vibration



Vibrational model (2)

A = 0 corresponds to a variation of volume - impossible for
incompressible fluid - monopolar mode is forbidden

A =1 corresponds to a net displacement of the center of mass
—> cannot result from the action of internal nuclear forces -
dipolar mode is not considered

A = 2 corresponds to the lowest mode to be considered -
quadrupole mode = in analogy with quantum theory of
electromagnetism (1 unit of electromagnetic energy is called
a photon) - 1 quantum of vibrational energy is called a
phonon

—_—

R = Ry

A=1 A=2
(Dipole) (Quadrupole)



Vibrational model (3)

Vibrating nucleus with a spherical equilibrium shape
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Vibrational model (4)

When mechanical vibrations are produced - vibrational
phonons are produced - 1 single unit of A = 2 nuclear
vibration is called a quadrupole phonon

The vibration spectrum is composed of a ground state
corresponding to the spherical nucleus, a first excited state
corresponding to the energy of 1 phonon, a second state
corresponding to 2 phonons,...

Each state has degeneracy corresponding to different values
of u

This model allows several predictions as the spectrum of 129Te



Rotational model (1)

Rotational motion can be observed only in nuclei with nonspherical
equilibrium shapes

These nuclei can have substantial distortions from spherical shape
— they are called deformed nuclei

They are only found in the mass ranges 150 <A <190 and A > 220
(rare earths and actinides)

Common representation of the shape of these nuclei - ellipsoid of
revolution

This surface is described by (with 3 the deformation parameter) -
R(t) = RyAY3[1 + BYa(6, $)]

which is independent of ¢ = cylindrical symmetry



Rotational model (2)

For 3> 0 = the nucleus has the elongated form of a prolate
ellipsoid

For 3 < 0 - the nucleus has the flattened form of oblate
ellipsoid

(3 is related to the eccentricity of the ellipse as -

/8_4\/? AR
3\ 5 RyAL/3

AR is the difference between the semimajor and semiminor
axes of the ellipse

Attention - previous expressions imply a volume # 4/37R*A
— not quite exact approximation



Rotational model (3)
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Rotational model (4)

Deformation of the nucleus - apparition of a large quadrupole
moment Q,

A rotating object has kinetic energy = this kinetic energy is
guantified via the angular momentum quantum number /

Increasing | corresponds to adding rotational energy to the
nucleus - the nuclear excited states form a sequence known as
a rotational band (analogy with excited states in molecules -
also presence of form rotational bands corresponding to
rotations of the molecule about its center of mass)

This model several predictions as the spectrum of 1°*Er



Fermi-gas model: Principles

The Fermi-gas model is a partly quantum model of independent
particles

It may be applied for large systems of weakly interacting fermions -
particles follow Fermi-Dirac statistics leading to the Pauli exclusion
principle

Picture of the nucleus -

— protons and neutrons are moving freely within the nuclear volume V
— the interaction potential is generated by all nucleons

Nucleons are in a potential well = in first approximation a

rectangular potential is considered - constant inside the nucleus and
stops sharply at its edge

Neutrons and protons are distinguishable fermions - they are
situated in two separate potential wells



Fermi-gas model: Potential well (1)

Each energy state can be occupied by two nucleons with different
spin projections

All available energy states are filled by the pairs of nucleons - no
free states - no transitions between the states

The energy of the highest occupied state is the Fermi energy E;,

The difference between the top of the well and the Fermi level is
constant for most nuclei - it is just the average binding energy per
nucleon B/A = 7-8 MeV

particle erV free states
< emission

~ 8 MeV ‘ bound states (non occupied)

E Ny
Pl A A bound states (occupied)




Fermi-gas model: Potential well (2)

All nucleons are confined in a spherical box with volume V
The Schrodinger equation for a particle in the box is -

2
—h—Aw(fr‘) = EY(r) with ¢(r;) =0 for r; =0 or L

2m

Calculations give E. = 33 MeV - independent on A -
saturation property of nuclear force €2 each nucleon may
only interact with a limited number of close nucleons

The total depth of the well =-(8 + 33) =-41 MeV is
independent on A



Fermi-gas model: Potential well (3)

* Heavy nuclei have a surplus of neutrons - since Fermi level
of protons and neutrons in a stable nucleus have to be equal
(otherwise the nucleus would enter a more energetically
favorable state through 3 decay) - the depth of the potential
well as it is experienced by the neutron gas has to be larger
than of the proton gas

* Protons are therefore on average less strongly bound in nuclei
than neutrons - consequence of the Coulomb repulsion of
the charged protons - extra term in the potential:

ahce



Fermi-gas model: Potential well (4)

V.
-~ s Potentiel des protons
|
-
- | Meutrons protons

Potentiel des neutrons ¢5:’ A
H_‘_‘ Niveau de Fermi

A A

o b
Vo= 40 MeV < E; b 6o Ef
¢ b0
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Fermi-gas model: Asymmetry energy (1)

The dependence of the binding energy on the surplus of neutrons
(= Asymmetry energy ) may be calculated within the Fermi gas model

First we have to calculate € the average kinetic energy per nucleon
for Z=NsuchasE, =(Z+N)e

Then for Z# N = we obtain -

3 72 (%)2/3 N5/3 4 75/3
A

“7 1om R2\ 4 A2/3



Fermi-gas model: Asymmetry energy (2)

Generally N > Z - previous expression may be expanded in
the difference N-Z -

“ T Tom RZ \'8 0 A

The first term corresponds to the volume energy in the Bethe-
Weizsacker mass formula

The second term to the asymmetry energy

The asymmetry energy grows with the neutron surplus -
reducing of the binding energy



Atomic radius (nm)

0.3

Shell model: Principles (1)

Atomic theory based on the shell model provides remarkable
clarification of the complicated details of atomic structure

In the atomic shell model - regular and smooth variations of
atomic properties within a subshell << sudden and dramatic
changes in the properties when changing of subshell

Nuclear physicists attempted to use a similar theory for the
problem of nuclear structure
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Shell model: Principles (2)

In atomic case the potential is supplied by the Coulomb field of the
nucleus €<= in nuclear case the motion of a single nucleon is
governed by a potential caused by all of the other nucleons - the
nucleons move in a potential that they themselves create

In atomic case atomic properties are described in terms of spatial
orbits of the electrons - the electrons can move in those orbits
without collision with other electrons €<= in nuclear case collisions
between nucleons would imply an energy transfer - but all
energy levels are filled up to the level of the valence nucleons =
high level = requires a lot of energy - impossible during nucleons
collisions = collisions cannot occur - the nucleons can orbit as if
they were transparent to one another
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Shell model: Evidences (1)
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Shell model: Simple potentials

Solving the three-dimensional Schrodinger equation
Simples choices of the potential -

— Infinite well: { 0 for r < R
Vi(r)=
oo for r> R
— Harmonic oscillator: 1
V(r)= §mw2fr2

In both cases - spherical symmetry - resolution of the radial part of
the Schrodinger equation - achieving of energy states E_,

As in atomic physics = use of spectroscopic notation to label the
levels (n€) - with one important exception - index n is not the
principal qguantum number = simply counts the number of levels
with that € value - 1d means the first (lowest) d state 2d means the
second and so on



Shell model: Infinite well (1)

For the Infinite well = the solution of the Schrodinger equation
has the form Y(r,0,0) = ¥,(r)Y,.(0,0)

We can substitute W,(r) = R,(r)/r
The radial part of the Schrodinger equation becomes
h? d?R(r) K21+ 1)
C2m dr2 + r2  2m
The solution of the differential equation y”’(r) + A\(r)y(r) = 0 are
the Bessel functions j, (kr) with k? = (2m/R?)E ,

Boundary condition for the surface > atr=R — ¥(R,0,¢) =0 >
restrictions on k in Bessel functions = j, (kR) = 0 - main

guantum number n corresponding to the nodes of the Bessel
function X, > kR=X_,> E , = (h?/2m) X ,*/R?

R(r) = ER(r)



Shell model: Infinite well (2)

Toller)
Ko
¢ |n=1 (17 zéro) | n=2 (2% zéro) | n=3 (3= zéro)
) (1d) (25) (2p) 0 3.14 (1g) 6.28 (25) 9.42 (3g)
1 4.49 (1p) 7.72 (2p) 10.90 (3p)
v, 7 5.76 (1d) 9.09 (2d) 12.32 (3d)
: 3 6.98 (11) 10.41 (21)
021 W
I (35)
Attt
01 2 32 4 35 & 7 8 % 1011 12 13 14 15

 Degeneracy of each level - the number of nucleons that can
be putin each level = 2(2€ + 1) <> (2€+ 1) arises from the m,
degeneracy (m, is integer value between * €) and the factor 2
comes from the m_degeneracy (two possible spin directions)

29



Shell model: Infinite well (3)

state E_ =C-X} degeneracy states with ESE

.m'= -

Is E,=C-9.86 2 2@ 2
lp E,=C-202 6 8

d E, =C-33.2 10 T

25 E, =C-395 2 Qo)
If E,,=C-488 14 34
2p E, =C-597 6 40
lg E,=C-64 8 58

Only the first 3 magic numbers are reproduced
Limitations of the model
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Shell model: Harmonic oscillator (1)

We consider a central oscillator potential V(r) = (1/2)mw?r?
Again we need only to consider the solution to the radial eq.

As in the one-dimensional case - the solution is expressed as
the product of an exponential and a finite polynomial

H £ E“ Rl{r}
0 0 hay, Qa2 fqis*) =112

1 1 2w, (2072 /30 ) ar) e T2

2 0 2hay Ra*V2 A3 - aPrt) e r 2

2 2 Thay, {4{13;'1;@“13-1}{&:!,2} o i

. 1 hay @a® /150 ) jar — a¥r) e a’r /2

3 3 Thw, (4a/2 2 HT05 w8 adr) e

4 0 L by, (4’2 ‘E’f\;"ﬁwln}{% ~ a7 + La*rt) oo atris2
'* 2 he AR - atrhe 7

4 4 Thay (82?2 /3105 w74y apt e r /2
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Shell model: Harmonic oscillator (2)

The energy levels are given by -
!

E, =hw (n+ 5) where n =n, +n, +n, =0,1,2,3,...
The energy does not depend on € = but not all € values are allowed

From the mathematical solution of the radial equation - restrictions:
€ can be at most equal to n and takes only even or only odd values as
n is even or odd

Example:n=5->€=1,3,5

Since the energies do not depend on m, - additional degeneracy of
2¢€ + 1 for each € <> number of ways to obtain n with n, , n,and n,
Example:n=5 - degeneracyof [(2 X 1+1)+(2 x3+1)+

(2 x5+1)]=21

Degeneracy —» %(n +1)(n +2)



* m_.degeneracy factor 2 - total degeneracy:

Shell model: Harmonic oscillator (3)

(n+1)(n+2)

Again only the first 3 magic numbers are
reproduced (2, 8, 20)
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Shell model: Infinite well + Harmonic oscillator

Shell structure
obtained with
infinite well and
harmonic oscillator

Capacity of each
level is indicated to
the right

Large gaps between
the levels - closed
shells

The circled numbers
indicate the total

number of nucleons
at each shell closure

No agreement with
experiment
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Shell model: Woods-Saxon potential (1)

To improve the model - choice of a more realistic potential -
infinite well and harmonic oscillator require infinite energy to
separate neutron or proton

Moreover infinite well shows too sharp edge while harmonic
oscillator does not have a sharp enough edge

Choice of ab intermediate form - the Woods-Saxon potential -
- 1+exp[(r—R)/al
R = 1.24AY3 s the mean radius and the 4aln3 = 0.524 fm is the skin

thickness = the distance over which the potential changes from
0.9V,t0 0.1V,

V, is adjusted to give the proper separation energies - = 50 MeV

V(r)



Shell model: Woods-Saxon potential (2)

- Vo | dain 3
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Shell model: Woods-Saxon potential (3)

Effect of the Woods-Saxon potential
(compared with the harmonic oscillator)
— remove the € degeneracies of the
major shells

For increasing energy — the splitting
becomes more and more severe -
eventually as large as the spacing
between the oscillator levels

Filling the shells in order with 2(2€ + 1)
nucleons - we have again the magic
numbers 2, 8 and 20 but not the higher
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Shell model: Woods-Saxon + spin-orbit (1)

To improve situation - no radical change in the potential -
we do not want to destroy the physical content of the model
— the nuclear potential should be like the Woods-Saxon
potential - we have to add various terms to equation

Mayer, Haxel, Suess and Jensen showed in 1949 that the
inclusion of a spin-orbit contribution gives the proper
separation of the subshells

The spin-orbit interaction is written V_, = V,(r)€ - s - the form
of V(r) is not important - the € - s factor causes the
reordering of the levels

The total angular momentum is defined by j=€ + s



Shell model: Woods-Saxon + spin-orbit (2)

* 1 single nucleon has s =% - the possible values of j are € + 14
or € - % (except for € = 0 for which j =% is allowed)

* The expectation value (€ - s) is obtained from -

1
Pelte)=Cr2s+s’=1ls= (-1~

39



Shell model: Woods-Saxon + spin-orbit (3)

We consider the 1f level (€ = 3) with a 2(2€ + 1) degeneracy = 14

The possible jvalues are € + %2 =5/2 or 7/2 = presence of levels
1fs/, and 1f,

The degeneracy of each level is (2j + 1) due to the m; values <>
with spin-orbit interactions m,and m, are no longer “good”
guantum numbers = cannot be used to label states or to count
degeneracies

The capacity of the 1f;, level is 6 and 8 for 1f,,, - total of 14
states as expected <> the number of possible states is preserved
but they are grouped differently

For the 1f;/, and 1f;, the energy separation is o< the # of (€-s) for
each state - 2

h
<l ) S)j:l—|—1/2 — <l . 3>j:l—1/2 = ?(QZ -+ 1)



Shell model: Woods-Saxon + spin-orbit

(4)
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Shell model: Woods-Saxon + spin-orbit (5)

* The next major effect of the spin-orbit term is on the 1g level
- the 1gy/, state is pushed down to the next lower major
shell = its capacity of 10 nucleons is added to the previous
total of 40 - magic number of 50

e Similar effect occurs at the top of each major shell = in each
case the lower energy member of the spin-orbit pair from the
next shell is pushed down into the lower shell - magic

numbers appear as expected (even magic number not
observed at 184)
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