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Introduction (1)

• Impossible to study exactly nuclei with more than 2 or 3 
nucleons → resolution of the Schrödinger equation with too 
many variables →

• Even for 2 or 3 nucleons → study is imprecise → the exact 
nature of nuclear forces is not known (there exist 3-body 
interactions → no classical analog)

• Moreover relativistic effects are difficult to evaluate
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Introduction (2)

• Approach for nuclei → a deliberately oversimplified approach 
is chosen → development of models → mathematically 
tractable and rich in physical insight

• Good model →
– It must reasonably well account for previously measured nuclear 

properties 

– It must predict additional properties that can be measured in new 
experiments

• Attention → it exists no model capable to describe 
simultaneously all properties of the nucleus → each model 
has a limited range of applications
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Introduction (3)

Individual properties of nucleons → 
nucleons are moving in a « mean » 
potential → they are independent
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Models

Independent particles Collective

Many particles Fermi-gas Shell-model Liquid drop Vibration / Rotation

« Collective » properties of the 
nucleus → the nucleons 
strongly interact → properties 
are due to the nucleons in a 
whole



Liquid drop model (1)

• Liquid drop model developed by Gamow

• Nuclei are approximatively spherical → the volume if the sphere is 
/ A → each nucleon takes up an equal volume independently of 
the considered nucleus → the nuclear density is independent of A
→ the « nuclear material » is incompressible as a liquid drop

• The atomic nucleus behaves like the molecules in a drop of liquid

• Nuclear scale → the fluid is made of nucleons (protons 
and neutrons) which are held together by the strong nuclear force

• The nuclear forces on the nucleons on the surface are different 
from those on nucleons in the interior of the nucleus (the interior 
nucleons are completely surrounded by other attracting nucleons) 
→ analogy with the forces that form a drop of liquid
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Liquid drop model: applications (1)

• Important success of the liquid drop model → Bethe-Weizsäcker
formula (also called semi-empirical mass formula – SEMF)
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Liquid drop model: applications (2)

• Expression of the mass parabola → the more stable nucleus 
corresponds to the minimum of the parabola →

• Calculation of energy released during nuclear reaction →

• Study of spontaneous fission
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Vibrational model (1)

• Collective model → the nucleus is considered as a liquid drop 
(extension of the liquid drop model) vibrating at high 
frequency

• The average shape of the nucleus is spherical but the 
instantaneous shape is not

• Instantaneous coordinate R(t) of a point on the nuclear 
surface at (µ,Á) in terms of spherical harmonics →

with ®¸¹ the amplitude of vibration
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Vibrational model (2)

• ¸ = 0 corresponds to a variation of volume → impossible for 
incompressible fluid → monopolar mode is forbidden

• ¸ = 1 corresponds to a net displacement of the center of mass 
→ cannot result from the action of internal nuclear forces → 
dipolar mode is not considered

• ¸ = 2 corresponds to the lowest mode to be considered → 
quadrupole mode → in analogy with quantum theory of 
electromagnetism (1 unit of electromagnetic energy is called 
a photon) → 1 quantum of vibrational energy is called a 
phonon
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Vibrational model (3)
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Vibrating nucleus with a spherical equilibrium shape



Vibrational model (4)

• When mechanical vibrations are produced → vibrational 
phonons are produced → 1 single unit of ¸ = 2 nuclear 
vibration is called a quadrupole phonon

• The vibration spectrum is composed of a ground state 
corresponding to the spherical nucleus, a first excited state 
corresponding to the energy of 1 phonon, a second state 
corresponding to 2 phonons,…

• Each state has degeneracy corresponding to different values 
of ¹

• This model allows several predictions as the spectrum of 120Te
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Rotational model (1)

• Rotational motion can be observed only in nuclei with nonspherical
equilibrium shapes 

• These nuclei can have substantial distortions from spherical shape 
→ they are called deformed nuclei 

• They are only found in the mass ranges 150 < A < 190 and A > 220 
(rare earths and actinides)

• Common representation of the shape of these nuclei → ellipsoid of 
revolution 

• This surface is described by (with ¯ the deformation parameter) →

which is independent of Á → cylindrical symmetry
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Rotational model (2)

• For ¯ > 0 → the nucleus has the elongated form of a prolate
ellipsoid 

• For ¯ < 0 → the nucleus has the flattened form of oblate 
ellipsoid 

• ¯ is related to the eccentricity of the ellipse as →

• ¢R is the difference between the semimajor and semiminor
axes of the ellipse

• Attention → previous expressions imply a volume ≠ 4/3¼R0
3A

→ not quite exact approximation
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Rotational model (3)
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Rotational model (4)

• Deformation of the nucleus → apparition of a large quadrupole 
moment Q0

• A rotating object has kinetic energy → this kinetic energy is 
quantified via the angular momentum quantum number I

• Increasing I corresponds to adding rotational energy to the 
nucleus → the nuclear excited states form a sequence known as 
a rotational band (analogy with excited states in molecules → 
also presence of form rotational bands corresponding to 
rotations of the molecule about its center of mass)

• This model several predictions as the spectrum of 164Er
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Fermi-gas model: Principles

• The Fermi-gas model is a partly quantum model of independent 
particles

• It may be applied for large systems of weakly interacting fermions → 
particles follow Fermi-Dirac statistics leading to the Pauli exclusion 
principle

• Picture of the nucleus → 
– protons and neutrons are moving freely within the nuclear volume V

– the interaction potential is generated by all nucleons

• Nucleons are in a potential well → in first approximation a 
rectangular potential is considered → constant inside the nucleus and 
stops sharply at its edge

• Neutrons and protons are distinguishable fermions → they are 
situated in two separate potential wells 17



Fermi-gas model: Potential well (1)

• Each energy state can be occupied by two nucleons with different 
spin projections

• All available energy states are filled by the pairs of nucleons → no 
free states → no transitions between the states

• The energy of the highest occupied state is the Fermi energy EF

• The difference between the top of the well and the Fermi level is 
constant for most nuclei → it is just the average binding energy per 
nucleon B/A = 7–8 MeV
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Fermi-gas model: Potential well (2)

• All nucleons are confined in a spherical box with volume V

• The Schrödinger equation for a particle in the box is →

• Calculations give EF = 33 MeV → independent on A → 
saturation property of nuclear force each nucleon may 
only interact with a limited number of close nucleons 

• The total depth of the well ≈ -(8 + 33) = -41 MeV is 
independent on A
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Fermi-gas model: Potential well (3)

• Heavy nuclei have a surplus of neutrons → since Fermi level 
of protons and neutrons in a stable nucleus have to be equal 
(otherwise the nucleus would enter a more energetically 
favorable state through ¯ decay) → the depth of the potential 
well as it is experienced by the neutron gas has to be larger 
than of the proton gas

• Protons are therefore on average less strongly bound in nuclei 
than neutrons → consequence of the Coulomb repulsion of 
the charged protons → extra term in the potential:
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Fermi-gas model: Potential well (4)
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Fermi-gas model: Asymmetry energy (1)

• The dependence of the binding energy on the surplus of neutrons    
(= Asymmetry energy ) may be calculated within the Fermi gas model

• First we have to calculate ² the average kinetic energy per nucleon 
for  Z = N such as Ekin = (Z + N)²

• Then for  Z ≠ N → we obtain →
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Fermi-gas model: Asymmetry energy (2)

• Generally N > Z → previous expression may be expanded in 
the difference N-Z →

• The first term corresponds to the volume energy in the Bethe-
Weizsäcker mass formula

• The second term to the asymmetry energy

• The asymmetry energy grows with the neutron surplus → 
reducing of the binding energy
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Shell model: Principles (1)

• Atomic theory based on the shell model provides remarkable 
clarification of the complicated details of atomic structure

• In the atomic shell model → regular and smooth variations of 
atomic properties within a subshell sudden and dramatic 
changes in the properties when changing of subshell 

• Nuclear physicists attempted to use a similar theory for the 
problem of nuclear structure
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Shell model: Principles (2)

• In atomic case the potential is supplied by the Coulomb field of the 
nucleus in nuclear case the motion of a single nucleon is 
governed by a potential caused by all of the other nucleons → the 
nucleons move in a potential that they themselves create

• In atomic case atomic properties are described in terms of spatial 
orbits of the electrons → the electrons can move in those orbits 
without collision with other electrons in nuclear case collisions 
between nucleons would imply an energy transfer → but all 
energy levels are filled up to the level of the valence nucleons = 
high level → requires a lot of energy → impossible during nucleons 
collisions → collisions cannot occur → the nucleons can orbit as if 
they were transparent to one another
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Shell model: Evidences (1)
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≠ between Bexp and B from liquid drop model

Neutron-capture cross sections of 
various nuclei

Separation 
energy of the 
last neutron in 
a (Z,N+1) 
nucleus

Magic numbers are 2 – 8 – 20 – 28 
– 50 – 82 – 126 



Shell model: Simple potentials

• Solving the three-dimensional Schrödinger equation

• Simples choices of the potential →
– Infinite well: 

– Harmonic oscillator:

• In both cases → spherical symmetry → resolution of the radial part of 
the Schrödinger equation → achieving of energy states Enℓ

• As in atomic physics → use of spectroscopic notation to label the 
levels (nℓ) → with one important exception → index n is not the 
principal quantum number → simply counts the number of levels 
with that ℓ value → 1d means the first (lowest) d state 2d means the 
second and so on
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Shell model: Infinite well (1)

• For the Infinite well → the solution of the Schrödinger equation 
has the form  ª(r,µ,) = ªℓ(r)Ylm(µ,)

• We can substitute ªℓ(r) = Rℓ(r)/r

• The radial part of the Schrödinger equation becomes 

• The solution of the differential equation y’’(r) + ¸(r)y(r) = 0 are 
the Bessel functions jℓ (kr) with k2 = (2m/~2)Enℓ

• Boundary condition for the surface → at r = R ! ª(R,µ,) = 0 → 
restrictions on k in Bessel functions → jℓ (kR) = 0 → main 
quantum number n corresponding to the nodes of the Bessel 
function Xnℓ  → kR = Xnℓ → Enℓ  = (~2/2m) Xnℓ

2/R2
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Shell model: Infinite well (2)

• Degeneracy of each level → the number of nucleons that can 
be put in each level = 2(2ℓ + 1) (2ℓ+ 1) arises from the mℓ

degeneracy (mℓ is integer value between ± ℓ) and the factor 2 
comes from the ms degeneracy (two possible spin directions)
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Shell model: Infinite well (3)

• Only the first 3 magic numbers are reproduced 

• Limitations of the model
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Shell model: Harmonic oscillator (1)

• We consider a central oscillator potential V(r) = (1/2)m!2r2

• Again we need only to consider the solution to the radial eq.

• As in the one-dimensional case → the solution is expressed as 
the product of an exponential and a finite polynomial
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Shell model: Harmonic oscillator (2)

• The energy levels are given by →

• The energy does not depend on ℓ → but not all ℓ values are allowed

• From the mathematical solution of the radial equation → restrictions: 
ℓ can be at most equal to n and takes only even or only odd values as 
n is even or odd

• Example: n = 5 → ℓ = 1, 3, 5 

• Since the energies do not depend on mℓ → additional degeneracy of 
2ℓ + 1 for each ℓ number of ways to obtain n with nx , ny and nz

• Example: n = 5 → degeneracy of [(2 £ 1 + 1) + (2 £ 3 + 1) +                
(2 £ 5 + 1)] = 21

• Degeneracy  →
32



Shell model: Harmonic oscillator (3)

• ms degeneracy factor 2 → total degeneracy: 
(n + 1)(n + 2) 

• Again only the first 3 magic numbers are 
reproduced (2, 8, 20) 
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Shell model: Infinite well + Harmonic oscillator 

• Shell structure 
obtained with 
infinite well and 
harmonic oscillator

• Capacity of each 
level is indicated to 
the right

• Large gaps between 
the levels → closed 
shells

• The circled numbers 
indicate the total 
number of nucleons 
at each shell closure

• No agreement with 
experiment
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Shell model: Woods-Saxon potential (1)

• To improve the model → choice of a more realistic potential → 
infinite well and harmonic oscillator require infinite energy to 
separate neutron or proton

• Moreover infinite well shows too sharp edge while harmonic 
oscillator does not have a sharp enough edge

• Choice of ab intermediate form → the Woods-Saxon potential →

• R = 1.24A1/3 is the mean radius and the 4aln3 = 0.524 fm is the skin 
thickness = the distance over which the potential changes from 
0.9V0 to 0.1V0

• V0 is adjusted to give the proper separation energies → ≈ 50 MeV
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Shell model: Woods-Saxon potential (2)
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Shell model: Woods-Saxon potential (3)

• Effect of the Woods-Saxon potential 
(compared with the harmonic oscillator) 
→ remove the ℓ degeneracies of the 
major shells

• For increasing energy → the splitting 
becomes more and more severe → 
eventually as large as the spacing 
between the oscillator levels 

• Filling the shells in order with 2(2ℓ + 1) 
nucleons → we have again the magic 
numbers 2, 8 and 20 but not the higher
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Shell model: Woods-Saxon + spin-orbit (1)

• To improve situation → no radical change in the potential → 
we do not want to destroy the physical content of the model 
→ the nuclear potential should be like the Woods-Saxon 
potential → we have to add various terms to equation

• Mayer, Haxel, Suess and Jensen showed in 1949 that the 
inclusion of a spin-orbit contribution gives the proper 
separation of the subshells

• The spin-orbit interaction is written Vso = Vls(r)ℓ ¢ s → the form 
of Vls(r) is not important → the ℓ ¢ s factor causes the 
reordering of the levels

• The total angular momentum is defined by j = ℓ + s
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Shell model: Woods-Saxon + spin-orbit (2)

• 1 single nucleon has s = ½ → the possible values of j are ℓ + ½ 
or ℓ - ½ (except for ℓ = 0 for which j = ½ is allowed)

• The expectation value hℓ ¢ si is obtained from → 
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Shell model: Woods-Saxon + spin-orbit (3)

• We consider the 1f level (ℓ = 3) with a 2(2ℓ + 1) degeneracy = 14

• The possible j values are ℓ ± ½ = 5/2 or 7/2 → presence of levels 
1f5/2 and 1f7/2

• The degeneracy of each level is (2j + 1) due to the mj values 
with spin-orbit interactions ml and ms are no longer “good” 
quantum numbers → cannot be used to label states or to count 
degeneracies

• The capacity of the 1f5/2 level is 6 and 8 for 1f7/2 → total of 14 
states as expected the number of possible states is preserved 
but they are grouped differently

• For the 1f7/2 and 1f5/2 the energy separation is / the ≠ of hℓ ¢ si for 
each state →
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Shell model: Woods-Saxon + spin-orbit (4)

• The energy splitting when ℓ

• For  Vls(r) < 0 → the member of 
the pair with the larger j is 
pushed downward

• This level is now in the gap 
between the second and third 
shells → its capacity of 8 
nucleons gives the magic 
number 28

• The p and d splittings do not 
result in any major regrouping of 
levels
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Shell model: Woods-Saxon + spin-orbit (5)

• The next major effect of the spin-orbit term is on the 1g level 
→ the 1g9/2 state is pushed down to the next lower major 
shell → its capacity of 10 nucleons is added to the previous 
total of 40 → magic number of 50 

• Similar effect occurs at the top of each major shell → in each 
case the lower energy member of the spin-orbit pair from the 
next shell is pushed down into the lower shell → magic 
numbers appear as expected (even magic number not 
observed at 184)
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