
Chapter X: Nuclear fusion

Summary

- 1. General remarks
- 2. Basic processes
- 3. Characteristics of fusion
- 4. Solar fusion
- 5. Controlled fusion

General remarks (1)

- Maximum of binding energy per nucleon at about A ≈ 56 (Fe)
 → fission for heavier nuclei → fusion for lighter nuclei
- Fusion of 2 light nuclei produces an increase of binding energy per nucleon

General remarks (2)

- Advantages of fusion (compared to fission) as energy source:
 - 1. Light nuclei are abundant and easy to obtain
 - 2. End products are lights and usually stable
 - 3. Production of small quantity of short-live radioactive wastes
 - 4. No risk of core meltdown
 - 5. No proliferation
- Disadvantages of fusion:
 - Before combination of light nuclei → overcoming of the Coulomb repulsion → enormous disadvantage
- To reach fusion → kinetic energy at least equal to energy repulsion has to be provided to nuclei
- Use of accelerators → current very low → power output very low (a few W)
- Use of thermal energy → very high temperature has to be reached → magnetic or inertial confinement

Basic processes (1)

- In controlled fusion reactors → to overcome the Coulomb barrier → choice of nuclei with small charge
- Most elementary fusion reaction → p + p → ²He → not possible (2 + charges) → attention: other possible pp reaction: positron emission → see solar fusion section
- Another elementary reaction \Rightarrow ²H + ²H \Rightarrow ⁴He + γ (γ is necessary for energy balance because ⁴He has no excited states) \Rightarrow problem because Q = 23.8 MeV > the separation energy of both proton and neutron of ⁴He
- More likely reactions \rightarrow ²H + ²H \rightarrow ³He + n (Q = 3.3 MeV) or ²H + ²H \rightarrow ³H + p (Q = 4.0 MeV) \rightarrow deuterium-deuterium (D-D) reactions
- But more stable is the fusion product greater is the energy released \rightarrow a reaction that form ⁴He has a particularly large energy release \rightarrow ²H + ³H \rightarrow ⁴He + n (Q = 17.6 MeV) \rightarrow deuterium-tritium (D-T) reaction

Basic processes (2)

- The D-T reaction is often used as neutron source
- The D-T reaction produces a large amount of energy (17.6 MeV)
 → separated into ⁴He and n
- The D-T reaction has a large cross section (see below)
- The D-T reaction is characterized by the same Coulomb barrier as D-D reactions
- For these reasons the D-T reaction has been selected to be used in controlled fusion reactors
- Other basic processes will be explained in the solar fusion section

Characteristics of fusion: Energy release

Calculation of the Q value \rightarrow for controlled fusion reactors and solar processes the kinetic energy of the initial particles is small (in the 1-10 keV energy range) compared to $Q \rightarrow$ energy release = final total energy of the products particles \rightarrow

$$A + B \to C + D$$

$$A + B \to C + D \qquad \frac{1}{2}m_C v_C^2 + \frac{1}{2}m_D v_D^2 \simeq Q$$

- Again neglecting the initial motions → $m_C v_C \simeq m D v_D$
- We obtain thus \rightarrow

$$\frac{1}{2}m_C v_C^2 \simeq \frac{Q}{1 + m_C/m_D} \qquad \frac{1}{2}m_D v_D^2 \simeq \frac{Q}{1 + m_D/m_C} \qquad \frac{\frac{1}{2}m_C v_C^2}{\frac{1}{2}m_D v_D^2} \simeq \frac{m_D}{m_C}$$

 For D-T reaction → 80% of energy is taken by neutron ↔ for D-D reaction \rightarrow 75% of energy is taken by neutron/proton

Characteristics of fusion: Coulomb barrier

• With R_A and R_B the radii of reacting particles \rightarrow the Coulomb barrier for just touching particles is

$$V_C = \frac{e^2}{4\pi\epsilon_0} \frac{Z_A Z_B}{R_A + R_B}$$

- The effect of the Coulomb barrier on the fusion reaction is similar to the effect of the Coulomb barrier on α decay \rightarrow the product Z_AZ_B will appear in an exponential barrier penetration probability \rightarrow cross section very sensitive to its \rightarrow the barrier is lowest for the hydrogen isotopes
- For D-T reaction V_C = 0.4 MeV \rightarrow it is low but still far above the typical incident particle energy of 1-10 keV \rightarrow tunnel effect

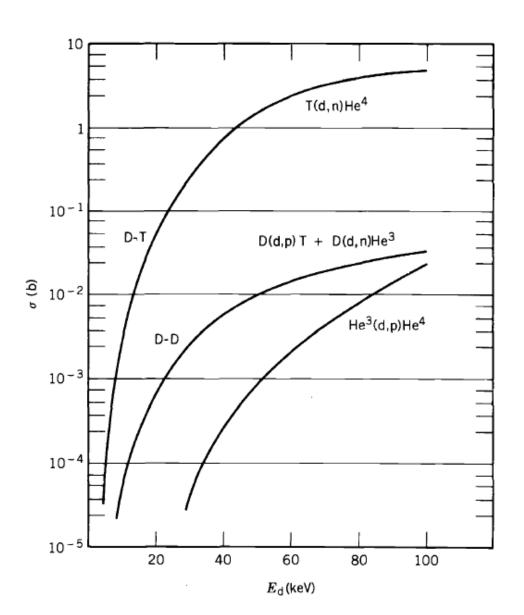
Characteristics of fusion: Cross section (1)

Calculations from basic expression for nuclear reaction cross sections
 → use of the Breit-Wigner formula →

$$\sigma_l = \frac{4\pi}{k^2} (2l+1) \frac{\Gamma^2/4}{(E_r - E)^2 + \Gamma^2/4}$$

- Particles reacting at thermal energies → reaction occurs far from any resonance → energy dependence of the cross section comes mainly from two terms →
 - 1. The k^{-2} factor $\rightarrow v^{-2}$ dependence
 - 2. A barrier penetration factor on the form e^{-2G} as for α decay but substituting for Q the center of mass energy E of reacting particles

$$\sigma \propto \frac{1}{v^2} e^{-2G}$$


Characteristics of fusion: Cross section (2)

• G is the Gamow factor of α decay but substituting for Q the center of mass energy E of reacting particles \rightarrow as $E \ll B \rightarrow$ with v the relative velocity of interacting particles \rightarrow

$$G \simeq \frac{e^2}{4\pi\epsilon_0} \frac{\pi Z_A Z_B}{\hbar v}$$

• In σ the proportionality factor involve nuclear matrix elements and statistical factors depending on the spins of the particles but energy dependence is correct

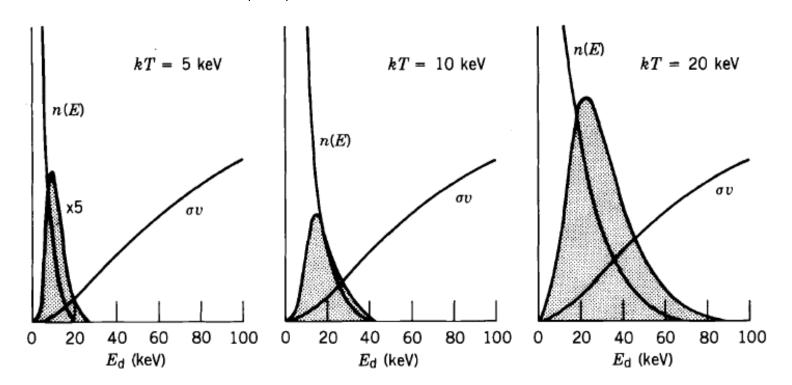
Characteristics of fusion: Cross section (3)

Characteristics of fusion: Reaction rate (1)

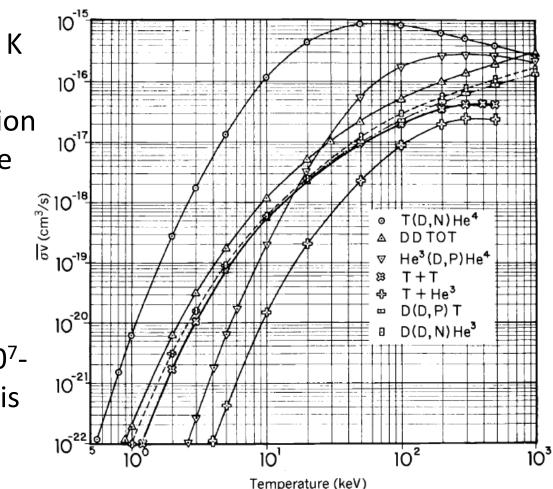
- The reaction rate is \propto to $\sigma \times \nu$ (see Nuclear Metrology Techniques)
- In thermonuclear fusion the distribution of particle speeds is described by the usual Maxwell-Boltzmann velocity distribution for particles in thermal equilibrium (with k the Boltzmann constant and T the temperature) \rightarrow

$$n(v) \propto e^{-mv^2/2kT}$$

- $n(v)v^2dv$ gives the relative probability to find a particle with speed between v and v + dv in a collection of particles in thermal equilibrium at T
- For a gas of identical particles →


$$\langle \sigma v \rangle \propto \int_0^\infty \frac{1}{v} e^{-2G} e^{-mv^2/2kT} v^2 dv$$
 $\langle \sigma v \rangle \propto \int_0^\infty e^{-2G} e^{-E/kT} dE$

$$\langle \sigma v \rangle \propto \int_0^\infty e^{-2G} e^{-E/kT} dE$$


Characteristics of fusion: Reaction rate (2)

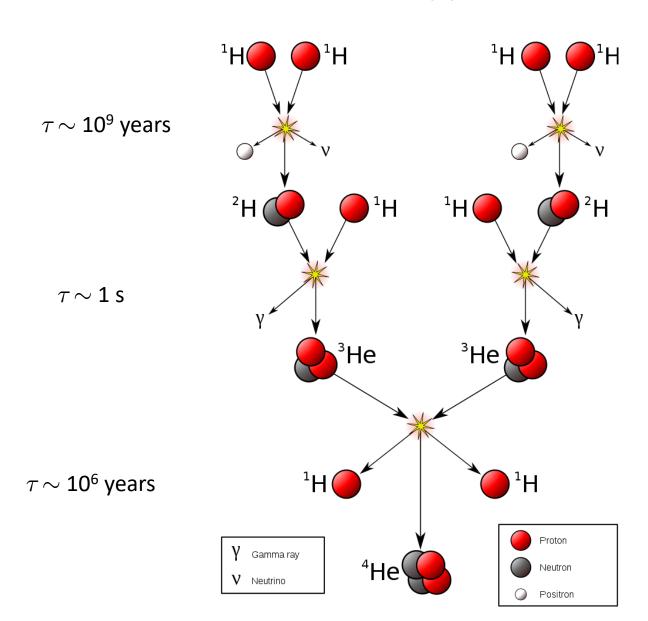
- At low $T \rightarrow$ little overlap between n(E) and $\sigma v \rightarrow$ the average is small
- AT very high $T \rightarrow$ the area of the Maxwell-Boltzmann distribution becomes small \rightarrow the average value of σv is small
- At intermediate $T \rightarrow \langle \sigma v \rangle$ reaches a maximum

Characteristics of fusion: Reaction rate (3)

- At extremely high T≈ 10¹⁰ K (corresponding to MeV energies) → the D-T reaction may become less favorable than others
- In the temperature region achievable in a thermonuclear fusion reactor (1-10 keV or $T \approx 10^7$ 10^8 K) \rightarrow the D-T reaction is clearly favored

Characteristics of fusion: Reaction rate (4)

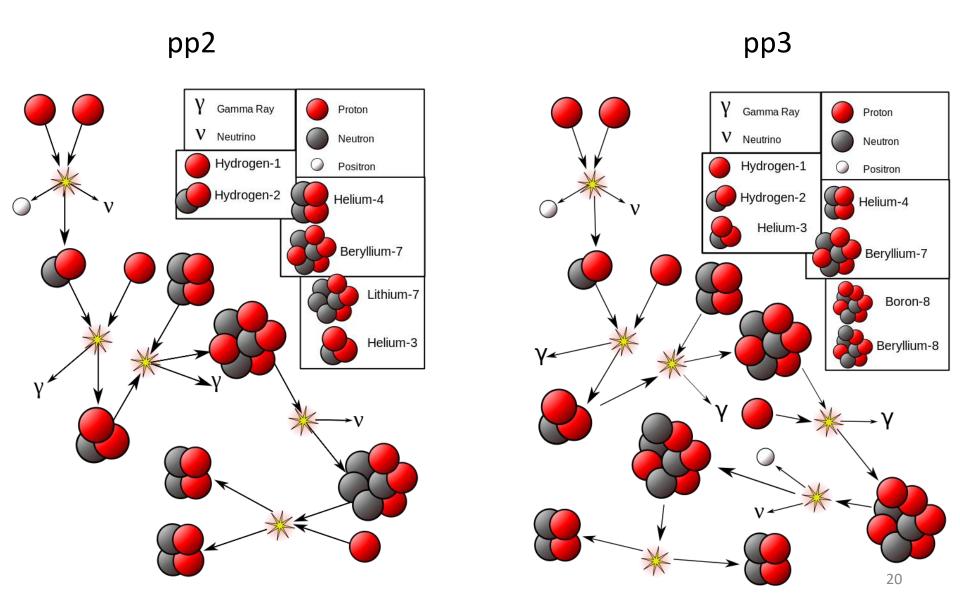
- The simple theory used here is appropriate only for the D-D reaction (only 1 type of nuclei)
- For reactions involving two different nuclei (D-T, ...) → the velocities of the different species have to be considered
- The cross section and reaction rate involve a relative velocity $\rightarrow \sigma(v_{rel})$ and $\langle \sigma(v_{rel})v_{rel}\rangle$ have to be determined \rightarrow average is done over the Maxwell-Boltzmann distribution of both species
- More complicated calculations but previous general conclusions about fusion reaction rates remain valid


Solar fusion: General remarks

- Sun = extremely successful prototype of a self-sustaining thermonuclear reactor at (in the core) $T \approx 15 \times 10^6$ K (output constant during 10^9 years)
- Basic process in the Sun (and in most other stars) → fusion of H into He
- Abundance of atoms in universe → about 92% of the atoms in the universe are hydrogen ↔ 7% are He (formed during the early stages of universe) ↔ less than 1% are other ones
- All reactions in any fusion cycle must be two-body reactions because the simultaneous collision of three particles is too improbable

Solar fusion: pp chain (1)

- First step: $p + p \rightarrow {}^{2}H + e^{+} + \nu (Q = 0.42 \text{ MeV}) \rightarrow \text{very small}$ reaction rate (5 × 10⁻¹⁸ s⁻¹ per proton) \rightarrow bottleneck process \rightarrow but number of protons in the Sun $\approx 10^{56}$
- Second step: $p + {}^{2}H \rightarrow {}^{3}He + \gamma$ (Q = 5.49 MeV) \rightarrow D-D reaction is very unlikely because the number of deuterons is small (1 ${}^{2}H$ for \approx 10 18 ${}^{1}H$)
- Third step: ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + 2{}^{1}\text{H} + \gamma$ (Q = 12.86 MeV) \rightarrow ${}^{3}\text{He-p}$ reaction is not possible (${}^{4}\text{Li}$ does not exist as a bound system) and ${}^{3}\text{He-D}$ is unlikely because density of D is very low and because D is rapidly converted to T
- The net reaction called the proton-proton (pp) chain is thus the conversion of 4 protons to helium : $4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu$ with a total $Q = 2 \times (0.42 + 5.49) + 12.86 + 4 \times 0.51 = 26.72$ MeV


Solar fusion: pp chain (2)

Solar fusion: pp chain (3)

- More precisely this chain is called pp1 and is dominating for T $\approx 10\text{-}14\ 10^6\ K$
- An alternative chain (pp2) is dominating for T \approx 14-23 10⁶ K \rightarrow ³He + ⁴He \rightarrow ⁷Be + γ \rightarrow ⁷Be + e⁻ \rightarrow ⁷Li + ν \rightarrow ⁷Li + p \rightarrow 2⁴He
- pp3 is dominating for T > 23 10^6 K \rightarrow 3 He + 4 He \rightarrow 7 Be + γ \rightarrow 7 Be + p \rightarrow 8 B + γ \rightarrow 8 Be \rightarrow 8 Be + e⁺ + ν \rightarrow 8 Be \rightarrow 4 He
- The net reaction and the net Q value are the same for these three possible paths

Solar fusion: pp chain (4)

Solar fusion: CNO cycle (1)

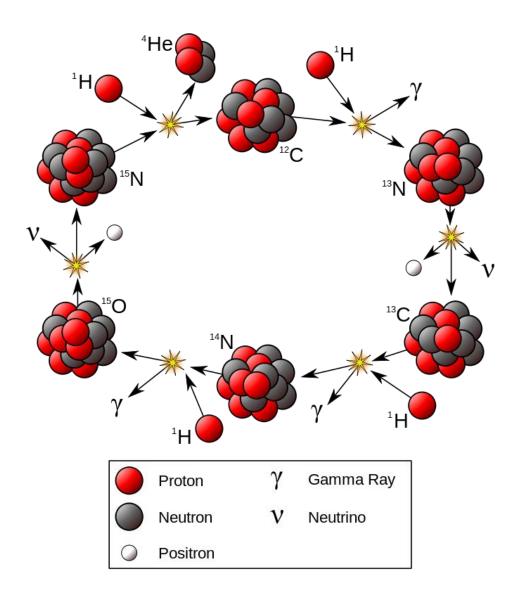
- Heavier elements are present in a star → different series of fusion reactions can occur
- One important process is the carbon or CNO cycle →

$${}^{12}C + {}^{1}H \rightarrow {}^{13}N + \gamma$$

$${}^{13}N \rightarrow {}^{13}C + e^{+} + \nu$$

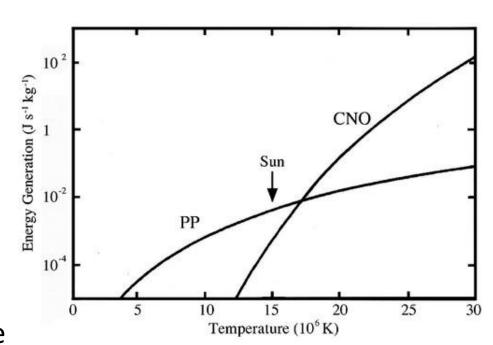
$${}^{13}C + {}^{1}H \rightarrow {}^{14}N + \gamma$$

$${}^{14}N + {}^{1}H \rightarrow {}^{15}O + \gamma$$


$${}^{15}O \rightarrow {}^{15}N + e^{+} + \nu$$

$${}^{15}N + {}^{1}H \rightarrow {}^{12}C + {}^{4}He$$

- ¹²C is neither created nor destroyed → acts as a catalyst to aid in the fusion process
- The net process is $4p \rightarrow {}^4\text{He} + 2e^+ + 2\nu$ as in pp chain and Q is the same


21

Solar fusion: CNO cycle (2)

Solar fusion: CNO cycle (3)

- The CNO cycle proceeds more rapidly than the pp cycle (no deuterium bottleneck)
- However the Coulomb barrier is 6 or 7 times higher for proton reactions with carbon and nitrogen than for proton-proton reactions
- The CNO cycle is thus dominant at higher T (additional thermal energy is needed to increase the probability to penetrate the Coulomb barrier)

Solar fusion: After...

- Once a star has consumed its hydrogen \rightarrow helium fusion reactions takes place with 3⁴He \rightarrow ¹²C at the higher T needed to penetrate the Coulomb barrier
- Other reactions involving fusion of light nuclei and α -particle capture continues to release energy
- The process ends near ⁵⁶Fe → beyond it there is no energy gain in combining nuclei

Controlled fusion: General remarks

- High T ($\sim 10^8$ K \rightarrow mean particle kinetic energies of 10 keV) \rightarrow the atoms are ionized \rightarrow fuel is a hot mixture of clouds of positive ions and negative electrons (overall electrically neutral) \rightarrow plasma (see Y. Louis, Statistical physics and plasma physics)
- In a star → gravitational force confine the plasma → allows high temperature and pressure → fusion
- In Earth → gravitational confinement is impossible →
 magnetic or inertial confinement (electrostatic confinement is
 also possible but not mature)

Controlled fusion: Lawson criterion (1)

- In a plasma → high agitation of ions and electrons → many collisions between → to obtain fusion 3 quantities have to be considered →
 - 1. Temperature *T*
 - 2. Density N
 - 3. Confinement time τ
- Considering a D-T plasma → we assume that →
 - densities of D and T are each equal to n/2
 - Q is the energy released per reaction (17.6 MeV for D-T)
 - τ is the confinement time during which reactions occur
- The energy released per unit volume from fusion reactions in the plasma is →

$$E_f = \frac{1}{4} n^2 \langle \sigma v \rangle Q \tau$$

Controlled fusion: Lawson criterion (2)

• The thermal energy per unit volume needed to raise both ions and electrons to temperature T is 3/2nkT (with $n=n_e$) \rightarrow the total thermal energy is \rightarrow

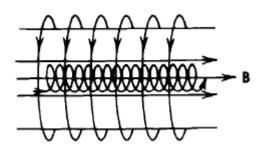
$$E_{th} = 3nkT$$

- Energy E_{th} is supplied to heat the plasma \rightarrow during time τ plasma is confined and energy E_f can be extracted
- The reactor shows a net energy gain if →

$$E_f > E_{th}$$

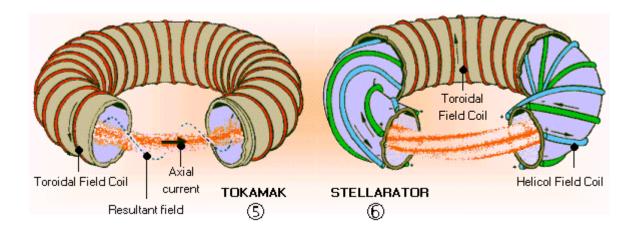
$$\frac{1}{4}n^2\langle\sigma v\rangle Q\tau > 3nkT$$

$$n\tau > \frac{12kT}{\langle\sigma v\rangle Q}$$


• This is called the Lawson criterion \rightarrow represents the goal of reactor designers \rightarrow for D-T reaction $\rightarrow n\tau > 10^{20}$ s/m³

Controlled fusion: Magnetic confinement (1)

- In a magnetic confinement → the plasma is trapped and maintained at high temperature
- It must be confined in a limited immaterial box far from any material wall → the simplest magnetic confinement is a uniform magnetic field → charged particles spiral about the field direction

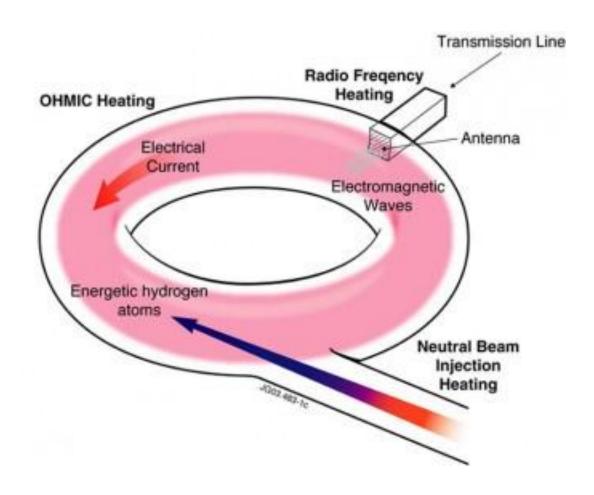

To prevent the loss of particles along the axis → the line forms

a torus \rightarrow the spiral is kept in a ring

Controlled fusion: Magnetic confinement (2)

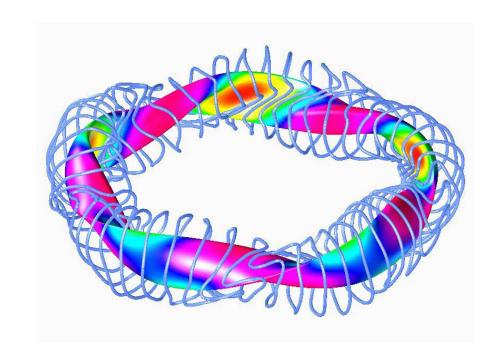
- In a toroidal geometry → the field is weaker at larger radii → as a
 particle spirals it sees a region of lower field which lets the spiral
 radius become larger → the particle approach the outer wall
- To reduce this effect a magnetic field component along the surface of the toroid is introduced → the poloidal field → helical path
- It can be achieved using
 - a set of external coils → stellarator
 - a current along the axis of the toroid through the plasma itself → tokamak

Controlled fusion: Plasma heating (1)

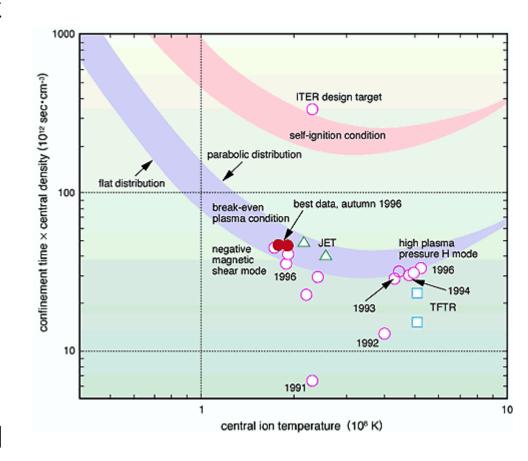

- The plasma is created inside the confinement structure at temperature too low to reach fusion → 3 methods are possible to heat the plasma up
- 1. The current in the plasma itself is used to heat the plasma by Joule effect \rightarrow effective to T $\approx 10^7$ K \rightarrow beyond plasma resistivity becomes too weak \rightarrow effectiveness \searrow (impossible in stellarator \leftrightarrow no central current)
- Heating by injection of neutrals → a beam of ions (outside the machine) is created → neutralized before entering the plasma → collisions transfer energy → T
- Absorption of energy from electromagnetic waves → heating is transmitted to the plasma by antennas covering part of the confinement area

Controlled fusion: Plasma heating (2)

- Generally in fusion reactor with magnetic confinement → temperature is raised by a combination of the 3 methods
- When the number of fusion reactions
 → the energy carried by the helium nuclei is confined in the plasma → heating
- If this contribution becomes equal to the energy lost by the plasma


 → previous heating methods are no more necessary → plasma is
 self-maintained → ignition process
- We define the amplification factor Q as the ratio between the power generated by the plasma and the heating power injected into the plasma \Rightarrow If $Q = \infty \Rightarrow$ plasma is self-maintained \Rightarrow If Q = 1 \Rightarrow plasma supplies as much energy as injected \Rightarrow « break even »
- European tokamak JET (Joint European Torus) is close to break even $(Q \approx 0.65)$

Controlled fusion: JET heating system


Controlled fusion: Stellarator

- The stellarator attempts to create a natural twist plasma path using external magnets
- In first tests → stellarator suffers from instabilities and plasma leakage
- Now → development of computers → new calculations possibilities → building of the largest stellarator (Wendelstein 7-X) at the Max Planck Institute of Plasma Physics in 2015

Controlled fusion: Tokamak

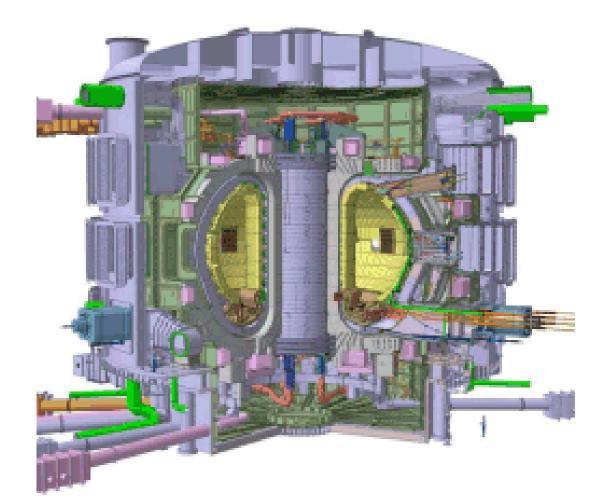
- Imagined by Tamm and
 Sakharov in 1950 → tokamak
 = toroïdalnaïa kamera
 s magnitnymi katushkami =
 toroidal chamber with
 magnetic coils
- Actually → the Lawson criterion is not reached (JET)
 → most interesting way to achieve controlled fusion for energy production → ITER project = International Thermonuclear Experimental Reactor

Controlled fusion: JET

First plasma production: 1983

Pulse duration: 20 s

Maximum magnetic field (toroidal): 3.45 T

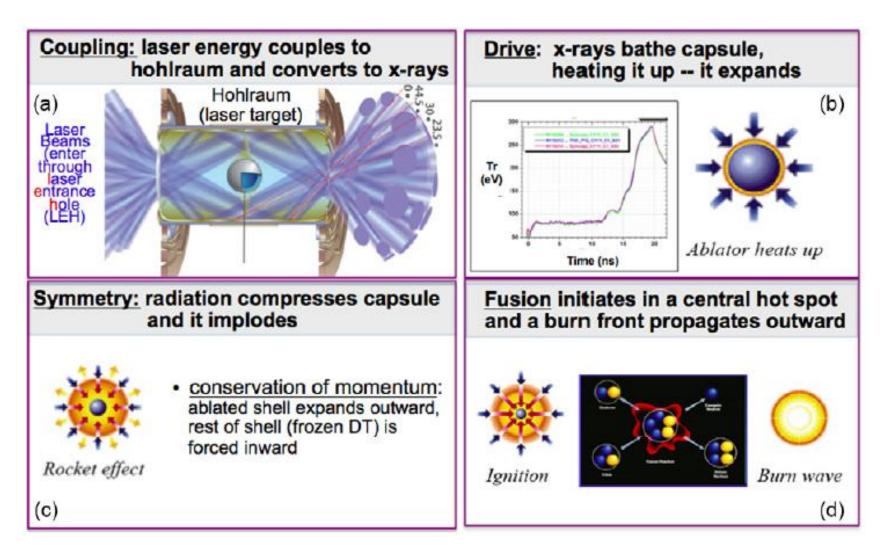

Maximum plasma current: 5 MA

Maximum injected power: 25 MW

Mass (nucleus): 2 800 tons

Controlled fusion: ITER (1)

- First expected test → 2035
- Electricity production → 2050


Controlled fusion: ITER (2)

- Plasma volume: 840 m³
- Plasma mass: \sim g
- Maximum plasma current: 15 MA
- Maximum magnetic field (toroidal): 5.3 T
- Pulse duration: 6 min to 1 h
- Expected Q: \sim 10

Controlled fusion: Inertial confinement (1)

- We consider a microball generally in gold (« hohlraum ») enclosing a pellet of gaseous deuterium and tritium encased in ablator material
- Laser energy enters the hohlraum target → strikes the hohlraum walls → is converted to X-radiation
- X-radiation fills the hohlraum → creating a radiation oven that bathes the capsule → the ablator heats up
- The ablated shell expands outward → the remainder of the capsule is compressed inward
- Fusion initiates in a central hot spot where the ion temperature is high → a burn front propagates outward

Controlled fusion: Inertial confinement (2)

