Chapter IX: Thermoluminescent dosimeters

Thermoluminescent dosimeters (TLD)

- Following the radiation absorption \rightarrow some materials (semiconductors or insulators, not metals) retain a part of the absorbed energy in metastable states
- When this E is liberated as UV radiation, visible or IR \rightarrow phenomenon called luminescence
- The luminescence process can be accelerated due to an • external stimulus (heat, light)
- When external stimulus = heat \rightarrow thermoluminescence
- When thermoluminescence is used for dosimetry \rightarrow thermoluminescent dosimeter (TLD)
- References:
 - A.J.J. Bos, *High sensitivity thermoluminescence dosimetry*, Nuclear Instruments and Methods in Physics Research Section B 184 (2001) 3-28
 - A.J.J. Bos, Theory of thermoluminescence, Radiation Measurements 41 (2007) S45–S56

Luminescence

- When ionizing radiation interacts with matter → a large number of molecules are excited or ionized
- When these molecules return to the ground state → possible creation of luminescence centers → possible emission of photons in the visible or near to the visible energy range → luminescence
- 3 types of luminescence
 - 1. Fluorescence: light emission occurs "immediately" after absorption (more precisely: < 10⁻⁸ s, i.e. time for atomic transition)
 - 2. Phosphorescence: light emission is delayed because excited state is metastable (time between absorption and emission can be from μ s to days, months)
 - Delayed fluorescence: a center of phosphorescence can be transformed into a fluorescence center following an external excitation → « normal » fluorescence but after a much longer time

Example fluorescence \leftrightarrow phosphorescence: Benzene

• Benzene $(C_6H_6) \rightarrow \pi$ -electrons \rightarrow spin = 0 (singlet: S_i) or spin = 1 (triplet: T_i)

- Energy absorption \rightarrow radiationless decay from high energy levels to S₁₀ state
- Transitions between S₁₀ and S_{0i} with light emission (fluorescence)
- Transition between S_{10} and $T_{10} \rightarrow$ slow transition to S_0 (phosphorescence) or excitation to S_{10} due to ouside

Energy levels of benzene

5

Model: 1 trap – 1 recombination centre

- Energy band model
- Intensity of light
- First-order kinetics
- Second-order kinetics
- General-order kinetics
- Luminescence efficiency

Energy band model (1)

- E_g : energy band gap
- E_f : Fermi level
- T: electron trap (with E, E of the trap or activation E)
- R: recombination centre

Energy band model (2)

- Semiconductors or insulators \rightarrow band structure
- Structural defaults or impurities (→ complete characterization is impossible → never 2 identical TLD) → levels inside the forbidden band gap → <u>simple model</u> → 2 levels: 1 below the conduction band (T) and another above the valence band (R)
- $E_T > E_f \rightarrow$ empty at equilibrium and before irradiation
- When hν > E_g is absorbed → ionization of valence band e⁻ → after thermalization → free e⁻ in the conduction band and h⁺ in the valence band (a transition)

Energy band model (3)

- 2 possibilities
 - Direct recombination → excitation of a luminescence centre (corresponding to a recombination centre)
 - 2. Trapping of an e^- at T and of a h^+ at R (b transition)
- The probability p of liberation per time unit (c transition) of the trapping e⁻ is given by the equation of d'Arrhenius:

$$p = s \exp\left(-\frac{E}{kT}\right)$$

with *s*, the frequency factor or attempt-to-escape factor (constant in the simple models simples and $\approx 10^{12} - 10^{14} \text{ s}^{-1}$, i.e. the lattice vibration frequency), $k = 8.617 \ 10^{-5} \text{ eVK}^{-1}$, Boltzmann's constant and *T*, the temperature (in K⁻¹)

Energy band model (4)

- If $E \gg kT_0$, with T_0 the T during irradiation ($T \approx 300$ K) \rightarrow the e⁻ are indefinitely trapped (or at least during a long time compared to the analysis time)
- N(e⁻) = N(h⁺) because they are created by pairs
- $E(R) < E_f < E(T) \rightarrow$ non-equilibrium situation \rightarrow transition to equilibrium is always open but the relaxation rate is slow \rightarrow metastable state
- The return to equilibrium is speeded if T → the e⁻ migrates to the conduction band up to a recombination centre R (corresponding to a luminescence centre) → emission of light (d transition) → thermoluminescence
- Attention: practically some radiationless process occurs

Intensity of light (1)

The intensity of light *I(t)* in photons per second at any time *t* during heating is ∝ to the rate of recombination of e⁻ and h⁺ at R (each recombination produces a photon which is detected) → with *m* (m⁻³), the concentration of h⁺ at R →

$$I(t) = -\frac{dm}{dt}$$

 The recombination rate is also ∝ to the concentration of free e⁻ in the conduction band, n_c, and of h⁺ →

$$I(t) = -\frac{dm}{dt} = n_c m A_m$$

with A_m , the probability of recombination (m³s⁻¹) independent on *T*

Intensity of light (2)

 The rate of change of the concentration of trapped e⁻, n, is equal to the rate of thermal release minus the rate of retrapping →

$$-\frac{dn}{dt} = np - n_c(N-n)A_n$$

with N, the concentration of e^{-} traps and A_n , the probability of retrapping

 Moreover → the rate concentration of free e⁻ in the conduction band is equal to the rate of thermal release minus (the rate of retrapping + the rate of recombination) →

$$\frac{dn_c}{dt} = np - n_c(N - n)A_n - n_c mA_m$$

Intensity of light (3)

 No analytical solution to these equations → hypothesis of Chen and Mc Keever → quasi-equilibrium (QE):

$$\left|\frac{dn_c}{dt}\right| \ll \left|\frac{dn}{dt}\right| \quad \text{et} \quad \left|\frac{dn_c}{dt}\right| \ll \left|\frac{dm}{dt}\right|$$

 \rightarrow the concentration of free e⁻ in the conduction band is quasi stationnary

• As $dn_c/dt \approx 0 \rightarrow$

$$n_{c} = \frac{np}{(N-n)A_{n} + mA_{m}}$$
$$I(t) = \frac{mA_{m}ns\exp\left(-E/kT\right)}{(N-n)A_{n} + mA_{m}}$$

First-order kinetics (1)

This eq. cannot be analytically resolved \rightarrow additional assumption of Randall et Wilkins \rightarrow negligible retrapping \rightarrow

$$mA_m \gg (N-n)A_n$$

$$I(t) = -\frac{dn}{dt} = ns \exp\left(-\frac{E}{kT}\right) = np$$

If $T = \text{cste} \rightarrow p = \text{cste}$
$$I(t) = I_0 \exp\left(-tp\right) \qquad \text{with } I_0: \text{ initial intensity}$$

Simple exponential function

with n_0 : number of e⁻ trapped at t = 0

- $T \nearrow \rightarrow$ detrapping of e⁻ and recombination $\rightarrow I(t) \nearrow$
- $T \nearrow \rightarrow maximum$
- $T \nearrow \rightarrow$ decrease of the number of charge carriers $\rightarrow I(t) \supseteq$

Peak \rightarrow first-order « glow peak » (GP)

First-order GP

• If T is raised as a linear function of time \rightarrow

$$T(t) = T_0 + \beta t$$

with T_0 : T for t = 0 and β , the constant heating rate

• The GP becomes (as a function of T) \rightarrow

$$I(T) = -\frac{1}{\beta} \frac{dn}{dT} = n_0 \frac{s}{\beta} \exp\left(\frac{-E}{kT}\right) \\ \times \exp\left[-\frac{s}{\beta} \int_{T_0}^T \exp\left(\frac{-E}{kT'}\right) dT'\right]$$

First-order expression of Randall-Wilkins for the GP

Form of the first-order GP

- Asymmetric peak
- Geometry factor $\mu_{\rm g} = \delta/\omega$ with ω , the full width at half maximum and δ , the half width at half maximum (for high T) \rightarrow typically $\mu_{\rm g} = 0.42$
- T_m : the T at maximum I_m
- For small $T \rightarrow$ exponential decrease (*exp[-E/kT]*) is dominating

Maximum of GP

• The condition to have the maximum \rightarrow

$$\frac{dI}{dt} = 0 \quad \text{ou} \quad \frac{d[\ln I(T)]}{dT} = 0$$

• This gives the Randall-Wilkins relation \rightarrow

$$\frac{\beta E}{kT_m^2} = s \exp\left(-\frac{E}{kT_m}\right)$$

that can be iteratively resolved

• In the Randall-Wilkins relation \rightarrow there is no $n_0 \rightarrow T_m$ is independent on n_0

Importance of n_0

• n_0 : important parameter in radiation dosimetry $\rightarrow n_0 \propto D$

• n_0 is equal to the area of the GP \rightarrow

$$\int_{0}^{\infty} I(t)dt = -\int_{0}^{\infty} \frac{dn}{dt}dt = -\int_{n_{0}}^{n_{\infty}} dn = n_{0} - n_{\infty}$$

with $n_{\infty} \rightarrow 0$ for $t \rightarrow \infty$

Variation of the GP with n_o

- GP(T,n_0) for E = 1 eV, $s = 10^{12} \text{ s}^{-1}$ and $\beta = 1 \text{ Ks}^{-1}$ ($[n_0] = \text{m}^{-3}$)
- T_m is constant for varying n_0

Variation of the GP with E

- GP(*T*,*E*) for $n_0 = 1 \text{ m}^{-3}$, $s = 10^{12} \text{ s}^{-1}$ and $\beta = 1 \text{ Ks}^{-1}$ ([*E*] = eV)
- E → shift of the GP to high T, ↘ of the height and ∧ of ω with a constant area
- Shift of the GP to high T for E
 → because deeper trap → more energy is needed (→ higher T) for e⁻ detrapping

Variation of the GP with s

- GP(*T*,*s*) for $n_0 = 1 \text{ m}^{-3}$, E = 1 eV and $\beta = 1 \text{ Ks}^{-1}([s] = s^{-1})$
- s ¬ → shift of the GP to small T, ¬ of the height and ↘ of ω with a constant area
- s ¬ → probability to free the e⁻ is larger → less E necessary (→ smaller T)

Variation of the GP(t) with β

- GP(t,β) for $n_0 = 1 \text{ m}^{-3}$, E = 1 eV and $s = 10^{12} \text{ s}^{-1}$ ([β] = Ks⁻¹)
- Height of the GP \propto to n_0 but also to $\beta \rightarrow$ it is confirmed by the I_m expression due to Hoogenboom \rightarrow

$$I_m = n_0 \frac{\beta E}{kT_m^2} e^{-g_m}$$

I_m expression of Hoogenboom (1)

$$I(t) = n_0 s \exp\left(\frac{-E}{kT(t)}\right) \exp\left[-s \int_0^t \exp\left(\frac{-E}{kT(t')}\right) dt'\right]$$
$$I_m = I(t_m) = n_0 s \exp\left(\frac{-E}{kT_m}\right) \exp\left[-s \int_0^{t_m} \exp\left(\frac{-E}{kT(t')}\right) dt'\right]$$

With $T(t) = T_0 + \beta t$, we consider:

I_m expression of Hoogenboom (2)

with
$$g(x) = x^2 e^x \int_x^\infty e^{-z} \frac{dz}{z^2} = x e^x \int_1^\infty e^{-xu} \frac{du}{u^2} = x e^x E_2(x)$$

and $E_2(x)$, the exponential integral of second-order

By taking again:

$$\frac{\beta E}{kT_m^2} = s \exp\left(-\frac{E}{kT_m}\right)$$

$$I_m = n_0 \frac{\beta E}{kT_m^2} e^{-g_m}$$

Considering $g_m = 1 \rightarrow I_m$ underestimation of 10%

Variation of the GP(T) with β

- GP(T,β) for $n_0 = 1 \text{ m}^{-3}$, E = 1 eV and $s = 10^{12} \text{ s}^{-1}$ ([β] = Ks⁻¹)
- $\beta \nearrow \rightarrow$ shift of the GP to high T, \searrow of the height and \nearrow of ω with a constant area \rightarrow opposite behaviour compared to $s \rightarrow$ normal because of the ratio s/β in the expression of I(T)

Approximated expression of I(T)

Approximation of Kitis → the integral is approximated by asymptotic series →

$$I(T) = I_m \exp\left[1 + \frac{E}{kT} \frac{T - T_m}{T_m} - \frac{T^2}{T_m^2}\right]$$
$$\times \exp\left(\frac{E}{kT} \frac{T - T_m}{T_m}\right)(1 - \Delta) - \Delta_m\right]$$

with Δ =2kT/E and $\Delta_{\rm m}$ =2kT_m/E

• Useful expression utile for fitting

Second-order kinetics (1)

 Unlike Randall and Wilkins, Garlick and Gibson consider that retrapping is dominating →

$$mA_m \ll (N-n)A_n$$

2 more assumptions → N ≫ n (trap is far from saturation) and
 n = m →

$$I(t) = -\frac{dn}{dt} = s\frac{A_m}{NA_n}n^2 \exp\left(-\frac{E}{kT}\right)$$

• Thus $\rightarrow dn/dt \propto n^2 \rightarrow$ second-order reaction

Second-order kinetics (2)

• By assuming equal probabilities for recombination and trapping $\rightarrow A_m = A_n$ and $T = \text{constant} \rightarrow$

$$I(t) = \frac{I_0}{(1 + n_0 \alpha t)^2}$$

with $\alpha = s/N \exp(-E/kT) \rightarrow \text{second-order equation}$

• We observe now a decrease hyperbolic and no more exponential

Second-order GP

• Assuming again that $\rightarrow T(t) = T_0 + \beta t \rightarrow$

$$I(T) = = \frac{n_0^2}{N} \frac{s}{\beta} \exp\left(\frac{-E}{kT}\right) \\ \times \left[1 + \frac{n_0 s}{N\beta} \int_{T_0}^T \exp\left(-\frac{E}{kT'}\right) dT'\right]^{-2}$$

Garlick-Gibson's expression for the second-order GP

Form of the second-order GP

Comparison between GP of first and second order \mathbf{GP} of \mathbf{GP}

 The half width at half maximum for high T > the half width at half maximum for small T

160

150

170

180

т. ⁰к

190

200

210

Typically µ_g = 0.52 (larger than for first-order) → significant concentration of released e⁻ are retrapped before they recombine → delay in the luminescence emission and spreading out of the emission over a wider temperature range

Variation of the second-order GP with n_0

- $GP^{(2)}(T,n_0)$ for E = 1 eV, $s = 10^{12} \text{ s}^{-1}$ and $\beta = 1 \text{ Ks}^{-1} ([n_0] = \text{m}^{-3})$
- $T_m \supseteq$ when $n_0 \nearrow \rightarrow$ main difference compared to first order
- Area of the peak $\propto n_0$ as for first-order but the intensity of the peak is no more directly proportional to n_0 (even if the deviation is small)

Approximated expression of $I(T)^{(2)}$ (second-order)

Approximation of Kitis (with again Δ =2kT/E and $\Delta_{\rm m}$ =2kT_m/E) \rightarrow

$$I(T) = 4I_m \exp\left(\frac{E}{kT} \frac{T - T_m}{T_m}\right) \times \left[\frac{T^2}{T_m^2}(1 - \Delta)\right]$$
$$\times \exp\left(\frac{E}{kT} \frac{T - T_m}{T_m}\right) + 1 + \Delta_m$$

General-order kinetics

- In most of the practical cases → we are faced with models of first- (largely dominating) or second-order ↔ the displayed conditions have to be respected
- If conditions are not respected → empirical expression for general-order kinetics of May and Partridge →

$$I(t) = -\frac{dn}{dt} = s'n^b \exp\left(-\frac{E}{kT}\right)$$

with *b*, the general-order parameter and $[s'] = m^{3(b-1)}s^{-1}$

• For $b \neq 1$ (with s'' = s'n₀^(b-1)) \rightarrow $I(T) = \frac{s''}{\beta} n_0 \exp\left(\frac{-E}{kT}\right)$ $\times \left[1 + (b-1)\frac{s''}{\beta} \int_{T_0}^T \exp\left(-\frac{E}{kT'}\right) dT'\right]^{-b/b-1}_{34}$

Comparison of ≠ orders GP

GP(*T,b*) for $n_0 = 1 \text{ m}^{-3}$, E = 1 eV, $s = 10^{12} \text{ s}^{-1}$ and $\beta = 1 \text{ Ks}^{-1}$ for b = 1, 1.3, 1.6, 2

Discussion about various assumptions (1)

- QE assumption → more complex models (without QE) give results very close to those obtained for a first-order GP
- Assumption of the simple model: recombination via a transition from an e⁻ into the conduction band → other possibilities exist:

Recombination with a thermally stimulated e⁻ in the trap

 $e^{\scriptscriptstyle -}$ and $h^{\scriptscriptstyle +}$ are simultaneously released
Discussion about various assumptions (2)

- (a) → the trap has to be in the proximity of a centre → however, traps and recombination centres « really » isolated are rare → frequent phenomenon → the frequency factor s is replaced by the « suitable quantity »
- (a) → probability of retrapping is zero → first-order equation → that explains, among other things, why first-order kinetics is in reality dominating
- (b) → eqs. of first- or second order valid by replacing *E* and *s* by adapted quantities → more complicated

Discussion about various assumptions (3)

 The presence of more than 1 trap (→ several possible E values) implies a « glow curve » (GC) composed of several GP →

 A GC can (generally) be deconvoluted into several GP → attention: the parameters of each GP (*E* and *s*) have not the same meaning as for a simple GP

Luminescence efficiency

- Simple model → description of kinetics → no indication about absolute intensity of luminescence
- The intrinsic efficiency η_i is defined as the ratio of the energy emitted as visible light during heating to the energy absorbed during the exposure to ionizing radiation
- For the calculation of $\eta_{\rm i}$, distinct steps are considered

Different physical steps for the calculation of $\eta_{\rm i}$

- 1. The absorption of ionizing radiation \rightarrow creation of $N \in h^+$ pairs $\rightarrow N \propto 1/W$ et $W = \beta' E_q$ (avec $1 < \beta' < 4$)
- 2. Thermalization and trapping of the charge carriers \rightarrow the fraction that is captured in traps, which can be thermally stimulated \rightarrow trapping efficiency: $\eta_{\rm tr}$
- 3. Release of the charge carriers (probability *p*), transport to a luminescent centre (efficiency *S*), exciting the luminescent centre that de-excite under emission of a photon (quantum efficiency *Q*)
- 4. Escape of the produced thermoluminescent photons from the sample (escape fraction: η_{esc})

Intrinsic efficiency

• With h ν , the mean *E* of the emitted TL photons \rightarrow

$$\eta_i = \frac{h\nu}{\beta' E_g} \eta_{tr} p S Q \eta_{esc}$$

• With all steps efficiency at maximum \rightarrow

$$\eta_i^{max} = \frac{h\nu}{\beta' E_g}$$

 For all media used as TL → η_i^{max} ≈ 13% → only a small part of the absorbed *E* is converted into e⁻-h⁺

Intrinsic and maximum efficiencies

TL material	E_{g} (eV)	β'	hv		$\eta_{i,\max}$ (%)	η_{\exp} (%)
			(nm)	(eV)		
LiF:Mg,Ti	13.6	1.7	410	3.02	13	0.032-0.039
LiF:Mg,Cu,P						0.91
CaF2:Dy(TLD-200)	12.6	1.8	480	2.58	11	4.1
CaF ₂ :Cu,Ho	12.6	1.8	390	3.18	14	
CaF ₂ :Tm						0.29
CaF ₂ :Mn						0.44
KMgF ₃ :Ce	12.6	2	360	3.44	14	
BeO	10.6	2	335	3.70	17	
CaSO ₄ :Dy	9.5	2	575	2.16	11	
CaSO ₄ :Mn						1.2
Al ₂ O ₃ :C	8.7	2.7	420	2.95	13	0.84
Li2B4O7:Mn	8.5	2	620	2.00	12	0.3
C (diamond)	5.5	2.9	498	2.49	16	
Average					~ 13	~ 1

Parameters influencing the efficiency (1)

- Trapping efficiency : $\eta_{tr} \rightarrow crystal$ imperfections serve as trapping centres and by adding dopants $\rightarrow \nearrow$ of the number of traps \rightarrow increase of η_{tr} only for low traps concentration \leftrightarrow when the traps concentration is too large \rightarrow average distance among the dopants become so small that interaction becomes possible \rightarrow the energy levels are no more localized \rightarrow decrease of η_{tr} (« concentration quenching »)
- For $S \rightarrow$ for a direct recombination of a thermally excited e⁻ into a trap $\rightarrow S \approx 1$

Parameters influencing the efficiency (2)

Q strongly depends on temperature → when T ↗ → Q ↘
 (« thermal quenching ») (→ when β ↗ → Q ↘) → with C and W: quenching parameters:

$$Q(T) = \frac{1}{1 + C \exp\left(-\frac{W}{kT}\right)}$$

Escape fraction: η_{esc} → for monocrystals which can be transparent to their own radiation: η_{esc} ↗ and for powders and sintered materials: η_{esc} ↘ (ex: η_{esc}(Al₂0₃:C) = 94% and η_{esc}(BeO) = 35%)

Thermoluminescent dosimeters (TLD)

- The most used TLD in radiation dosimetry are:
 - LiF:Mg,Ti
 - LiF:Mg,Cu,P
 - $Li_2B_4O_7:Mn$

because they are tissue-equivalent

- Are also used due to their large sensitivity:
 - CaSO₄:Dy
 - $Al_2O_3:C$
 - CaF₂:Mn
- They are available as variable forms (powders, pastilles, ribbons,...)

General characteristics of TLD

- Fading
- Sensitivity
- Detection limits
- Response to the dose
- Response to the energy
- Annealing

Fading (1)

- A « perfect » TLD has the capacity to store information (trapped charge carriers) during an infinite time without losses
- However → there is always a probability of escape for the e⁻ before reading → fading → underestimation of the absorbed dose
- Various causes for fading
 - Thermal fading: following Arrhenius' law \rightarrow

$$p = s \exp\left(-\frac{E}{kT}\right)$$

it is possible to obtain the half-live of thermal fading \rightarrow

$$t_{1/2} = \frac{\ln 2}{p} = \frac{\ln 2}{s \exp\left(-\frac{E}{kT}\right)}$$

Fading (2)

- Optical fading: some materials (CaSO₄, CaF₂) are very sensitive to light (materials with best sensitivity obviously) → must be store in opaque containers
- Quantum fading: quantum tunnelling between the trap and the recombination site

 Recommendation of the European Communauty: fading < 5 % during monitoring time at 25°C

Interactions between defaults

Sensitivity

- TLD sensitivity: Intensity of the signal integrated over a time given per unit of absorbed dose and per unit of mass → depends on the TLD but also on the type of radiation, on the energy of radiation as well as on the reading system (heating, light detection,...)
- Generally → we define sensitivity relatively to the LiF:Mg,Ti TLD in same conditions of radiation and analyze
- Generally \rightarrow radiations with high linear energy transfer (α , neutron,...) give signal < radiations with low linear energy transfer (γ , β ,...)

Detection limits

- Means both: lower and upper levels of detection
- Lower level: smallest absorbed dose that can be detected with a specified confidence level → same order of magnitude a the background
- Upper level: largest dose that can be detected → theoretical maximum limit: all traps are filled → practically: the dose response has to be considered

Response to the dose (1)

- The signal of the TLD depends on the dose \rightarrow *F*(*D*): response to the dose
- Ideally a TLD has to shown a response to the dose linear over a large range of doses, at least over the range of interesting doses
- Practically → many non-linear effects exist for all materials
- The linearity index *f(D)* (or normalized dose response) is defined as:

$$f(D) = \frac{F(D)/D}{F(D_1)/D_1}$$

with D_1 , a weak dose for which the response is linear

Response to the dose (2)

We have:

- f(D) = 1: linear response (ideal TLD)
- f(D) > 1: supralinear response
- f(D) < 1: sublinear response (traps saturation)

- A. SiO₂: supralinearity for the whole range of doses
- B. LiF:Mg,Ti: behaviour linear supralinear
- C. CaF₂: Mn: very weak supralinearity

Dash-curve: linear response

Explanation of supralinearity (1)

- Many parameters influence supralinearity: type of radiation, *E* of the radiation, speed of heating, defaults quantities,...
- To explain supralinearity → many models (up to now) → for some of them: critical process during the *E* absorption, for other ones: critical process during heating
- During heating → e⁻ are released from traps → recombination with h⁺ to create light **or** trapping in deep traps (DT) without creation of light → concurrent centre (CC)

Explanation of supralinearity (2)

- 1. At small dose \rightarrow large distance between the trap (T) and the recombination center (RC) \rightarrow high probability for a e⁻ released by a trap to reach a DT before a RC \rightarrow reduced dose response
- 2. When the dose ¬ → the distance between T and RC \> but also the number of DT \> (they have a larger probability to be filled → but a DT must be empty) → the dose response ¬ (up to saturation of the T)
- 3. Combining 1 and 2 \rightarrow f(D) > 1 (SiO₂)
- If there is no DT in the medium → dose response has to be higher and a linear response is observed up to saturation (CaF₂: Mn)
- 5. The supralinearity is an underestimation at small dose rather than an overestimation at large dose

Supralinearity \leftrightarrow linear energy transfer (1)

Spatial distributions of T-RC pairs for (a) γ of high energy (weak linear energy transfer) and for (b) heavy charged particles (large linear energy transfer)

- Heavy ions: dose deposited in a cylindrical area of a few tens of nm along the ion trajectory → large concentration of filled traps and few DT in the tracks cylinders / small concentration of filled traps and many DT outside the tracks cylinders
- MFP of the released e⁻ < cylinder radius → no interaction with a DT → reaching a RC → light → linear response
- Attention \rightarrow quicker saturation

Supralinearity \leftrightarrow linear energy transfer (2)

- For particles with weak linear energy transfer → the released e⁻ can leave the tracks area and enter the area with large concentration of DT → loss of luminescence
- When the dose *¬* → the inter-tracks distance *¬* → the e⁻ reaches a RC with a larger probability → the dose response *¬* → supralinearity
- When the linear energy transfer $\searrow \rightarrow$ supralinearity \nearrow

Supralinearity \leftrightarrow linear energy transfer (3)

Energy response (1)

 Ideal case → energy response equal (or at least proportional) to human tissue

$$\frac{D_{\text{TLD}}}{D_{\text{tissu}}} \stackrel{\text{CPE}}{=} \frac{(\mu_{en}/\rho)_{\text{TLD}}}{\overline{(\mu_{en}/\rho)}_{\text{tissu}}}$$

It is desirable for the ratio between the energy absorption coefficients to be constant

Energy response (2): Effective atomic number

• Instead of comparing the response with curves \rightarrow useful to define a « number » conveniently allowing this comparison \rightarrow effective atomic number, Z_{eff} :

$$Z_{eff} = \sqrt[m]{\sum_{i} a_i Z_i^m}$$

with a_i , the fraction of the total number of e^- associated to each element with atomic number *i*

- *m* include between 3 and 4 gives a reasonable agreement with experiment $\rightarrow m = 3.5$ is generally chosen (empirical choice!)
- $Z_{eff} = 7.35$ for tissues (in this model) \rightarrow TLD with $Z_{eff} \approx 7.35 \rightarrow$ tissue-equivalent TLD

Examples of Z_{eff}

Material	Composition element: mass fraction in %	$Z_{\rm eff}$
Polyethylene $(C_2H_4)_n$	H: 14.37, C: 85.63	5.53
Fat	H: 11.95, C: 63,72, N: 08; O: 23.23, Na: 0.05, P: 0.02,	6.38
	S: 0.07, Cl: 0.12, K: 0.03, Ca: 0.01	
PMMA $(C_5H_8O_2)_n$	H: 8.05, C: 59.99, O: 31.96	6.56
BeO	Be: 36.0, O: 64.0	7.21
$Li_2B_4O_7$	Li: 8.21, B: 25.57, O: 66.22	7.32
Tissue		
ICR U-sphere	H: 10.1, C: 11.1, N: 2.6, O: 76.2	7.35
ICR U-striated	H: 10.20, C: 12.3, N: 3.5, O: 72.90; Na: 0.08, Mg: 0.02, P: 0.02, S: 0.5, K: 0.3	7.63
ICRP-skeletal	H: 10.06, C: 10.78, N: 2.77, O: 75.48, Na: 0.075, Mg: 0.019,	7.65
	P: 0.18, S: 0.24, Cl: 0.079, K: 0.3, Ca: 0.003, Fe: 0.004, Zn: 0.005	
Water H ₂ O	H: 11.19, O: 88.81	7.51
Air	C: 0.0124, N: 75.53, O: 23.18, Ar: 1.28	7.77
LiF	Li: 26.75, F: 73.25	8.31
Al_2O_3	Al: 47.08, O: 52.93	11.28
SiO ₂	O: 53.3, Si: 46.7	11.75
Compact bone	H: 4.72, C: 14.43, N: 4.2, O: 44.61, Mg: 0.22, P: 10.5, S: 0.32, Ca: 20.99, Zn: 0.01	13.59
CaSO ₄	O: 47.0, S: 23.6, Ca: 29.4	15.62
CaF ₂	Ca: 51.33, F: 48.67	16.90

Z_{eff} – fading – sensitivity – limits for \neq TLD

TLD type	Effective atomic number Z _{off}	Main peak (ºC)	Emission maximum (nm)	Relative sensitivity	Fading (at 25°C) for storage in dark	Useful dose range
LiF:Mg,Ti	8.2	200	400	1	5%/year	20 µGy-10 Gy
LiF:Mg,Cu,P	8.2	210	400	25	5%/year	0.2 µGy-10 Gy
Li ₂ B ₄ O ₇ :Cu	7.4	205	368	2	10%/2 months	10 µGy-10 ³ Gy
MgB ₄ O ₇ :Dy	8.4	190	490	10	4%/month	5 µGy-50 Gy
Mg ₂ SiO ₄ :Tb	11	200	380-400	40	negligible	10 µGy-1 Gy
CaSO ₄ :Dy	15.3	220	480, 570	30	1%/2 months	2 µGy-10 Gy
CaSO ₄ :Tm	15.3	220	452	30	1-2%/2 months	2 µGy-10 Gy
Al ₂ O ₃ :C	10.2	190	420	60	5%/year	1 µGy-10 Gy

Annealing

- One of the interests of the TLD \rightarrow reuse
- To have always the same properties → procedure of annealing → to maintain the TLD at a high T → to cool it to ambient T at a given velocity, α → following by annealing at low T
- Usefulness:
 - 1. To empty the traps non-completely emptied during reading
 - 2. To restore the thermodynamic equilibrium of the defects
 - 3. To empty deep traps (not used during reading) that can influence the sensitivity of the TLD
- Sometimes → annealing at low T after irradiation → elimination of low T GP with high fading

Procedure of annealing

TLD in practice

- TLD has to be placed into a support whish is carried by people that must be controlled
- After some predetermined time \rightarrow analyze of the signal
- The TLD is heated → luminescence measured with a photomultiplier → classical amplification chain → voltmeter
- The chain is calibrated with a light intensity measurement from a luminescent source submitted to a known dose
- Afterward → annealing at high T° (to empty deep traps) → reusing (depends on the type of TLD)

Reading of the TLD

Examples of TLD

The 2 TLD used actually or having been used at ULB

- LiF: Mg,Ti (TLD-100)
- CaSO₄: Dy (TLD-900)

Reference:

S.W.S. McKeever, M. Moscovitch, P.D Townsend, *Thermoluminescence dosimetry materials: Properties and use* (Nuclear technology Publishing) 1995.

LiF: Mg,Ti: Structure of LiF

- LiF consists of 2 interpenetrating FCC lattices (one for Li⁺ and another one for F⁻)
- The thermodynamic defaults consist of Shottky and Frenkel defaults

LiF: thermodynamic defaults

- Shottky default: pair of Li⁺ and F⁻ vacancies
- Frenkel default: pair vacancy-interstice of Li⁺ or F⁻

Additional impurities: Mg

- Mg²⁺ replaces Li⁺ → charge neutrality is kept due to the presence of an excess of Li⁺ vacancies
- Coulomb interaction between the impurity and a vacancy → impurity-vacancy pair (Mg-Li_{vac}): dipole
- At ambient T → free energy of the crystal is minimum for the association of the dipoles into « cluster » → the most important: trimer (cluster of 3 dipoles) because it can be shown that the sensitivity of the TLD is maximum for Mg as trimer → the trimers are the traps
- Process: annealing at 400 °C during 1h → formation of dipoles
 → annealing at 80 °C during 24h → formation of trimers
- Attention: for T < 250 °C \rightarrow precipitation as MgF₂ \rightarrow decrease of the sensitivity at ambient T

GC as a function of annealing

- A. Annealing at 400 °C (1h) following by fast return at ambient T
- B. Annealing at 400 °C (1h) following by annealing at 80°C (24h)
- C. Annealing at 400 °C (1h) following by annealing at 100°C (2h)

Additional impurities: Ti

- Substitution of titanium for du Li⁺ as Ti³⁺ or Ti⁴⁺
- Different mechanisms to keep the charge neutrality → formation of Ti⁴⁺(O²⁻)₃ and especially Ti(OH)_n → responsible for the light emission at 3.01 eV (412 nm) → essential for the luminescence
- The Ti(OH)_n are the luminescence centres
- Other mechanism → bonding with Mg and formation of Mg(OH)_n → decrease of the TL emission → conflictual role between Ti(OH)_n and Mg(OH)_n → concentration of Mg and Ti is preponderant and must be scrupulously controled
Global effect of the impurities: emission mechanisms

- The traps responsible of the main peak in dosimetry are the Mg-Li_{vac} trimers
- The Mg of the default is spatially correlated with a Ti(OH)_n
- The Ti(OH)_n is a luminescence centre \rightarrow Peak 5
- The other combinations of defaults create supplementary peaks in the GC

Fading for LiF: Mg,Ti (1)

- The fading depends on a large number of parameters: storage T, process of annealing, type of radiation, integration range of the GC
- Peaks at « small » T (peaks 2, 3, 4) → more important fading → fading depends on the peaks considered in the GC integration

Fading for LiF: Mg,Ti (2)

- Light sensitivity → 11% of luminescence loss is observed after 3h exposure to sun (9000 lux)
- It remains a small light sensitivity

Sensitivity of LiF: Mg,Ti

- LiF: Mg,Ti is considered as the standard of sensitivity
- Sensitivity depends on a large number of parameters → ≠ LiF: Mg,Ti will have ≠ sensitivities
- Some companies keep TLD in conditions perfectly controlled → considered as standards
- Deviations of \pm 15% between various LiF: Mg,Ti commercially available

Response to the dose for LiF: Mg,Ti (1)

- $D < 1 \text{ Gy} \rightarrow \text{linear response for LiF: Mg,Ti}$
- 1 Gy < D < 1000 Gy \rightarrow supralinear response
- D > 1000 Gy \rightarrow sublinear response (saturation region)
- Spatial correlation between a Mg-Li_{vac} trimer and a Ti(OH)_n \rightarrow

Response to the dose for LiF: Mg,Ti (2)

- When RC and T are correlated → no interaction with a DP → linear response
- When the dose is weak → important proportion of correlated RC and T → linear response
- When the dose ¬ → contribution of non-correlated RC and T
 ¬ (because non-linear ¬)
- For a given dose → non-linear contribution is dominating → supralinearity

Response to the dose for LiF: Mg,Ti (3)

- Useful to determine a correction factor for supralinearity (phenomenological expression)
- Experimentally it can be shown that in the supralinear region \rightarrow

$$f(D) = aD + bD^2 \Rightarrow f(d) = A + BD$$

• With $K = F(D_1)/D_1$ (weak dose for which the response is linear) \rightarrow

$$\frac{F(D)/D}{K} = A + BD$$

• Assuming A = 1 (in agreement with experimental results) \rightarrow

$$D = \frac{F(D)}{K(1+BD)}$$

Response to the dose for LiF: Mg, Ti (4)

• Assuming BD < 1 (with B $\approx 0.015 \rightarrow D < 65$ Gy) \rightarrow

$$D = \frac{F(D)(1 - BD)}{K}$$

• Resolving for D with $D_0 = F(D)/K \rightarrow D = D_0(1+D_0B)^{-1}$

Response curve of LiF: Mg,Ti irradiated by 60 Co γ at \neq depths in plastic equivalent water

80

- A. Absorbed dose in the LiF by X unit calculated via the ratio of the E mass absorption coefficients of LiF and air
- B. Response of LiF: Mg, Ti by X unit (experimental result)
- C. Response of LiF: Mg,Ti by dose unit \rightarrow B/A

Considering $Z_{eff}(LiF) = 8.2 \rightarrow tissue-equivalent$

Reading procedure

Sensitivity to neutrons

The LiF has besides the advantage to be made in natural condition of 92.6 % of Li⁷ and of 6.4 % of Li⁶ → Li⁶ has a very large cross section for thermal neutrons (945 barns) → shows the presence of neutrons according to:

$${}^6_3Li+{}^1_0n\rightarrow {}^3_1H+{}^4_2He$$

- Li⁷ has a negligible cross section for these neutrons →measure of everything that is not neutrons (electrons, photons)
- By simple difference \rightarrow highlight the presence of neutrons

Summary for LiF: Mg,Ti

- Tissue-equivalent (Z_{eff}(LiF) = 8.2)
- Energy independent between \sim 100 keV and 1.3 MeV for γ radiation
- The main luminescence is at ≈ 500 K for a maximum of the emission spectrum at 412 nm
- The response of the LiF as a function of the absorbed dose is linear up to a γ dose of at least 5 Gy
- Minimum boundary of dose \approx 20 μ Gy
- Good stability at long term of information
- Optimum reusing

LiF: Mg, Ti dosimeter in practice (ULB - old) (1)

- The dosimeter is made as a sheet composed of a mixing Teflonlithium fluoride
- The sensitive material is LiF: Mg,Ti with a concentration of 15%
 → the Teflon is the mechanical support for the LiF and a heat insulator between the different reading slots
- In addition to the reading slot, the dosimeter has a back-up slot (use in case of reading incident or for confirmation of a large dose)
- The body of the dosimeter is composed of four distinct slots having different filters allowing an analyze of the type of incident radiation as well as its intensity →
 - slot I : 2.4 mm Teflon (plastic) + 0.8 mm Cd
 - slot II : 1 mm Cu + 1 mm Al
 - slot III : 3.2 mm Teflon
 - slot IV : bare window

LiF: Mg,Ti dosimeter in practice (ULB - old) (2)

LiF: Mg,Ti dosimeter in practice: Interpretation of results

- Slot under Teflon/Cd filter → neutrons dosimetry
- The Cu/Al filter allows a discrimination between γ rays and X rays generally used in medicine (20 keV < E < 60 keV) \rightarrow the absorbed dose under this filter is due to large E γ (as a first approximation)
- Teflon filter \rightarrow this window is used to discriminate the β rays and to settle an electronic equilibrium sufficient for γ with larger E
- The deep dose is the combining result of these 2 slots: Cu/Al and Teflon
- The bare window has practically a response curve identical to the one of the plastic window for γ with E > 20 keV \rightarrow this window allows the detection of γ with E < 10 keV and of β rays (fragile window)

- Orthorhombic structure largely more complicated than LiF
- (...) efforts have been focused on making an efficient material, and this has been achieved. Understanding the mechanisms has been of secondary importance. Indeed for a material of such great complexity (...), it is well beyond the scope of current condensed matter scientists.

Additional impurities: primary impurities

- Rare earths are chosen as primary impurities, give a good sensitivity, limit the peaks at small T° and induce a good stability at about 200 °C
- Dysprosium (Dy) and Thulium (Tm) give the best sensitivity

89

Sensitivity as a function of the amount of Dy

- Each Dy (or Tm) site requires an independent volume of the crystal → if these volumes are superimposed (large concentration of impurities) → sensitivity
- There is an optimum concentration of impurities

Additional impurities: secondary impurities

- Dy³⁺ replaces a Ca²⁺ion → compensation is required to conserve the charge → ≠ mechanisms have been considered:
 - Dy³⁺ is compensated by a secondary impurity deliberately added to the TLD (hydrogen or alkaline) → good results have been obtained with Na⁺
 - 2. A Dy^{3+} pair is associated to a Ca^{2+} vacancy
 - 3. Replacement of oxygen by nitrogen as secondary impurity
- Practically → it « seems » that there is a combination of the 3 mechanisms

Size of the CaSO₄ grains

- CaSO₄ is generally obtained as polycrystal with grain size depending of the manufacturing process
- If the grain size
 → the sensitivity
 → the larger grains
 have a larger impurities %
- Attention \rightarrow if the grain size \nearrow too much \rightarrow becomes fragile

Taille des grains (μm)	Sensibilité relative
100-200	1.00
63 - 125	0.82
45 - 152	0.77
63-100	0.74
45-100	0.73
0-100	0.62
45-63	0.69
0-63	0.60
0-45	0.47

- Main Peak at 220 °C
- Large dependence on the annealing conditions and of the secondary impurities (here a small amount of Na)

Emission mechanisms (1)

1. A possibility is that, under irradiation \rightarrow

$$Dy^{3+} \rightarrow Dy^{2+} + h^+$$

then the recombination of Dy²⁺ with h⁺ produces light

2. Another possibility: considering a « larger » site \rightarrow

$$(Dy^{3+} + SO_4^{2-}) \to (Dy^{3+} + SO_4^{-}) + e^{-}$$

Recombination \rightarrow light

3. Or also \rightarrow

$$(Dy^{3+} + O_2^{2-}) \to (Dy^{3+} + O_2^{3-}) + h^+$$

Emission mechanisms (2)

- 4. We cannot ignore the possibility of a combination of the 2 previous mechanisms
- Anyway the recombination mechanisms are not known
- Roles of the secondary impurities?

Fading for CaSO₄: Dy

- The fading of CaSO₄: Dy is of about 5% for a 6 months period at ambient T° → 2 × larger than for LiF: Mg,Ti (but it is always very good)
- If small T° peaks are taken into account (80 and 120 C°) → fading of 15% during the 5 first days at ambient T° and then of 5% during 6 months

Attention: very sensitive to light → luminescence loss of 50% after 3h of sun exposition (9000 lux)

Sensitivity of CaSO₄: Dy

- Sensitivity of CaSO₄: Dy \rightarrow 30 to 50 \times larger than the sensitivity of LiF: Mg,Ti
- The property associated to a weak fading → particularly adapted for the measurement of weak doses (environmental applications)
- Attention: large variation of the sensitivity as a function of the manufacturing process

Dose response of CaSO₄: Dy (1)

- $D < 10 \text{ Gy} \rightarrow \text{linear response}$
- 10 Gy < D < 5 10³ Gy \rightarrow supralinear response
- $5 \ 10^3 \text{ Gy} < D < 10^5 \text{ Gy} \rightarrow \text{sublinear response (saturation)}$
- D > 10⁵ Gy → decrease of the luminescence (damages due to irradiation)
- Addition of secondary dopant → CaSO₄: Dy,Cu → linearity extended up to 100 Gy
- The degree of supralinearity strongly depends on the size of the CaSO₄ grains
- Unrealistic to theoretically demonstrate these properties

Dose response of CaSO₄: Dy (2)

Energy response of CaSO₄: Dy (1)

 CaSO₄: Dy is characterized by a significant overestimation for energies < 200 keV

Energy response of CaSO₄: Dy (2)

- Z_{eff}(CaSO₄) = 15.3 → not tissue-equivalent at all → major disadvantage of CaSO₄: Dy
- Solution \rightarrow put filters (Al and Sn in previous example)
 - Sn improves the response between 100 keV and 200 keV but implies a loss of sensitivity for E < 100 keV
 - Al gives a good result for $E \approx 20 \text{ keV}$
- The best result is obtained by considering a linear combination
 R of the 3 responses (bare, Sn, Al) →

$$R = k_1 R_{\text{sans}} + k_2 R_{Sn} + k_3 R_{Al}$$

Summary for CaSO₄: Dy

• Not tissue-equivalent

- Very dependent on the energy for E < 200 keV (γ rays) \rightarrow necessary to use filters
- The main luminescence is at ≈ 220 °C for 2 emission peaks at 478 nm and 571 nm
- The response of CaSO₄: Dy as a function of the absorbed dose is linear to a $\gamma\,$ dose of 10 Gy (100 Gy if addition of Cu)
- Minimum dose boundary $\approx 2 \ \mu Gy$
- Good long term stability of the information
- Optimum reusing

CaSO₄: Dy dosimeter in practice (ULB) (1)

- The dosimeters are made as CaSO₄:Dy/PTFE
- PTFE (i.e. polytetrafluoroethylene or Teflon) is added to CaSO₄ in order to make the chips more flexible and less brittle
- The dosimeters are symmetric and are composed of 8 reading slots (4 « useful » slots and 4 back-up slots)
- The box in polyethylene is composed of 2 areas → in these 2 areas there are ≠ filters →
 - Polyethylene filter (7 mg/cm²)
 - Al filter (2.5 mm)
 - PTFE filter (3.18 mm)
 - Filter of Al (0.13 mm) Cu (0.50 mm) Pb/Sn (0.75 mm) with holes

CaSO₄: Dy dosimeter in practice (ULB) (2)

CaSO₄: Dy dosimeter in practice (ULB) (3)

CaSO₄: Dy dosimeter in practice: Interpretation of the results

- Slot under polyethylene → this window allows the detection of small E γ and of β rays → the E response for this slot implies an overestimation of a factor 20 for small E (X-ray) → overestimation compensated by the other slots with a calculation algorithm
- Slot under Teflon → allows to approximately determine the energy to which the dosimeter was exposed and to correct the measurement of the previous slot via a algorithm
- Slot under Al \rightarrow stopping of β with $E < 2.2 \text{ MeV} \rightarrow \gamma$ measurement
- Slot with mixing filter \rightarrow allows to measure the γ dose in depth (the holes hallows the crossing of a part of the γ)