Chapter VIII: Photographic films

Photographic films

- First (integrating) dosimeters to be developed → based on photographic techniques → dosifilms
- Dosifilms were more and more replaced by dosimeters using performing technologies → gradual stopping of production
- Always used in a few number of countries (not Belgium) → Africa
- In the following \rightarrow only films for dosimetry (not radiodiagnostic)

Properties of photographic films

- Photographic films are relative dosimeters (requiring a calibration)
 → comparison with calibrated films allows to obtain a dose
- Films allows to measure doses due to X-rays, γ-rays, neutrons and e⁻
- Depending on their composition, they allow measurements in the 50 $\mu{\rm Gy}$ to 10 Gy range

Applications of photographic films

- Qualitative and quantitative dosimetry
- Quality control for equipment in radiotherapy (position of a collimator, radiation dose profile in a phantom,...)
- Films-badges (carried on the chest or on the wrist)

Photographic emulsion

- The emulsion consists of microscopic grains of silver bromide AgBr (or another silver halide) dispersed in a gelatin layer (10-20 μm) on either one or both sides of a supporting film
- Incident charged particles produce ion pairs in the grains → conversion of a certain number of Ag⁺ ions of the grain (containing typically 10¹⁰ Ag⁺ ions) to Ag atoms → a few such Ag atoms on a grain constitute a latent image
- During the development (chemical process) the Ag atoms in the metallic state act as center for a multiplication process → the developer reduces the Ag⁺ ions of the grains having a latent image in Ag atoms → only **one** Ag atom in a grain allows the reduction of all of the Ag⁺ ions of the grain
- The rest of the silver bromine (non-developed) is removed, leaving behind an opaque microscopic grain of silver
- The presence of this elemental silver may be detected optically and quantitatively related to the absorbed dose

Scheme of a dosimetric film

AgBr micrograins (0.1-3 μ m) in gelatine

Sensitometry – Optical density

- Sensitometry: study of sensitive surfaces → technical discipline that allows to quantify the blackening in photography
- The effect of irradiation is measured in terms of film opacity to the light, determined by a densitometer (sensitometric instrument which measures the density – the blackening - of photographic media)
- The opacity is defined as the ratio between I_0 , the light intensity without film, and I, the light intensity transmitted \perp through the film
- The optical density (OD) is defined as the logarithm to the base 10 of the opacity

$$OD = \log_{10} \left(I_0 / I \right)$$

Optical density \leftrightarrow Fluence \leftrightarrow Dose (1)

- With a (cm²/grain), the mean area made opaque per developed Ag grain
- With *n*, the number of developed grains per cm²
- We have (assuming $n \ll N$, le number of AgBr grains per cm²) \rightarrow

$$\frac{I_0}{I} \cong \exp\left(an\right)$$

$$OD = \log_{10} \left(I_0 / I \right) = an \log_{10} e = 0.4343 \times an$$

Optical density \leftrightarrow Fluence \leftrightarrow Dose (2)

• 3 hypothesis:

- 1. The incident ray (X, γ , e⁻) gives rise to an electron fluence \perp to the film
- 2. A single e⁻ hit renders a grain developable
- 3. All grains have the same projected area *a*
- In these conditions \rightarrow

$$\frac{n}{N} \cong a\Phi$$
$$OD = 0.4343a^2N\Phi$$

• OD is thus \propto to \varPhi and thus to D

Examples of relations between exposition and optical density

By comparison to a film irradiated with an unknown amount of radiation and a film irradiated with a known quantity \rightarrow determination of the dose

Characteristics of a OD-Dose curve

- Ideally \rightarrow the relation between OD and dose has to be linear
- Practically → it can be linear, linear for a given range of dose or non-linear (depending on the film)
- For each type of film the OD-Dose curve has to be determined before the use of the film
- The OD-Dose curve is called the sensitometric curve, the characteristic curve or the H&D curve (Hurter and Driffield, pioneers of sensitometry)

Parameters of H&D curve

- Gamma: slope of the linear part
- Latitude: range of doses for which the H&D curve is linear
- Fog: OD of a non-exposed film
- Speed: exposition necessary to produce OD = Fog +1

Energy dependence for incident X-rays

- Dosifilms show a very important dependence on the energy of the incident X-rays for small energies (E < 200 keV)
- This energy dependence is due to the cross section of the photoelectric effect of Ag increasing largely faster than the cross section of air o tissue for *E* < 200 keV
- A maximum sensitivity is observed for ≈ 30-40 keV
- Below 30 keV, this sensitivity of the film decrease because of the attenuation of the radiation inside the film envelope
- For E < 200 keV → accurate calibration is necessary at an energy corresponding to the radiation to be measured

Energy dependence: Example

Filters (1)

The support of the film is made in such a way that radiation can reach the film directly trough a free aperture or through various filters ≠ (Al, Cu, Cd, Sn, Ag, Pb, plastic,...)

Filters (2)

- The choice and the design of the filters is determined as a function of radiation to be measured
- The evaluation of exposure is made by considering the OD behind each filter
- For β radiation, blackening of the film occurs only behind the free aperture
- It is possible to estimate the energy repartition for the photons responsible of the dose by measuring the blackening behind each filter

Nuclear emulsions: Fast neutrons

- For neutrons with E > 0.5 MeV \rightarrow Nuclear track films are used (Eastman KodaK NTA) \rightarrow used of a thicker emulsion layer (a few $\mu m \rightarrow \approx 1 mm$)
- In these films → concentration in hydrogen close to the one of tissue (→ tissue-equivalent for fast neutrons)
- The elastic collision of neutrons with protons makes protons in motion → energy is deposited in the film along the trajectory of the proton → track
- Tracks are counted → The number of tracks per unit of area of the film is ∝ to the absorbed dose
- For E< 500 keV \rightarrow tracks are not identifiable

Nuclear emulsions: Thermal neutrons (1)

- In the film, thermal neutrons also produce protons (and thus measurable tracks) after their capture by nitrogen via the reaction ¹⁴N(n,p)¹⁴C
- However → nitrogen concentration in the film ≪ hydrogen concentration → small sensitivity for thermal neutrons (but can be used)
- Practically → the field of neutrons is composed of thermal and fast neutrons → the 2 components have to be measured separately → addition of 2 filters (Cd and Sn)
- Cd has a very large cross section for the reaction ${}^{113}Cd(n,\gamma){}^{114}Cd \rightarrow 2500$ barns for $E_n = 0.025$ eV and 7400 barns for $E_n = 0.179$ eV
- On the other side the capture of neutron by Sn is extremely weak

Nuclear emulsions: Thermal neutrons (2)

- Result for a field of thermal neutrons → « large» density of tracks in the film behind the Sn filter and nothing behind the Cd filter
- For a field of fast neutrons → same density of tracks behind the 2 filters
- Moreover → due to the reaction (n,γ) in Cd → blackening more important behind Cd than behind Sn (without neutrons → same blackening behind the 2 filters)
- Finally → the tracks counting and the determination of blackening allow to obtain separately the fluxes of thermal and fast neutrons
- Attention → film non-sensitive to epithermal neutrons (0.5 eV < E < 1 MeV)

Advantages and disadvantages of dosifilms (1)

Advantages

- Excellent 2D spatial resolution → information on the spatial distribution of dose
- Archival storage → the reading does not perturbs the film → permanent recording allowing rereading (checking)
- 3. Studied in details in labs,...
- 4. Flexible geometry
- 5. Linearity (almost) between OD and dose
- 6. Independent on the dose rate

Advantages and disadvantages of dosifilms (2)

Disadvantages

- 1. Very weak sensitivity \rightarrow The dosimeter C.B. Kodak does not measure the absorbed doses below $\approx 200 \ \mu Gy \rightarrow$ with a dose rate of 200 $\mu Gy/h \rightarrow 5$ hours to reach the maximum annual dose acceptable (1mSv)
- The development process has to be controlled with a huge accuracy → big expertise is needed
- 3. Large energy dependence for photons
- 4. Very sensitive to environment \rightarrow T, humidity