Chapter VIII: Photographic films

Photographic films

- First (integrating) dosimeters to be developed \rightarrow based on photographic techniques \rightarrow dosifilms
- Dosifilms were more and more replaced by dosimeters using performing technologies \rightarrow gradual stopping of production
- Always used in a few number of countries (not Belgium) \rightarrow Africa
- In the following \rightarrow only films for dosimetry (not radiodiagnostic)

Properties of photographic films

- Photographic films are relative dosimeters (requiring a calibration) \rightarrow comparison with calibrated films allows to obtain a dose
- Films allows to measure doses due to X-rays, γ -rays, neutrons and e -
- Depending on their composition, they allow measurements in the 50 μ Gy to 10 Gy range

Applications of photographic films

- Qualitative and quantitative dosimetry
- Quality control for equipment in radiotherapy (position of a collimator, radiation dose profile in a phantom,…)
- Films-badges (carried on the chest or on the wrist)

Photographic emulsion

- The emulsion consists of microscopic grains of silver bromide AgBr (or another silver halide) dispersed in a gelatin layer (10-20 μ m) on either one or both sides of a supporting film
- Incident charged particles produce ion pairs in the grains \rightarrow conversion of a certain number of Ag⁺ ions of the grain (containing typically 10¹⁰ Ag⁺ ions) to Ag atoms \rightarrow a few such Ag atoms on a grain constitute a **latent image**
- During the development (chemical process) the Ag atoms in the metallic state act as center for a multiplication process \rightarrow the developer reduces the Ag⁺ ions of the grains having a latent image in Ag atoms → only **one** Ag atom in a grain allows the reduction of all of the Ag⁺ ions of the grain
- The rest of the silver bromine (non-developed) is removed, leaving behind an opaque microscopic grain of silver
- The presence of this elemental silver may be detected optically and quantitatively related to the absorbed dose

Scheme of a dosimetric film

AgBr micrograins (0.1-3 μ m) in gelatine

Sensitometry – Optical density

- Sensitometry: study of sensitive surfaces \rightarrow technical discipline that allows to quantify the blackening in photography
- The effect of irradiation is measured in terms of film opacity to the light, determined by a densitometer (sensitometric instrument which measures the density – the blackening - of photographic media)
- The opacity is defined as the ratio between I_{0} , the light intensity without film, and *I*, the light intensity transmitted \perp through the film
- The optical density (OD) is defined as the logarithm to the base 10 of the opacity

$$
OD = \log_{10} (I_0/I)
$$

Optical density \leftrightarrow Fluence \leftrightarrow Dose (1)

- With *a* (cm²/grain), the mean area made opaque per developed Ag grain
- With *n*, the number of developed grains per cm²
- We have (assuming $n \ll N$, le number of AgBr grains per cm²) \rightarrow

$$
\frac{I_0}{I} \cong \exp{(an)}
$$

$$
OD = \log_{10} (I_0/I) = an \log_{10} e = 0.4343 \times an
$$

Optical density \leftrightarrow Fluence \leftrightarrow Dose (2)

• 3 hypothesis:

- 1. The incident ray (X, γ , e⁻) gives rise to an electron fluence \bot to the film
- 2. A single ethit renders a grain developable
- 3. All grains have the same projected area *a*
- In these conditions \rightarrow

$$
\frac{n}{N} \cong a\Phi
$$

 $OD = 0.4343a^2N\Phi$

• OD is thus \propto to Φ and thus to D

Examples of relations between exposition and optical density

By comparison to a film irradiated with an unknown amount of radiation and a film irradiated with a known quantity \rightarrow determination of the dose

Characteristics of a OD-Dose curve

- Ideally \rightarrow the relation between OD and dose has to be linear
- Practically \rightarrow it can be linear, linear for a given range of dose or non-linear (depending on the film)
- For each type of film the OD-Dose curve has to be determined before the use of the film
- The OD-Dose curve is called the sensitometric curve, the characteristic curve or the H&D curve (Hurter and Driffield, pioneers of sensitometry)

Parameters of H&D curve

- Gamma: slope of the linear part
- Latitude: range of doses for which the H&D curve is linear
- Fog: OD of a non-exposed film
- Speed: exposition necessary to produce $OD = Fog +1$

Energy dependence for incident X-rays

- Dosifilms show a very important dependence on the energy of the incident X-rays for small energies (*E* < 200 keV)
- This energy dependence is due to the cross section of the photoelectric effect of Ag increasing largely faster than the cross section of air o tissue for *E* < 200 keV
- A maximum sensitivity is observed for ≈ 30-40 keV
- Below 30 keV, this sensitivity of the film decrease because of the attenuation of the radiation inside the film envelope
- For *E <* 200 keV → accurate calibration is necessary at an energy corresponding to the radiation to be measured

Energy dependence: Example

Filters (1)

The support of the film is made in such a way that radiation can reach the film directly trough a free aperture or through various filters ≠ (Al, Cu, Cd, Sn, Ag, Pb, plastic,…)

Filters (2)

- The choice and the design of the filters is determined as a function of radiation to be measured
- The evaluation of exposure is made by considering the OD behind each filter
- For β radiation, blackening of the film occurs only behind the free aperture
- It is possible to estimate the energy repartition for the photons responsible of the dose by measuring the blackening behind each filter

Nuclear emulsions: Fast neutrons

- For neutrons with *E >* 0.5 MeV → Nuclear track films are used (Eastman KodaK NTA) \rightarrow used of a thicker emulsion layer (a few μ m $\rightarrow \approx 1$ mm)
- In these films \rightarrow concentration in hydrogen close to the one of tissue (\rightarrow tissue-equivalent for fast neutrons)
- The elastic collision of neutrons with protons makes protons in motion \rightarrow energy is deposited in the film along the trajectory of the proton \rightarrow track
- Tracks are counted \rightarrow The number of tracks per unit of area of the film is \propto to the absorbed dose
- For E< 500 keV \rightarrow tracks are not identifiable

Nuclear emulsions: Thermal neutrons (1)

- In the film, thermal neutrons also produce protons (and thus measurable tracks) after their capture by nitrogen via the reaction 14 N(n,p) 14 C
- However \rightarrow nitrogen concentration in the film \ll hydrogen concentration \rightarrow small sensitivity for thermal neutrons (but can be used)
- **Practically** \rightarrow **the field of neutrons is composed of thermal and fast** neutrons \rightarrow the 2 components have to be measured separately \rightarrow addition of 2 filters (Cd and Sn)
- Cd has a very large cross section for the reaction 113 Cd(n, γ)¹¹⁴Cd \rightarrow 2500 barns for $E_n = 0.025$ eV and 7400 barns for $E_n = 0.179$ eV
- On the other side the capture of neutron by Sn is extremely weak

Nuclear emulsions: Thermal neutrons (2)

- Result for a field of thermal neutrons \rightarrow « large» density of tracks in the film behind the Sn filter and nothing behind the Cd filter
- For a field of fast neutrons \rightarrow same density of tracks behind the 2 filters
- Moreover \rightarrow due to the reaction (n, γ) in Cd \rightarrow blackening more important behind Cd than behind Sn (without neutrons \rightarrow same blackening behind the 2 filters)
- Finally \rightarrow the tracks counting and the determination of blackening allow to obtain separately the fluxes of thermal and fast neutrons
- Attention \rightarrow film non-sensitive to epithermal neutrons (0.5 eV \leq E \leq 1 MeV)

Advantages and disadvantages of dosifilms (1)

Advantages

- 1. Excellent 2D spatial resolution \rightarrow information on the spatial distribution of dose
- 2. Archival storage \rightarrow the reading does not perturbs the film \rightarrow permanent recording allowing rereading (checking)
- 3. Studied in details in labs,…
- 4. Flexible geometry
- 5. Linearity (almost) between OD and dose
- 6. Independent on the dose rate

Advantages and disadvantages of dosifilms (2)

Disadvantages

- 1. **Very weak sensitivity** → The dosimeter C.B. Kodak does not measure the absorbed doses below \approx 200 μ Gy \rightarrow with a dose rate of 200 μ Gy/h \rightarrow 5 hours to reach the maximum annual dose acceptable (1mSv)
- 2. The development process has to be controlled with a huge accuracy \rightarrow big expertise is needed
- 3. Large energy dependence for photons
- 4. Very sensitive to environment \rightarrow T, humidity