
 
Chapter III:  

Geometric configurations for 
uncharged particles 
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« Simple » exponential attenuation : Ideal case 

• Let be a monoenergetic beam of uncharged particles (photons or 
neutrons) incident (?) on a target (attenuator) with thickness L 

 

 

 

 

 

• ¹: Linear attenuation coefficient (unit: m-1) 

• Ideal case → Each particle is either absorbed during only one 
interaction (without emission of secondary particles), either crosses 
the attenuator without change of energy or direction 

• Other case valid → particles deviated or possible secondaries but  
they are not included in NL 
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Real beam 

• Real beam of uncharged particles → production of secondary 
particles (charged or not) + deviation of the incident particles 
(with energy losses or not) 

• Behind the attenuator → number of particles larger than the 
simple number of particles which undergo no interaction → 
simple exponential attenuation is not valid 

• However → charged particles have not to be considered in a 
beam of uncharged particles (moreover charged particles are 
less penetrating → are absorbed in the attenuator and detector 
are often shielded)  → E given to charged particles is absorbed  
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Broad beam attenuation 

• The deviated primary particles and the uncharged secondaries 
can reach the detector or not 

 

• The deviated primary particles and the uncharged secondaries 
can be included in NL or not 

 

• If yes → simple exponential expression of NL ↔ L is not valid 

 

• We have then a broad beam attenuation 
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Effective attenuation coefficient 

• We can define an effective attenuation coefficient ¹´ 
corresponding to the attenuation observed in the conditions of 
broad beam attenuation 

 

• More particles are counted in the conditions of broad beam 
attenuation than in the ideal case of simple attenuation →  
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Narrow beam attenuation (1) 

• If the deviated primary particles and the uncharged 
secondaries reach the detector but are not included in NL → 
We have then a broad beam geometry but a narrow beam 
attenuation 

• The exponential equation of the ideal case stays valid in these 
conditions for a real beam  

• In practice → discrimination against the deviated primaries and 
the secondaries which reach the detector by considering their 
energy, their direction, their flying time, etc. 
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Narrow beam attenuation (2) 

• Another way to obtain a narrow beam attenuation → to use a 
narrow beam geometry to avoid that the deviated primaries 
and the secondaries reach the detector 

 

Narrow beam geometry  

uniform 

« large distance » 
« large distance » 
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Narrow beam geometry: Characteristics 

• Large distance between the source and the attenuator → 
particles have a normal incidence on the attenuator 

• Large distance between the attenuator and the detector → 
each particle deflected inside the attenuator will miss the 
detector (intensity of the primaries at the detector 
independent on the distance of the attenuator ↔ intensity of 
the deviated primaries and of the secondaries ↘ as a function 
of the square of this distance) → the relative intensity of the  
primary beam ↗ as a function of this distance 

• The beam is collimated so as to uniformly cover the detector → 
↘ of the number of the deviated primaries and of the 
secondaries generated inside the attenuator 
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Narrow beam geometry : Shields 

• The shield in front of the attenuator has to stop all the incident 
radiations except those passing through the opening 

 

• The shield around the detector has to stop all the radiations 
except those passing through the opening (µ≈ 0°) 

– Lead if radiations to be stopped are X-rays or γ (advantage: small 
thickness) 

– Hydrogenated materials if they are neutrons 
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Narrow beam geometry : In practice 

• In practice → not difficult to achieve an experiment with a 
narrow beam geometry → narrow beam attenuation is correct 

 

• Values of the attenuation coefficients published in literature 
have been obtained in these rigorous conditions of narrow 
beam geometry  

 

• However in some practical cases → no narrow beam geometry  
→ it is thus necessary to define other contexts:  ideal broad 
beam geometry and ideal broad beam attenuation 
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Ideal broad beam geometry 

• In an ideal broad beam geometry, every scattered or secondary 
uncharged particle reaches the detector, but only if generated 
in the attenuator by a primary particle on its way to the 
detector, or by a secondary charged particle resulting from 
such a primary 

• Attenuator thin enough → escape of the uncharged particles 
resulting from first interactions by the primaries, plus the X-
rays and annihilation γ-rays emitted by the secondary charged 
particles that are generated by primaries in the attenuator 

• Multiple scattering is excluded 
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Ideal broad beam attenuation 

• If, in addition to having ideal broad beam geometry, we require the 
detector to respond in proportion to the radiant energy R of all the 
primary, scattered and secondary uncharged radiation incident upon 
it → Ideal broad beam attenuation 

 

 

• R0: radiant E of the primaries incident on the detector for L = 0, RL: 
radiant E of uncharged particles striking the detector when the (thin) 
attenuator is in place and ¹en: energy-absorption coefficient  

• ¹en is often considered as an approximation of ¹´ (« straight-ahead 
approximation ») even if the conditions are not ideal → good results 
for attenuator with small Z 
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Out-scattering ↔ in-scattering 

• In practice → often scattered particles or uncharged 
secondaries generated in the attenuator supposed to reach the 
detector fail to arrive → loss called « out-scattering » 

• However scattered particles or secondary uncharged particles 
generated in the attenuator that are aimed at the detector 
sometimes strike it → increase called « in-scattering » 

• Ideal broad beam geometry → in-scattering replaces perfectly 
(in type and energy) out-scattering 

• Generally in-scattering  < out-scattering → ¹en < ¹´ < ¹ 

• If in-scattering  > out-scattering → ¹en > ¹´  
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Ideal broad beam geometry: Examples 
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Examples of attenuation curves 

 Broad beam attenuation for γ-rays of (a) 60Co (1.25 MeV) and 
(b) 203Hg (0.279 MeV) as a function of the distance for a point 
source in a infinite H20 medium (f case) 
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Examples of attenuation curves: Comments 

• ¹´ is not constant 

• ¹´ < ¹ → but when L ↗ → the slopes of ¹´ and ¹ become = → 
for L< → deviated + secondaries > absorbed + out-scattering. 
When L ↗ → deviated + secondaries striking the detector ↘ 
and absorbed + out-scattering ↗ → equilibrium → similar 
evolution of ¹´ and ¹ 

• ¹en ≈ ¹´ 

• For L< → ¹en > ¹´ → excess of in-scattering 

• For L> → ¹en < ¹´ → excess of out-scattering 

• For L ≤ 10 cm → positive slope → more radiations detected in 
the presence of H2O than without H2O → excess of in-scattering  
(example: backscattered radiation coming from medium behind 
the detector) 
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Buildup factor 

• B: Buildup factor → Factor describing quantitatively  broad 
beam attenuation → can be applied to all quantities in 
radiological physics, all geometries, all attenuators :  

 

 

 

• For a narrow beam geometry → B = 1 

• Example: effect on the energy fluence: 
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Typical buildup factors 

• When L = 0 → B = B0 = ªL/ª0  

• Generally B0 = 1 (ex: previous Fig.: geometries a, b, c, e) 

• For cases d or f → backscattered radiations can strike the 
detector → B0  > 1 (B0 is then called: backscattered factor) 

•   B ↗ when L ↗ 
•   B ↗ when E ↘ (only for this 
    case) 

Photons in semi-infinite H2O  
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Mean effective attenuation coefficient 

• Ff : Mean effective attenuation coefficient → alternative 
concept to the buildup:  

 

 

 

 

 

 

• Computational advantage 
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