Chapter IlI:
Geometric configurations for
uncharged particles



« Simple » exponential attenuation : Ideal case

Let be a monoenergetic beam of uncharged particles (photons or
neutrons) incident (_L) on a target (attenuator) with thickness L

‘ Ny, = Noexp (—ulL)

p: Linear attenuation coefficient (unit: m)

Ideal case - Each particle is either absorbed during only one
interaction (without emission of secondary particles), either crosses
the attenuator without change of energy or direction

Other case valid = particles deviated or possible secondaries but
they are not included in N,



Real beam

Real beam of uncharged particles - production of secondary
particles (charged or not) + deviation of the incident particles
(with energy losses or not)

Behind the attenuator - number of particles larger than the
simple number of particles which undergo no interaction -
simple exponential attenuation is not valid

However - charged particles have not to be considered in a
beam of uncharged particles (moreover charged particles are
less penetrating - are absorbed in the attenuator and detector
are often shielded) — E given to charged particles is absorbed



Broad beam attenuation

The deviated primary particles and the uncharged secondaries
can reach the detector or not

The deviated primary particles and the uncharged secondaries
can be included in N, or not

If yes - simple exponential expression of N, €5 L is not valid

We have then a broad beam attenuation



Effective attenuation coefficient

* We can define an effective attenuation coefficient i’

corresponding to the attenuation observed in the conditions of
broad beam attenuation

 More particles are counted in the conditions of broad beam
attenuation than in the ideal case of simple attenuation -

/

p' < p



Narrow beam attenuation (1)

If the deviated primary particles and the uncharged
secondaries reach the detector but are not included in N, -
We have then a broad beam geometry but a narrow beam

attenuation

The exponential equation of the ideal case stays valid in these
conditions for a real beam

In practice =& discrimination against the deviated primaries and

the secondaries which reach the detector by considering their
energy, their direction, their flying time, etc.



Narrow beam attenuation (2)

 Another way to obtain a narrow beam attenuation - to use a

narrow beam geometry to avoid that the deviated primaries
and the secondaries reach the detector
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Narrow beam geometry: Characteristics

e Large distance between the source and the attenuator -
particles have a normal incidence on the attenuator

* Large distance between the attenuator and the detector -
each particle deflected inside the attenuator will miss the
detector (intensity of the primaries at the detector
independent on the distance of the attenuator <= intensity of
the deviated primaries and of the secondaries \ as a function
of the square of this distance) - the relative intensity of the
primary beam A as a function of this distance

* The beam is collimated so as to uniformly cover the detector -
N\l of the number of the deviated primaries and of the
secondaries generated inside the attenuator



Narrow beam geometry : Shields

The shield in front of the attenuator has to stop all the incident
radiations except those passing through the opening

The shield around the detector has to stop all the radiations
except those passing through the opening (6= 0°)

— Lead if radiations to be stopped are X-rays or y (advantage: small
thickness)

— Hydrogenated materials if they are neutrons



Narrow beam geometry : In practice

* In practice - not difficult to achieve an experiment with a
narrow beam geometry - narrow beam attenuation is correct

* Values of the attenuation coefficients published in literature
have been obtained in these rigorous conditions of narrow
beam geometry

 However in some practical cases - no narrow beam geometry
— it is thus necessary to define other contexts: ideal broad
beam geometry and ideal broad beam attenuation



ldeal broad beam geometry

In an ideal broad beam geometry, every scattered or secondary
uncharged particle reaches the detector, but only if generated
in the attenuator by a primary particle on its way to the
detector, or by a secondary charged particle resulting from
such a primary

e Attenuator thin enough - escape of the uncharged particles

resulting from first interactions by the primaries, plus the X-
rays and annihilation y-rays emitted by the secondary charged
particles that are generated by primaries in the attenuator

Multiple scattering is excluded



|deal broad beam attenuation

If, in addition to having ideal broad beam geometry, we require the
detector to respond in proportion to the radiant energy R of all the
primary, scattered and secondary uncharged radiation incident upon
it > Ideal broad beam attenuation

‘ R;, = Roexp (—ptenl)

R,: radiant E of the primaries incident on the detector for L =0, R;:
radiant £ of uncharged particles striking the detector when the (thin)
attenuator is in place and p,,: energy-absorption coefficient

e, IS Often considered as an approximation of u” (« straight-ahead
approximation ») even if the conditions are not ideal - good results
for attenuator with small Z



Out-scattering <> in-scattering

In practice - often scattered particles or uncharged
secondaries generated in the attenuator supposed to reach the
detector fail to arrive = loss called « out-scattering »

However scattered particles or secondary uncharged particles
generated in the attenuator that are aimed at the detector
sometimes strike it = increase called « in-scattering »

Ideal broad beam geometry = in-scattering replaces perfectly
(in type and energy) out-scattering

Generally in-scattering < out-scattering &> p., < p’ < p
If in-scattering > out-scattering > u,, > @’



|deal broad beam geometry: Examples
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Examples of attenuation curves
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(b) 293Hg (0.279 MeV) as a function of the distance for a point

source in a infinite H,0 medium (f case)
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Examples of attenuation curves: Comments

1" is not constant

u < p—> butwhenL 2 - the slopes of u” and u become = -
for L< - deviated + secondaries > absorbed + out-scattering.
When L /1 = deviated + secondaries striking the detector
and absorbed + out-scattering A1 = equilibrium = similar
evolution of " and u

Hen = [V
For L< & u., > @’ —> excess of in-scattering
For L> - u., < p” —> excess of out-scattering

For L <10 cm - positive slope - more radiations detected in
the presence of H,0 than without H,0 - excess of in-scattering
(example: backscattered radiation coming from medium behind
the detector)



Buildup factor

* B: Buildup factor - Factor describing quantitatively broad
beam attenuation - can be applied to all quantities in
radiological physics, all geometries, all attenuators :

B — quantité due au primaire + au diffusé et au secondaire
quantité due au primaire

* For anarrow beam geometry > B=1
 Example: effect on the energy fluence:

- = Bexp (—uL)



Typical buildup factors

WhenL=0- B=B,=Y¥/¥,
Generally B,= 1 (ex: previous Fig.: geometries a, b, c, e)

For cases d or f = backscattered radiations can strike the
detector - B, > 1 (B, is then called: backscattered factor)
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Mean effective attenuation coefficient

. /3/ : Mean effective attenuation coefficient = alternative
concept to the buildup:

Y — Bexp(—uL) = exp (—f'L)

‘ Ia/ = 1 lnLB

 Computational advantage

19



