Radiation Dosimetry

PHYS-H-500

Teacher: N. Pauly

References

- F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, Wiley-VCH, 2004
- Fundamental quantities and units for ionizing radiation (Revised). International Commission on Radiation Units and Measurements, ICRU Report n° 85, Journal of the ICRU 11 (2011) n° 1: http://jicru.oxfordjournals.org/content/11/1.toc
- The 2007 Recommendations of the International Commission on Radiological Protection. International Commission on Radiological Protection, ICRP Publication 103, Annals of the ICRP 37 (2007) 1-332: http://www.sciencedirect.com/science/journal/01466453/37/2-4 Version in french: http://www.icrp.org/docs/P103_French.pdf

References (2)

 Royal Decree of July 20, 2001: General regulation for protection of the population, workers and environment against the danger of ionizing radiations (Moniteur Belge, august 30, 2001) + modifications: http://www.fanc.fgov.be/fr/page/introduction-arretes-royaux/446.aspx

Organization of teaching

- Theory: 2 ECTS (50% → Written examination) → Slides available on http://metronu.ulb.ac.be/pauly_cours.html
- Exercises (Assistant: M. Ciccarelli Maureen.Ciccarelli@ulb.be): 1 ECTS (25% → Written examination)
- Labs (Organization: M. Ciccarelli): 1 ECTS (25% \rightarrow Exercises book)
 - \rightarrow Erasme (S. Simon)
 - Bordet (S. Simon)
 - Isib (I. Gerardy)

January examination - 2013 (theory)

- Bragg-Grey relation :
 - Express the Bragg-Grey relation.
 - Give its mathematic form (and define terms of the equation).
 - Express the Bragg-Grey conditions.
 - Comment these conditions for γ radiations, for electrons and for incident heavy charged particles.
- Define the notions of narrow-beam attenuation, broad-beam attenuation, narrow-beam geometry and ideal broad-beam geometry.
- Define the notion of dose response for a thermoluminescent dosimeter and develop this notion for the particular case of LiF:Mg,Ti (explain the role of the Mg and Ti impurities).
- Radiophotoluminescence dosimetry:
 - Define the radiophotoluminescence.
 - Explain the mechanisms of luminescence for phosphate glass with Ag impurities.
 - Explain the build-up effect.

Contents

Part 1: Theoretical basis

- I. Introduction and reminders
- II. Radiometric and dosimetric quantities
- III. Geometric configurations for non-charged particles
- IV. Notion of equilibrium
- V. Cavity theories
- Part 2: Experimental Dosimetry
- VI. Introduction
- VII. Ionization Chambers
- VIII. Photographic dosimetry
- IX. Thermoluminescent dosimeters
- X. Optically stimulated luminescence dosimeters
- XI. Electronic dosimeters
- XII. Chemical dosimeters

Chapter I: Introduction and reminders

Dosimetry definition

- Radiological physics is the science of ionizing radiation and its interaction with matter, with special interest in the absorbed energy
- Radiation dosimetry has to determine quantitatively this absorbed energy

<u>Note</u>: Typical energy considered in radiation dosimetry is small (example: the semi-lethal dose to an uniform X-ray exposition: $4 \text{ Gy} \rightarrow 280 \text{ J}) \rightarrow$ The effects of ionizing radiations are explained because the energy is locally delivered (at molecular level)

Direct and indirect damages

Interactions of ionizing radiations with matter

Energy transfer particles \rightarrow matter:

- Ionization: one or more e⁻ are liberated during the collision between an incident particle and an atom or a molecule
- Excitation: Transfer of an e⁻ to a higher energy level in the atom or in the molecule

Ionization

Excitation

Ionizations and excitations

- Typically: $\sigma_{\text{ionization}} > \sigma_{\text{excitation}}$ but for ionization \rightarrow presence of $E_{\text{threshold}} \rightarrow$ as transfers of small energies are the + probable \rightarrow excitations reactions generally dominate
- Ions and e⁻ created by the incident ionizing radiation → primary ionization
- If the e⁻ also creates other ions-e⁻ pairs \rightarrow secondary ionization
- We define W as the mean energy expended inside the medium by ions pair
- W is « relatively » independent on the incident particle and also on its energy \rightarrow for gases $W \approx 30 \text{ eV}$
- The distinction between ionization and excitation in a dense medium is blurred → pragmatic way: introduction of a threshold energy: if E < E_{threshold} → the particle is no more ionizing → at the end of its travel a particle is no more ionizing

Excitation, ionization and mean energies: Example for gases

	Excitation (eV)	Ionization (eV)	Mean energy for one pair (eV)
H_2	10.8	15.4	37
\mathbf{He}	19.8	24.6	41
N_2	8.1	15.5	35
O_2	7.9	12.2	31
Ne	16.6	21.6	36
Ar	11.6	15.8	26
Kr	10.0	14.0	24
$\mathbf{X}\mathbf{e}$	8.4	12.1	22
CO_2	10.0	13.7	33

Ionizing radiations

- The term *ionizing radiation* relates to charged or uncharged which can produce ionizations inside a medium
- Ionizing radiations are characterized by their interaction coefficients
- Ionizing radiations are subdivided into 2 categories:
 - Directly ionizing radiations (e⁻, heavy charged particles)
 - Indirectly ionizing radiations (photons, neutrons) which first transfer their energy to charged particles. Charged particles then in turn deliver the energy to the matter as above

Directly ionizing radiations

- Charged particles (e⁻, e⁺, α, p, ion,...) interact with the e⁻ and the nuclei of the medium via the Coulomb force → frequent interactions → the energy is lost in a quasi-continuous way → finite distance travelled inside the matter → definition of a total range
- Stopping power (force) \rightarrow Quotient of the mean energy loss ΔE undergone by a charged particle along a part of its trajectory by the length Δx of this part \rightarrow mean energy loss by unit of length of the charged particle along its trajectory (unit: Jm⁻¹) \rightarrow for a « thick » target, weak fluctuations in energy and rectilinear trajectory (continuous-slowing-down-approximation: CSDA): $E = E(x) \rightarrow dE/dx$

Expression of the stopping force (within CSDA)

$$\frac{dE}{dx} = -NS(E)$$

N: atomic density

S: stopping cross section

$$S = \int T d\sigma$$

T: lost energy

 $\sigma:$ collision cross section

Stopping cross section

- $S = S_{elec} + S_{rad} + S_{nucl}$
- Ions: S ≈ S_{elec} (S_{nucl} to be considered only at small energies ≈ 1 keV)
- Electrons: $S = S_{elec} + S_{rad} (S_{rad} \text{ especially for Z })$
- For S_{elec} → corrected equation of Bethe-Bloch (ions), of Møller (e⁻), of Bhabha (e⁺)
- Standard expression for S:

$$S_{elec} = \frac{4\pi r_e^2 mc^2}{\beta^2} Z z^2 L(\beta)$$

with $\beta = v/c$, $z = e_{proj}/e$, $r_e = e^2/(mc^2)$ and $L(\beta)$ the stopping number

Restricted stopping power (linear energy transfer)

L_{Δ}: Linear energy transfer (LET) (or Restricted stopping power) \rightarrow

$$L_{\Delta} = \frac{dE_{\Delta}}{dx}$$
$$L_{\Delta} = \frac{dE_{elec}}{dx} - \frac{dE_{KE>\Delta}}{dx}$$

with $dE_{\Delta} = dE_{elec} - dE_{KE>\Delta}$ et $dE_{KE>\Delta}$: sum of kinetic energies for secondary e⁻ (e⁻ δ) with kinetic energy > the Δ energy $\rightarrow dE_{\Delta}$ is the locally transferred energy

 L_{∞} : Non-restricted stopping power $\rightarrow L_{\infty} = \frac{dE_{elec}}{dx}$

Determination of the maximal transferred energy: T_{max}

$$T_{max} = \gamma E$$

with

 $\gamma = \frac{4m_1m_2}{(m_1 + m_2)^2}$

m₁: incident charged particle m₂: target charged particle

For
$$m_1 = m_2 \rightarrow \gamma = 1$$

For $m_1 \ll or \gg m_2 \rightarrow small \gamma$

electron/electron: large transferred energy is possible electron/ion or ion/electron: small transferred energy ion/ion: large transferred energy is possible

Angular deviations

• If $m_2 \le m_1$: θ_{max} is given by

$$\sin\theta_{max} = \frac{m_2}{m_1}$$

• Otherwise
$$\theta_{\max} = \pi$$

electron/electron: large deviations are possible $\theta_{max} = \pi/2$ electron/ion: very large deviations are possible $\theta_{max} = \pi$ ion/electron: small deviations ion/ion: depends on the masses but large deviations are possible Expression of the range

$$x = \int_{E(x)}^{E_0} \frac{dE'}{NS(E')}$$

This estimation of the range is based on the CSDA hypothesis!

Projected range R_p : Mean value of the depth reached by a charged particle at its stop (measured along the initial direction of the particle) $\rightarrow R_P < R_{CSDA}$

Examples of CSDA ranges for ions

- 5.5 MeV α in air: R_{CSDA} = 4.2 cm
- 4.0 MeV α in air: R_{CSDA} = 2.6 cm
- 5.5 MeV α in aluminium: R_{CSDA} = 2.5 10⁻³ cm
- 5.5 MeV α in H₂0: R_{CSDA} = 4.3 10⁻³ cm
- 1 MeV proton in air: R_{CSDA} = 2.4 cm
- 4 MeV proton in air: R_{CSDA} = 23.6 cm
- 5.5 MeV proton in aluminium: R_{CSDA} = 2.3 10⁻² cm
- 5.5 MeV proton in H_20 : R_{CSDA} = 4.3 10⁻² cm

http://www.nist.gov/pml/data/star/index.cfm

Examples of CSDA ranges for e⁻

- 5.5 MeV e⁻ in air: *R_{CSDA}* = 2500 cm
- 4.0 MeV e⁻ in air: *R_{CSDA}* = 1800 cm
- 1 MeV e⁻ in air: R_{CSDA} = 410 cm
- 5.5 MeV e⁻ in aluminium: R_{CSDA} = 1.2 cm
- 5.5 MeV e⁻ in H₂0: R_{CSDA} = 2.8 cm
- 1 MeV e⁻ in H₂0: R_{CSDA} = 0.44 cm

Indirectly ionizing radiations

- Photons (γ rays, characteristic X-rays, Bremsstrahlung) → interact with matter via successive unique events → between 2 evens: no interaction with matter
- Neutrons → carry no charge → no interaction with matter via the Coulomb force de → interact via nuclear force
- In 2 cases → can lose all their energy in only one interaction and conversely can cross a « large » quantity of matter without interaction
- After one interaction → emission of directly ionizing particles (electrons, positrons, protons, alphas, fission products,...)

Types of interactions for indirectly ionizing radiations

- Photons: photoelectric effect, Compton effect, pair or triplet creation, Rayleigh scattering,...
- Neutrons: elastic scattering, inelastic scattering, absorption
- Interaction cross section σ : (with *j* types of processes)

$$\sigma = \sum_j \sigma_j$$

• Example: photons $\rightarrow_a \mu = {}_a \tau + {}_a \sigma + {}_a \kappa$ (photoelectric + Compton + pair creation)

Linear attenuation coefficient for indirectly ionizing radiations

 The probability for a indirectly ionizing radiation incident (⊥) on a medium with length *dl* and with atomic density *N* to undergo an interaction is _aµNdl → for a monoenergetic beam of *I* particles (//) by time unit the variation *dI* after crossing the target is (each particle is absorbed in a single interaction):

$$dI = -_a \mu NIdl$$

• For a thick target (thickness *I*) and an initial beam with *I*₀ particles, the intensity after crossing the target is:

$$I = I_0 \exp\left(-_a \mu N l\right)$$

• $\mu = {}_{a}\mu N$: Linear attenuation coefficient (unit: m⁻¹) \rightarrow allows to evaluate the frequency of collisions

Alternative coefficients

• We van write (with *M*, the molar masse of the medium, ρ its density and N_A the Avogadro number):

$$\mu l = \left(_a \mu \frac{N_A}{M}\right) \left(\rho l\right)$$

- (ρ *l*): Area density (unit: kg m⁻²)
- μ/ρ : Mass attenuation coefficient (unit: m² kg⁻¹) \rightarrow

$$\left(\frac{\mu}{\rho}\right) = \left(_a \mu \frac{N_A}{M}\right)$$

- λ = 1/μ: Mean free path (unit: m) → mean distance travelled by a photon between two collisions
- ρ/μ : Mass attenuation length (unit: kg m⁻²)

Mass attenuation coefficient

- μ/ρ: Mass attenuation coefficient (unit: m²kg⁻¹) → ratio of dI/I by ρdI with dI/I, the fraction of indirectly ionizing radiations which undergo interactions along the distance dI travelled inside a medium of density ρ
- Global coefficient global → takes into account the interactions of particles in matter regardless of the nature of the interaction
- The mass coefficients are directly proportional to the cross section and do not depend on the physical nature of the target → these coefficients are displayed in databases

Mass attenuation coefficient : Examples

- 1 MeV photons in air: $\mu/\rho=0.064 \text{ cm}^2/\text{g}$ with $\rho(\text{air})=0.001205 \text{ g/cm}^3 \rightarrow \mu=7.71 \text{ 10}^{-5} \text{ cm}^{-1} \rightarrow \text{after } 1\text{m} \rightarrow \text{I/I}_0=99.2\%$
- 10 keV photons in air : $\mu/\rho=5.1 \text{ cm}^2/\text{g}$ with $\rho(\text{air})=0.001205 \text{ g/cm}^3$ $\rightarrow \mu=6.15 \text{ 10}^{-3} \text{ cm}^{-1} \rightarrow \text{after } 1\text{m} \rightarrow \text{I/I}_0=54.1\%$
- 1 MeV photons in Pb: $\mu/\rho=0.070 \text{ cm}^2/\text{g}$ with $\rho(\text{lead})=11.35 \text{ g/cm}^3 \rightarrow \mu=7.95 \text{ 10}^{-1} \text{ cm}^{-1} \rightarrow \text{after } 1\text{m} \rightarrow \text{I/I}_0\approx0\%$

 \rightarrow after 1cm \rightarrow I/I₀ \approx 45.2%

• 1 MeV photons in H₂0: μ/ρ =0.071 cm²/g with ρ (H₂0)=1.0 g/cm³ $\rightarrow \mu$ =7.7 10⁻² cm⁻¹ \rightarrow after 1m \rightarrow I/I₀ \approx 0%

 \rightarrow after 1cm \rightarrow I/I₀ \approx 92.5%

http://www.nist.gov/pml/data/xraycoef/index.cfm

Mass energy-transfer coefficient

- μ_{tr}/ρ : Mass energy-transfer coefficient (unit: m²kg⁻¹) \rightarrow quotient of $dE_{tr}/(EN)$ (with *E* the energy of all particles excluding rest energy) by ρdI where $dE_{tr}/(EN)$ is the fraction of energy of the incident particles transformed in kinetic energy of charged particles by interactions in a depth *dI* of the medium of density $\rho \rightarrow$ also: $\mu_{tr} = (E_{tr}/E)\mu$
- Also defined as \rightarrow

$$\frac{\mu_{tr}}{\rho} = f_{ph}\frac{\tau}{\rho} + f_C\frac{\sigma}{\rho} + f_{pn}\frac{\kappa_n}{\rho} + f_{pe}\frac{\kappa_e}{\rho}$$

with f_i , the fractions of photon energy transferred to kinetic energy of charged particles for all processes

Mass energy-absorption coefficient

- A part of kinetic energy of charged particles set in motion can be absorbed no locally → a part of the energy can be lost in radiative processes (especially Bremsstrahlung but also in-flight annihilation or fluorescence radiations)
- µ_{en}/ρ: Mass energy-absorption coefficient (unit: m²kg⁻¹) →
 product of the mass energy-transfer coefficient by (1-g), with g
 the fraction of energy lost on average in radiative processes as
 the charged particles slow to rest in the material
- g is specific to the material

$$\frac{\mu_{en}}{\rho} = (1-g)\frac{\mu_{tr}}{\rho}$$

$\text{Comparison } \mu_{\mathrm{tr}} \longleftrightarrow \mu_{\mathrm{en}}$

γ-ray Energy	$100 \ (\mu_{\rm tr} - \mu_{\rm en})/\mu_{\rm tr}$			
(MeV)	$\overline{Z} = 6$	29	82	
0.1	0	0	0	
1.0	0	1.1	4.8	
10	3.5	13.3	26	