Chapter XII: Chemical dosimeters

Chemical dosimeters

- Introduction
- Fricke dosimeter
- Polymer gel dosimeter
- Alanine dosimeter
- Radiochromic film

Principle of chemical dosimeters

- In a chemical dosimeter \rightarrow the dose is determined from a measurable modification of the chemical state of the considered medium (gas, liquid or solid)
- Any well-characterized chemical reaction may serve as the basis for a chemical dosimeter

Fricke dosimeter: Composition

- The standard Fricke dosimeter is a solution composed of ferrous sulfate (FeSO $_4$ \rightarrow Fe as Fe²⁺) and of sulfuric acid (H₂SO $_4$) in water or in a gel (\rightarrow Fricke dosimetry is thus assimilated in this case to gel dosimetry)
- Organic contaminants can significantly affect performance \rightarrow high purity is necessary
- NaCl is sometimes added to reduce or eliminate any sensitivity to organic impurities \rightarrow NaCl has no effect on the dosimetric reaction except at high dose \rightarrow in this case, to be avoided

Dosimetric principle

- The detector is based on the reaction ferrous sulfate \rightarrow ferric sulfate (Fe₂(SO₄)₃) i.e. \rightarrow Fe²⁺ \rightarrow Fe³⁺
- The ionizing radiations induce this reaction either by direct absorption (rare) either via the free radicals produced in water \rightarrow H^{*} and OH^{*} (frequent in water because water is the dominating medium \rightarrow radiations especially interact with water)
- Chemical reactions \rightarrow

HO₂*: hydridodioxygen

Measurement of the production of $Fe³⁺$

The measurement may be done by

- Chemical titration
- Nuclear magnetic resonance (measurement of the paramagnetic properties)
- $-$ Optical absorption \rightarrow most often used because good sensitivity, only requires small samples and easy to implement (Fe³⁺ \rightarrow blue color)

Optical absorption

- Principle of optical absorption \rightarrow measurement of ΔM : the variation of molar concentration (mol/l) of Fe³⁺ before and after the irradiation
- We consider the ratio between the light intensity transmitted through the irradiated sample (*I*) and another one which was not irradiated $(l_o) \rightarrow$

$$
\frac{I}{I_0} = 10^{-\Delta (OD)}
$$

with Δ *(OD)* the modification of optical density

• And we have with the Beer-Lambert expression \rightarrow

$$
\Delta(OD)=\epsilon l\Delta M
$$

with ϵ : the molar absorption (or extinction) coefficient (ϵ = 2187 l/mol at 25 °C for Fe³⁺), *l*: the size of the sample (\approx 1cm)

Dose \leftrightarrow Optical absorption

By definition \rightarrow

$$
\overline{D} = \frac{\Delta M}{\rho G(Fe^{3+})}
$$

with ρ , the « density » of the solution (in kg/l) and $G(Fe^{3+})$ (in mol/J), the chemical yield of $Fe³⁺$ (i.e. the quantity of $Fe³⁺$ produced per unit of incident energy \rightarrow depends on the type and on the energy of the incident particles) \rightarrow for 60 Co- $\gamma \rightarrow$ $G(Fe^{3+}) = 1.607 \times 10^{-6}$ mol/j

• We obtain thus \rightarrow

$$
\overline{D} = \frac{\Delta(OD)}{\epsilon l \rho G(Fe^{3+})}
$$
 $\overline{D} = 278\Delta(OD)$ Gy

Chemical yield as a function of E for e-

Applications of Fricke dosimeters

- Dose response linear between \approx 4 Gy and 4000 Gy
- Z and μ_{e} $\!\!/\rho$ close to values of water \rightarrow tissue-equivalent
- Variable shape and volume
- Absolute dosimeter
- Little stable in time \rightarrow major defect
- Use and readout are complex \rightarrow major defect
- High lower dose limit \rightarrow major defect
- Large dependence on E and on particle type \rightarrow major defect

Gradual disappearance

Polymer gel dosimeter

In a polymer gel \rightarrow monomers dispersed into a matrix \rightarrow example: acrylamide (C_3H_5NO) dispersed into gelatin

• Exposed to irradiation \rightarrow the monomers follow a polymerization reaction (polyacrylamide) \rightarrow polymerized gel in 3D

- The degree of polymerization depends on the dose
- The dose can be evaluated by RMN, tomodensitometry (scanner-X), optical tomography (IR), …

Advantages and disadvantages of gels

- Easily commercially available and cheap
- Due to the large proportion of water in gel \rightarrow water-equivalent \rightarrow little corrections needed for the energy response
- Possible 3D measurements
- Perfectly adapted for measurements showing large spatial variations of dose \rightarrow application in stereotaxic radio-surgery
- Access to a RMN, scanner machine is necessary \rightarrow not so obvious
- Little sensitive \rightarrow applications in radiotherapy

Alanine dosimetry

• The irradiation of the alanine amino acid produces stable alkyl free radicals \rightarrow \mathbf{H} H

Ionising $------& H_3C-C-COOH$ $H_3C-C-COOH$ Radiation $NH₂$

• Concentration of free radicals \propto absorbed dose and measured by electron paramagnetic resonance or EPR (technique similar to RMN but the spins of the e are excited instead of the spins of the atomic nuclei)

Alanine for dosimrtry

Pastilles of alanine Machine of EPR

Dose response

Advantages and disadvantages

- Relatively tissue-equivalent
- Good linearity with the dose
- Small volume
- High lower dose limit \rightarrow applications in radiotherapy
- Large range of dose measurement \rightarrow 0.5 100 kGy
- Need an EPR machine \rightarrow little available \rightarrow major defect

Radiochromic film

- Radiochromic films are translucent films showing a blue color after irradiation
- After the irradiation, the diacetylene crystals (monomers) constituting the film are polymerized giving the blue color of the irradiated film
- Reaction \rightarrow diacetylene monomers (H-C \equiv C-C \equiv C-H) \rightarrow acetylene polymer ($H - C \equiv C - H$) with a carbene (carbon atom with 2 non-bounded e⁻) linked to the end of each polymer chain
- Analyze by densitometry

Example of result with a radiochromic film

Positioning test for a Gamma Knife

Characteristics of the radiochromic films (1)

- High lower dose limit (\sim Gy) \rightarrow applications in radiotherapy
- No development \rightarrow no quality control needed
- Films without « grain » \rightarrow very good spatial resolution
- Perfectly adapted for measurements showing large spatial variations of dose
- Dose response linear between \sim Gy and a few kGy

Characteristics of the radiochromic films (2)

- Little sensitive to sun light
- Can be cut in any requested shape
- Not very different from tissue-equivalent
- Possible storage
- Small sensitivity \rightarrow important defect

Could potentially play an increasing role for dosimetry in radiotherapy