Chapter XI: Electronic dosimeters

Types of electronic dosimeters

- Electronic dosimeters include both passive (integrators) or active (real-time measurement) dosimeters
- We discuss here about dosimeters made of silicon (even though dosimeters made of germanium, diamond, etc. also exist → less used or more expensive)
- 2 devices will be considered (→ no bipolar transistors, no solid ionization chambers) →
 - Diode
 - MOSFET (Metal-Oxide Semiconductor Field Effect Transistor)
- References:
 - J. Barthe, *Electronic dosimeters based on solid state detectors*, Nuclear Instruments and Methods in Physics Research B: 184 (2001) 158–189
 - A. Holmes-Siedle, L. Adams, *Handbook of radiation effects* (Oxford Science Publication) 1994

Introduction

- Electronic dosimeter → personal dosimeters, dosimeters for radiotherapy, for curietherapy,...
- Si is used for electronic dosimeters \rightarrow well known material
- Several advantages of the electronic dosimeter :
 - 1. $Z = 14 \rightarrow \text{``relatively ``} tissue-equivalent \rightarrow for E < 150 keV \rightarrow increase of the interaction cross section compared to tissues (photoelectric effect)$
 - Better sensitivity than a gas (factor 20000) due to its larger density (factor 2000) and to its smaller ionization energy (factor 10)
 - 3. Smaller size → B-G conditions satisfied and possibly placed into a confined volume (human body)
 - 4. Good mechanical stability
 - 5. Possibility to measure doses or dose rates
 - 6. Possibility to make neutrons dosimetry (not studied here)

Diode dosimeter: Definition of the diode

- Si diode \rightarrow junction of 2 types of semiconductors \rightarrow
 - p-type diode: crystal of p-type (excess of h⁺) with a thin layer at the surface of n-type (excess of e⁻)
 - n-type diode: crystal of n-type with a thin layer at the surface of p-type
- Thin metal layers are deposited on the semiconductors to make the anode (contact with the p-region) and the cathode (contact with the n-region)

n-type semiconductor

- Silicon and Germanium are tetravalent
- If a pentavalent impurity (doping) atom as arsenic, phosphorus, antimony (donor element) is introduced → replacing an atom lattice → an extra electron does not fit into the valence band
- This extra e⁻ is weakly bound → easily excited to the conduction band → localized level just below the bottom of the conduction band
- Ionization energy of this extra level: a few 0.01 eV → comparable to thermal energy → e⁻ in the conduction band without h⁺ in the valence band → n-type semiconductor
- Practically concentration of donor $N_D \gg n_i \rightarrow$ electron concentration $n \approx N_D (N_D \sim 10^{15} \text{ atoms/cm}^3) \rightarrow$

$$\sigma = e N_D \mu_e$$

p-type semiconductor

- If a trivalent impurity atom as gallium, boron indium (acceptor element) is introduced → replacing an atom lattice → no enough electron to fill the valence band → excess of hole
- A captured e⁻ in this hole is less bound than normal e⁻ → localized level just above the top of the valence band
- e⁻ in the valence are easily excited to this level → extra hole in the valence band without e⁻ in the conduction band → p-type semiconductor
- Practically concentration of acceptor $N_A \gg n_i \rightarrow hole$ concentration $p \approx N_A (N_A \sim 10^{15} \text{ atoms/cm}^3) \rightarrow$

$$\sigma = e N_A \mu_h$$

Representation of doped (extrinsic) semiconductors

Principle of the diode

≠ density of charge → diffusion of majority e⁻ from n-region to pregion and of majority h⁺ from p-region to n-region → in the junction zone: recombination of e⁻ and h⁺ → positive ions in the n-region and negative in the p-region → electric field (10³ V/cm) in this region (called *depletion region*)

Depletion depth (1)

 The width of the depletion zone (= d) depends on the concentration of n and p impurities. It can be determined from Poisson's equation (with ε the dielectric constant):

$$\frac{d^2V}{dx^2} = -\frac{\rho(x)}{\varepsilon}$$

• If we consider an uniform charge distribution about the junction and with x_n and x_p the extents of the depletion zone on the n- and p-sides and a contact potential $V_0 \rightarrow$

$$\rho(x) = \begin{cases} eN_D & 0 < x < x_n \\ -eN_A & -x_p < x < 0 \end{cases}$$

• Since the charge is conserved: $N_A x_p = N_D x_n$ (with $N_A \approx p$ the acceptors concentration and $N_D \approx n$ the donors concentration)

Depletion depth (3)

• Integrating Poisson's equation:

$$\frac{dV}{dx} = \begin{cases} -\frac{eN_D}{\varepsilon}x + C_n & 0 < x < x_n \\ \frac{eN_A}{\varepsilon}x + C_p & -x_p < x < 0 \end{cases}$$

• Since dV/dx = 0 at $x = x_n$ and $x = -x_p$:

$$\frac{dV}{dx} = \begin{cases} -\frac{eN_D}{\varepsilon}(x - x_n) & 0 < x < x_n \\ \frac{eN_A}{\varepsilon}(x + x_p) & -x_p < x < 0 \end{cases}$$

• One more integration:

$$V(x) = \begin{cases} -\frac{eN_D}{\varepsilon} \left(\frac{x^2}{2} - x_n x\right) + C & 0 < x < x_n \\ \frac{eN_A}{\varepsilon} \left(\frac{x^2}{2} + x_p x\right) + C' & -x_p < x < 0 \end{cases}$$

11

Depletion depth (4)

• As solutions are equal at $x = 0 \rightarrow C = C'$ and as $V(x_n) = V_0$ and $V(-x_p) = 0$: $V_0 = \frac{eN_D}{2\varepsilon}x_n^2 + C$ $0 = -\frac{eN_A}{2\varepsilon}x_p^2 + C$

$$V_0 = \frac{e}{2\varepsilon} (N_D x_n^2 + N_A x_p^2)$$

• Using the charge conservation equation:

Depletion depth (5)

• Considering for instance $N_A \gg N_D \rightarrow x_n \gg x_p \rightarrow$

$$d \simeq x_n \simeq \left(\frac{2\varepsilon V_0}{eN_D}\right)^{1/2}$$

- Extension of the depletion zone to the n-side
- For Si with ρ = 20000 Ω cm and V_o = 1V \rightarrow $d \approx$ 75 μ m

Applied voltage

- If an external voltage is applied such as the anode is at a larger potential than the cathode potential (direct polarization) → decrease of the potential at the junction → a current will flow → no use in in dosimetry
- If an external voltage is applied such as the anode is at a smaller potential than the cathode potential (inverse polarization) → re-enforcement of the potential difference at the junction → no current
 - 1. This voltage attracts h⁺ in the p-region away from the junction and similarly for the e⁻ in the n region \rightarrow enlarge the depletion zone (use in previous equation $V_B + V_0 \approx V_B$ because $V_B \gg V_0$) \rightarrow 5 mm in Si
 - 2. V_B is limited \rightarrow attention to the breakdown (by Zener or avalanche effect)

Current – voltage feature

Principle of diode detector (1)

Principle of diode detector (2)

- When an ionizing radiation passes through the diode → creation of e⁻
 h⁺ pairs
- When the pairs are created in the depletion zone or at a distance <

 L_{p,n} (the diffusion lengths of the carriers) of the depletion zone
 (« sensitive part » of the diode) → they undergo the electric field →
 they reach the boundaries of the depletion zone → voltage pulse is
 collected
- Only pairs created in the sensitive part of the diode $(d + L_p + L_n)$ will be collected \rightarrow sensitivity of the diode \propto depth of the depletion zone
- The diode is used in reverse bias for the measurement of small doses and without polarization for high doses (in radiotherapy) → depth of the depletion zone reduced to minimum
- For diodes used in spectrometry → difference → the particle has to deposit all its energy in the depletion zone → size ↗

Type of diode used in dosimetry (1)

- The sensitivity of a diode detector is linked to the life time of the charge carriers created → if recombination → charge is lost → sensitivity
- The life time is itself linked to the concentration of defects (= traps) in the diode
- The irradiation will introduce additional defects in the material (radiative damages) → sensitivity depends on the dose and on the dose rate
- It is possible to show that the number of additional traps as a function of the dose rate created in a n-type semiconductor is larger than for a p-type → the irradiation affects more importantly the life time of the e⁻ than the one of the h⁺
- In practice in dosimetry → p-type diode (« large » volume of p-type associated with a « small » volume of n-type) because the loss of sensitivity is largely more important for n-type diodes than for p-type

Type of diode used in dosimetry (2)

- Diodes for dosimetry are ≠ of diodes used in spectrometry
- To minimize the perturbations in the medium (Bragg rule: no perturbation of the fluence by the detector) → diode smallest as possible (classical dimensions: 1 × 1 × 1 mm³)
- Size not too small anyway → sensitivity ∝ size of the depletion zone → compromise must be found
- The material surrounding the diode is also important → generation of secondary charged particles → as tissue-equivalent as possible: electric contacts in Al, supports in plastic, carbon,...

2 examples of diode dosimeters

- (a) polyethylene
- (b) carbon cover
- (c) Si diode
- (d) carbon epoxy
- (e) cables in Al

(f) PMMA

Energy response

Difficulty for small energy γ → photoelectric effect is dominating
 → overestimation of the dose → problem → use of filters

Response in dose

In pulse mode (for not too important dose rates → not for radiotherapy) → linear dose response

Dose response : (60Co photons)

Dosicard: Canberra

Effect of cumulated dose (1)

- As written above → irradiation produces additional defects in the material
- When the dose \nearrow (remark: high doses) \rightarrow sensitivity \searrow

(a) Diode EDP-20: Scanditronix - Wellhöfer \rightarrow dose rate: 45 Gy/j, γ of 25 MeV (b) Response as a function of the cumulated dose for 6 MeV γ

Effect of cumulated dose (2)

- To precisely determine the dose at a given time → the decay curve of the sensitivity and the previous irradiation level should ne known → problem
- Solution → pre-irradiation before use to reach a (about) constant level of sensitivity

Temperature effect

- When T ↗ → the concentration of carriers ↗ → large dependence of the diode response as a function of T → problem
- In practice → SVWT (sensitivity variation with temperature) = 0.1%/°C for a non pre-irradiated diode
- For p-type diode pre-irradiated at 5 kGy (20 MeV γ) → SVWT = 0.35-0.4 %/°C → SVWT depends on the cumulated dose (and also on the dose rate)

Examples of available personal dosimeters

ES600 of Labomoderne

Dosicard of Canberra

Characteristics of ES600 and of dosicard

- Very similar
- For β and γ
- Measure of dose: 1 μ Gy < D < 10 Gy
- Measure of dose rate: 1 μ Gy/h < D/h < 1 Gy/h
- Accuracy: $< \pm 15\%$ at ¹³⁷Cs, up to 1 Sv/h
- Non-volatile EEPROM memory
- Digital readout of the dose and of the dose rate
- Alarm
- Storage of data

Neutrons detectors with diodes (1)

- Neutrons detectors based on the used of 2 diodes
- Diode 1 (called neutron diode): covered with an organic medium (plastic: PE,...) doped with ¹⁰B (≈ 10¹³/cm³ B atoms) → sensitive to neutrons and γ
- Diode 2 (called γ diode): « nude » \rightarrow no sensitive to neutrons and sensitive to γ
- The 2 diodes are side by side and \perp to ionizing radiations (neutrons + γ)

Neutrons detectors with diodes (2)

- Thermal n interact with 1 in 2 ways \rightarrow
 - 1. $H(n,n)p \rightarrow emission of protons$
 - 2. ¹⁰B(n, α)⁷Li \rightarrow emission of α
- The ≠ between signals from diodes 1 et 2 allows to discriminate the contribution due γ from the contribution due to neutrons

Neutrons detectors with diodes (3)

- If the size of the plastic coating is large → important moderation of high energy neutrons → it is possible to study neutrons with high E
- The quantity of ¹⁰B is chosen to obtain a response to thermal neutrons equal to the response to fast neutrons

Neutrons detectors with diodes (4)

- For very high E (E > 10 MEV) \rightarrow addition of Pb \rightarrow reaction (n,2n)
- To improve the precision for a large range of E → system with 3 or 4 diodes with ≠ coatings → multi-elements detector (Saphydose detector)

Saphydose Detector of Saphymo

MOSFET dosimeter: Definition of MOSFET

- MOSFET → acronym for Metal-Oxide Semiconductor Field Effect Transistor
- Field effect transistor → use of an electric field to control the shape and the conductivity of a « channel » in a semiconductor material → modulation of the current passing through (between the « source » and the « drain ») with a voltage applied on the central electrode called « gate »
- For the MOSFET → the gate (metal or polycrystalline silicon) is electrically isolated from the substrate (semiconductor) by a dielectric (as SiO₂) → no current injected by the gate
- Can be n- or p-type channel

Scheme of a n-type channel MOSFET (nMOS)

Typical characteristics $\rightarrow L \approx 1-40 \ \mu m$, SiO₂ thickness $\approx 0.02-0.1 \ \mu m$, \perp width $\approx 2-500 \ \mu m$, n regions strongly doped (n⁺): $n \geq 10^{17} \ cm^{-3}$

Principle of operation (n channel)

- Assumptions:
 - 1. $V_{\rm S} = V_{\rm B}$
 - 2. We apply a positive difference of potential $V_{DS} = V_D V_S > 0$ between the drain and the source
- Without grid polarization $\rightarrow V_{GB} = V_G V_B = V_{GS} = 0 \rightarrow$ no current between the source and the drain $\rightarrow I_D = 0$
- $V_{GS} \nearrow \rightarrow$
 - 1. $V_{GS} \leq V_{TH} \rightarrow I_D = 0 \rightarrow$ Cutoff mode: when the gate voltage is smaller than the « threshold voltage »

 \rightarrow h^+ repelled to the substrate \rightarrow creation of a depletion zone

 \rightarrow e⁻ thermally generated in the substrate or coming from n⁺ regions are attracted at the surface of the substrate

- 2. $V_{GS} > V_{TH}$ and $V_{DS} < (V_{GS} V_{TH}) \rightarrow I_D$ linearly $\nearrow \rightarrow$ Linear mode (or triode mode or ohmic mode): creation of a conduction channel of $e^- \rightarrow$ the transistor operates like a resistor
- 3. $V_{GS} > V_{TH}$ and $V_{DS} > (V_{GS} V_{TH}) \rightarrow I_D$ independent of V_{DS} : Saturation mode (or active mode): $I_D \propto (V_{GS} V_{TH})^2$

Saturation mode

We have V_{GS} > V_{TH} → when V_{DS} ¬ → V_D > V_S → V_G - V_D < V_G - V_S → V_{GD} < V_{GS} → the density of e⁻ decrease in the channel near the drain → the channel is pinched at point P (pinch-off point), close to the drain → ¬ of the resistance of the channel → saturation of I_D

• I_D is thus independent (practically \rightarrow weakly dependent) of V_{DS} and principally controlled by V_{GS} Characteristic curves $I_D = f(V_{DS})$

 $V_{GS1} < V_{GS2} < V_{GS3} < V_{GS4}$

Scheme of a p-type channel MOSFET (pMOS)

Similar to the n-channel MOSFET but the doped regions are opposite, I_D is opposite, V_{GS} and V_{DS} have opposite polarities and the drain current is made of h⁺

Effects of radiation on MOSFET (1)

- The MOSFET under irradiation may be in passive mode ($V_{GS} = 0$) or in active mode ($V_{GS} > 0$) $\rightarrow V_{GS} > 0 \rightarrow$ the recombination $\supseteq \rightarrow$ more sensitive and more linear response
- Ionizing radiations produce e⁻ h⁺ pairs in the metal, the oxide coating and the semiconductor constituting the MOSFET
- In the metal and in the semiconductor, the e⁻ h⁺ pairs are quickly removed because these materials have a weak resistance
- On the contrary in the SiO₂ (W ≈ 17 ± 1 eV for SiO₂) → the pairs, either immediately recombine, either split off because of the present electric field → however ≠ behaviour due to their ≠ mobility (5 to 12 orders of magnitude)
- If we suppose a voltage $V_{GS} > 0$
 - → the e⁻ drift to the gate and, because of their large mobility (μ = 20 cm² V⁻¹s⁻¹) → they reach the metal and leave the oxide in a time ≤ 1 ps
 - → the h⁺ drift to the SiO₂-Si interface more slowly because of their small mobility (strongly dependent on T → μ = 10⁻⁴-10⁻¹¹ cm² V⁻¹s⁻¹) and are trapped at the interface (always in the oxide) → giving origin to a fixed + charge → modification of the characteristic curve of the MOSFET

Effects of radiation on MOSFET (2)

h⁺ transport in the SiO₂

- Due to the small mobility of the h⁺ → the transport in the oxide can take a few seconds (depending on T)
- Model for the transport of the h⁺ in the SiO₂ → « Small Polaron Hopping » (SPH): transport (or hop) of the small (charge confined in a small volume) polaron (quasi-particle composed of a charge and of its polarization field)
- SPH model based on the strong interaction between the h⁺ and the lattice → the interaction gives origin to a distortion of the lattice close to the h⁺→ ↘ of the energy of the system
- The h⁺ polarizes the medium → this polarization then interacts back on the carrier → implies a large distortion of the lattice in the immediate vicinity of the h⁺ → the h⁺ becomes localized at a particular site → ↗ of the effective mass of the h⁺
- The carrier, which is in practice self-trapped, is called *small polaron*

SPH model

- a) Initially empty localized trap
- b) Capture of a h⁺ by a site → distortion of the lattice potential around the trap site
- c) Thermal fluctuations of the system
 → interaction with another site →
 transfer of the h⁺ by tunnel effect
- d) Final state

Trapping of the h^+ at the interface SiO₂-Si (1)

- When the radiation-induced h⁺ have completed the crossing of the oxide → they are trapped at the SiO₂-Si interface → production of a + charge Q_T at the SiO₂-Si interface
- Consequently → production of a image charge at the surface of the semiconductor

→ has a positive role in the formation of the n-channel for a nMOS → the voltage to be applied to the gate to create the n-channel is smaller → $V_{TH} \supseteq$ → has a negative role in the formation of the p-channel for a pMOS → \nearrow of the $|V_{GS}|$ to be applied to have the formation of the p-channel p → $V_{TH} \supseteq$

- Q_T implies thus a (negative) modification ΔV_{TH} of the threshold voltage V_{TH} (but also to a lesser extent of the leakage current) \rightarrow shift of the I_D V_{GS} characteristic curve
- This modification ΔV_{TH} can stay for a period of time varying from milliseconds to years
- ΔV_{TH} is a measure of the dose absorbed in the oxide

Trapping of the h^+ at the interface SiO₂-Si (2)

Modification of the $I_D - V_{GS}$ characteristic curve

Modification of the $I_D - V_{GS}$ characteristic curve for a nMOS exposed to ionizing radiation

Mathematical expression of ΔV_{TH}

• In active mode $(V_{GS} > 0) \rightarrow$ we consider q: the e⁻ charge, ε_{ox} : the permittivity of the oxide, ρ_{ox} : the density of the oxide, W: the energy necessary to create one e⁻ - h⁺ pair, $f_y(E)$: the fraction of created charges which do not recombine, $f_t(E)$: the fraction of trapped holes, d_{ox} : the thickness of the oxide coating, D: the dose \rightarrow

$$\Delta V_{TH} = -\frac{q}{\varepsilon} \frac{\rho_{ox}}{W} f_y f_t d_{ox}^2 D$$

In passive mode (V_{GS} = 0) → decrease of sensitivity and loss of linearity →

$$\Delta V_{TH} \propto d_{ox}^2 D^{0.4}$$

Another effect of irradiation on a MOSFET

- Another effect of irradiation on a MOSFET → ↗ of the number of traps (several orders of magnitude) at the SiO₂-Si interface (« interface » means on both sides → in the Si and in the SiO₂)
- Phenomenon not completely explained
- Observation $\rightarrow \frac{1}{2}$ of the traps created by the irradiation are donors and $\frac{1}{2}$ are acceptors \rightarrow in the Si more traps (of 2 types) \rightarrow whether for a nMOS or for a pMOS \rightarrow more difficulties to obtain the channel $\rightarrow |V_{TH}| \nearrow$ (+ distortion of the characteristic)
- For a pMOS \rightarrow this effect adds up to ΔV_{TH} (because $\Delta V_{TH} < 0$) because of h⁺ trapping
- For a nMOS \rightarrow this effect offsets ΔV_{TH}
- In practice \rightarrow use of a pMOS

Modification of $I_D - V_{GS}$ (global effect)

nMOS

pMOS

Remarks on the use of a MOSFET

- Lower detection limit « relatively high » → main use in radiotherapy and curietherapy
- For « classical» available MOSFET dosimeters \rightarrow lower limit \approx 1 cGy
- Investigations for an improvement of this lower limit \rightarrow currently: \approx 100 $\mu{\rm Gy}$
- Measurements are available at any moment \rightarrow dose or dose rate
- The ΔV_{TH} shift caused by previous measurements must be known (because of the accumulation of the h⁺ in the insulator)
- Limited life time of a MOSFET detector

Temperature effect

• Very sensitive to temperature (\rightarrow as for diodes) \rightarrow apparition of a term ΔV_{TH}^{temp}

- Between 20 °C and 40 °C $\rightarrow \neq$ of 50 mV for $\Delta V_{TH} \rightarrow \neq$ of 10 cGy
- Generally \rightarrow 1 °C $\rightarrow \Delta V_{TH}^{temp} = 4 5 \text{ mV}$

Solution to the T problem: dual MOSFET

- Dual MOSFET: 2 identical MOSFET, build on the same Si chip and operating at 2 ≠ gate voltages
- During irradiation → each element gives a voltage shift → the ≠ between the 2 voltage shifts gives a signal ∝ to the dose

$$\Delta V_{TH} = (\Delta V_{TH}^1 - \Delta V_{TH}^{temp}) - (\Delta V_{TH}^2 - \Delta V_{TH}^{temp})$$
$$= \Delta V_{TH}^1 - \Delta V_{TH}^2$$

• For a dual MOSFET \rightarrow variation of $\approx 0.015 \text{ mV/}^{\circ}\text{C}$

Dual MOSFET

Dual-Gate N-Channel Depletion Type MOSFET

RADFET

 To improve the sensitivity of the detector → several linked MOSFET → RADFET (RADiation-sensing Field-Effect Transistor)

• Properties identical to the dual MOSFET but larger sensitivity: « theoretically » < μ Gy \rightarrow practically less good

Response as a function of the dose: High doses

nMOS for 1 MeV γ

Response as a function of the dose: Small doses

Energy response

Energy responses obtained in \neq studies (6 MeV γ) for \neq MOSFET \rightarrow in all cases \rightarrow non-linearity for E < 100 keV

Effect of the cumulated dose

 As for diodes → the irradiation introduces supplementary defects in the material → modification of the sensitivity as a function of the dose (for high doses)

 ≠ Behaviour for nMOS and pMOS ↔ because ≠ types of defects and thus of traps

Comparison TLD-Diode-MOSFET

Dosimeter	advantages	disadvantages
(micro) MOSFET	small sensitive volume	limited life-time
	small physical size	limited intrinsic presicion
	real time dose information	
	simple dose read-out	
	neglectible beam pertubation	
	lack of correction factors	
	energy independent	
Diode	high intrinsic presicion	energy dependent
	high sensitivity	temperature dependence
	real time dose information	dose-rate dependence
	simple dose read-out	dependence of response on accumulated dose
		sensitivity changes as a result of changes in source-surface-distance (SSD), collimator size, and the presence of a wedge or tray
		special care needed to ensure constancy of response
TLD	desired shape and size	no real time dose information
	cheap	time consuming procedure for dose read- out
	neglectible beam pertubation	limited intrinsic presicion
	shape and size is variable	signal erased during readout
	extended life-time	easy to lose reading
	many TLDs can be exposed in single exposure	accurate results require care

Applications (1)

Mobile MOSFET system from Best Medical \rightarrow wireless

Applications (2)

OneDose MOSFET system from Sicel Technologies Inc. \rightarrow wireless