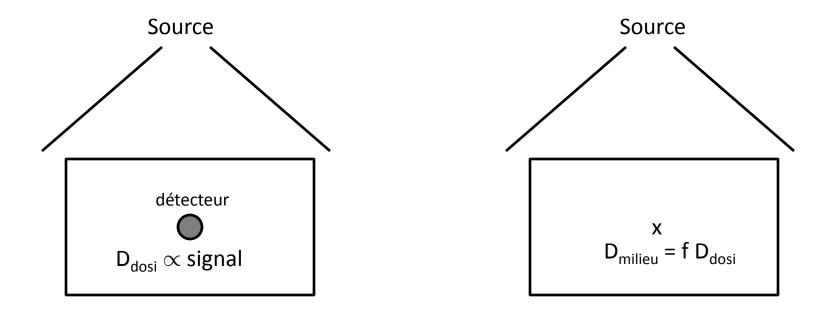
Chapitre V: Théories de la cavité

Introduction

- But de la dosimétrie: mesure de la dose absorbée dans un milieu (souvent approximé par de l'eau dans les calculs)
- Un détecteur (dosimètre) ne mesure (presque) jamais la dose déposée dans le milieu directement → mesure de la dose dans le dosimètre
- Problèmes: le détecteur possède une composition ≠ du milieu et possède un volume fini → corrélation entre la dose dans le dosimètre et la dose dans le milieu
- Théorie de la cavité permet l'interprétation de la dose lue au dosimètre

Facteur de conversion



Facteur de conversion f

$$f = \frac{D_{milieu}}{D_{dosi}}$$

Dans la suite → milieu = water (w) et détecteur = gas (g)

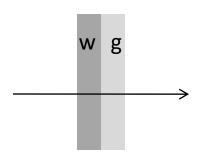
Préliminaire 1: Dose dans une lame mince (particules chargées)

Pour un faisceau de particules chargées d'énergie E et de fluence Φ incidents \bot sur un matériau de nombre atomique Z, de masse volumique ρ , mince (épaisseur I) \rightarrow

- 1. $S_{elec}(E) \approx \text{constant}$
- 2. Trajectoires rectilignes
- 3. L'*E* cinétique emportées en dehors du film par les $e^-\delta$ est négligeable (CPE ou δ -ray equilibrium)

$$D = \Phi\left(\frac{dE}{\rho dx}\right)_{elec}$$

Préliminaire 2: Dose à l'interface entre 2 milieux (particules chargées)

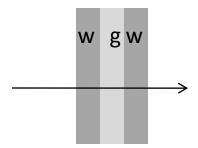


• On considère une faible épaisseur de matière à l'interface $\rightarrow \Phi$ égale des 2 côtés de l'interface

$$D_{w} = \Phi \left[\left(\frac{dE}{\rho dx} \right)_{elec,w} \right]_{E} \longrightarrow D_{g} = \Phi \left[\left(\frac{dE}{\rho dx} \right)_{elec,g} \right]_{E}$$

$$\frac{D_w}{D_g} = \frac{(dE/\rho dx)_{elec,w}}{(dE/\rho dx)_{elec,g}}$$

Théorie de la cavité de Bragg-Gray (B-G)



- On considère une couche mince d'un milieu « g » (appelé cavité) pris en sandwich entre deux couches d'un milieu « w » (les parois)
- Cet ensemble est soumis à un champs de particules (chargées ou non) ->
 la théorie B-G s'applique aux particules chargées qui entrent dans la
 cavité et proviennent soit d'un faisceau initial de particules chargées soit
 des interactions de particules non-chargées dans w
- Conditions de Bragg-Gray:

<u>Première condition de Bragg-Gray</u>: L'épaisseur de la cavité est suffisamment petite (par comparaison au parcours des particules chargées qui lui sont incidentes) pour que sa présence ne perturbe pas le champs des particules chargées

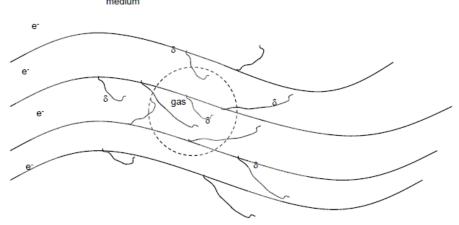
<u>Seconde condition de Bragg-Gray</u>: La dose absorbée dans la cavité est due uniquement aux particules chargées qui la traversent

Commentaires sur les conditions de Bragg-Gray (1)

- 1ère condition: pas de perturbation due à g:
 - Pour des particules chargées lourdes (primaires ou secondaires issues d'un faisceau primaire de neutrons) → peu de scattering → condition peu restrictive (à condition que la cavité soit **petite** par comparaison au range des particules)
 - − Pour des électrons (primaires ou secondaires issus d'un faisceau primaire de γ) → scattering important → même une petite cavité peut perturber le champ → la cavité **doit** être **petite** (sauf si la composition de g ≈ w)
- 2ème condition: dose due aux particules chargées qui traversent g:
 - − Pour des γ incidents → pas d'interactions des γ dans g → aucune particule chargée ne peut être créée dans g (elles doivent venir de w) → E > ≈ 1 MeV
 - Aucune particule chargée ne peut s'arrêter dans g
 - Pour des neutrons incidents → pas de création de particules chargées dans g
 → peut être un problème si le gaz de la cavité est de l'hydrogène

Commentaires sur les conditions de Bragg-Gray (2)

- Problème 1 des $e^-\delta \to La$ théorie B-G suppose que toutes les collisions (avec perte d'E) subies par les e^- dans la cavité impliquent une perte d'énergie locale $\to E$ perdue est déposée dans la cavité \to ce qui n'est pas le cas des $e^-\delta$
- Problème 2 des $e^- \delta \rightarrow$ Pour des e^- incidents la fluence tient uniquement compte des e^- primaires \rightarrow pas des $e^- \delta \rightarrow$ pas si évident



Commentaires sur les conditions de Bragg-Gray: En pratique

- Pour des photons incidents → la cavité doit être petite (chambre d'ionisation uniquement) et l'E des photons > ≈ 1 MeV (pas de rayons X de qques keV)
- Pour des e⁻ incidents \rightarrow Si $E > \approx 1$ MeV \rightarrow tous les détecteurs utilisés en pratique suivent la théorie B-G dû au long range des e⁻ primaires (si g \approx w et si on néglige les e⁻ δ voir plus loin)

Relation de Bragg-Gray

• Avec les 2 conditions \rightarrow pour une fluence Φ constituée de particules chargées identiques d'énergie cinétique E qui traversent l'ensemble w-g-w \rightarrow

$$\frac{D_w}{D_g} = \frac{(dE/\rho dx)_{elec,w}}{(dE/\rho dx)_{elec,g}}$$

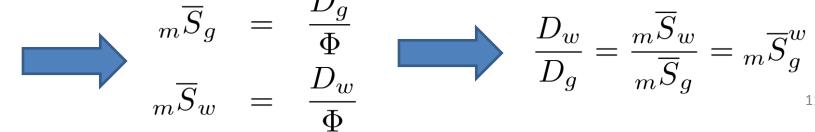
• Considérons maintenant une distribution différentielle en E de la fluence (fluence spectrique) Φ_E (qui peut dépendre de E de manière arbitraire mais avec $E_{\rm max}$ comme énergie maximale) \rightarrow on définit ${}_m\overline{S}_g$ et ${}_m\overline{S}_w$ les moyennes des pouvoirs d'arrêt massiques de collision dans g et dans w pondérées par la fluence spectrique des particules

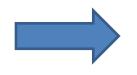
Relation de Bragg-Gray (2)

$${}_{m}\overline{S}_{g} \equiv \frac{\int_{0}^{E_{max}} \Phi_{E} \left(\frac{dE}{\rho dx}\right)_{elec,g} dE}{\int_{0}^{E_{max}} \Phi_{E} dE} \qquad {}_{m}\overline{S}_{w} \equiv \frac{\int_{0}^{E_{max}} \Phi_{E} \left(\frac{dE}{\rho dx}\right)_{elec,w} dE}{\int_{0}^{E_{max}} \Phi_{E} dE}$$
$$D_{w} = \int_{0}^{E_{max}} \Phi_{E} \left(\frac{dE}{\rho dx}\right)_{elec,w} dE$$
$$\int_{0}^{E_{max}} \left(\frac{dE}{\rho dx}\right)_{elec,w} dE$$

$$D_g = \int_0^{E_{max}} \Phi_E \left(\frac{dE}{\rho dx}\right)_{elec,g} dE$$

$$\Phi = \int_0^{E_{max}} \Phi_E dE$$





$$\frac{D_w}{D_z} = \frac{mS_w}{\overline{S}} = m\overline{S}$$

Relation de Bragg-Gray (3)

Sous les deux conditions de Bragg-Gray, le rapport des doses dans les parois et dans la cavité est égal au rapport des moyennes des pouvoirs d'arrêt massiques de collision, pondérées par la fluence spectrique

Relation de Bragg-Gray (4)

• Si le milieu g est un gaz (de masse m) dans lequel une charge Q (de chaque signe) a été produite par les particules incidentes et $(\overline{W}/e)_g$ est l'énergie moyenne dépensée par unité de charge produite \rightarrow

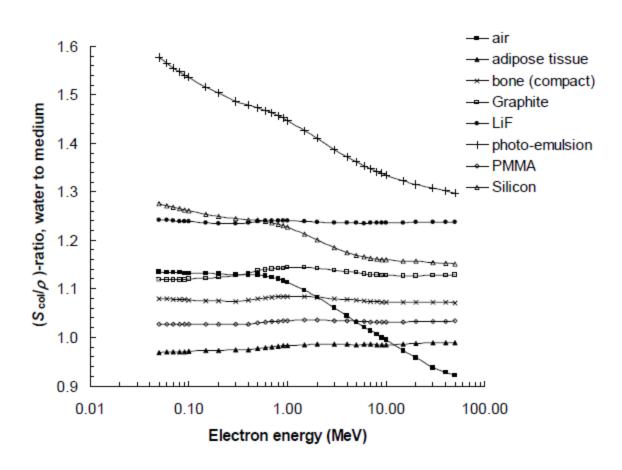
$$D_g = \frac{Q}{m} \left(\frac{\overline{W}}{e} \right)_g$$

On obtient alors la <u>relation de Bragg-Gray</u> →

$$D_w = \frac{Q}{m} \left(\frac{W}{e}\right)_g {}_m \overline{S}_g^w$$

• Cette relation permet de calculer la dose absorbée dans un milieu entourant immédiatement une cavité B-G sur la base de la charge produite dans la cavité (si $(\overline{W}/e)_g$ et $_m\overline{S}_q^w$ sont connus)

Rapport des pouvoirs d'arrêts



Remarques sur la relation de Bragg-Gray

- CPE **n'est pas** requis dans la théorie B-G \rightarrow mais $\varPhi_{\it E}$ doit être la même dans g et w (où $D_{\it w}$ est évalué) \rightarrow dans d'anciennes publications, il est indiqué que « CPE doit exister en l'absence de cavité » \rightarrow Faux mais à l'époque problème pour évaluer $\varPhi_{\it E}$ \rightarrow avec les méthodes MC plus d'ennuis
- Charge Q' collectée dans une chambre d'ionisation est généralement
 < que Q (dû aux recombinaisons) → requiert une correction
- La masse m est généralement plus < la masse de gaz m' dans la chambre d'ionisation (dû à des volumes non-actifs) → m doit être déterminé via une calibration
- Le milieu entourant la gaz de la chambre d'ionisation est d'ordinaire les parois de la chambre elles-mêmes
- La théorie B-G peut s'appliquer à des solides \rightarrow facteur 1000 pour la densité \rightarrow taille de la cavité 1000 x plus petite (1 mm de cavité gazeuse comparable à 1 μ m de cavité solide)

Premier corollaire de la relation B-G

- Une cavité de volume V est comprise entre des parois constituées du milieu w → la cavité est d'abord remplie d'un gaz g₁ de masse volumique ρ₁, puis d'un gaz g₂ de masse volumique ρ₂
- Dans les deux cas, on expose la cavité au même rayonnement, qui produit les charges Q₁ et Q₂ respectivement →

La dose dans
$$g_1 \to D_1 = D_w \times {}_m \overline{S}_w^{g_1} = \frac{Q_1}{\rho_1 V} \left(\frac{W}{e}\right)_1$$

La dose dans $g_2 \to D_2 = D_w \times {}_m \overline{S}_w^{g_2} = \frac{Q_2}{\rho_2 V} \left(\frac{\overline{W}}{e}\right)_2$

$$Q_1 = D_w \ _m \overline{S}_w^{g_1} \rho_1 V / \left(\overline{W} / e \right)_1 \ \text{et} \ Q_2 = D_w \ _m \overline{S}_w^{g_2} \rho_2 V / \left(\overline{W} / e \right)_2$$

Premier corollaire de la relation B-G (2)

Le rapport des charges →

$$\frac{Q_2}{Q_1} = \frac{\rho_2}{\rho_1} \frac{\left(\overline{W}/e\right)_1}{\left(\overline{W}/e\right)_2} \frac{{}_m \overline{S}_w^{g_2}}{{}_m \overline{S}_w^{g_1}}$$

$$\frac{Q_2}{Q_1} = \frac{\rho_2}{\rho_1} \frac{\left(W/e\right)_1}{\left(\overline{W}/e\right)_2} {}_m \overline{S}_{g_1}^{g_2}$$

• Pas de dépendance en w \rightarrow la même valeur de Q_2/Q_1 doit être observée pour \neq w \rightarrow vrai si Φ_E de particules chargées ne dépend pas significativement du type de w (vrai pour des escondaires produits par des γ interagissant par effet Compton dans w)

Second corollaire de la relation B-G

Considérons 2 cavités de B-G d'un même gaz g (de densité ρ)
mais de volumes ≠ (V₁ et V₂) et dont les parois sont faites de
matériaux ≠ (w₁ et w₂)



- Elles sont exposées au même rayonnement γ ou RX (de fluence énergétique Ψ) \rightarrow Doses D_1 et D_2 dans les gaz des cavités 1 et 2
- On considère l'épaisseur des parois des 2 cavités comme strictement supérieure au parcours maximal des particules chargées (« parois épaisses »)→ CPE

Second corollaire de la relation B-G (2)

$$\mathsf{CPE} \to \begin{array}{c} D_{w_1} \overset{\mathsf{CPE}}{=} (K_c)_{w_1} \\ D_{w_2} \overset{\mathsf{CPE}}{=} (K_c)_{w_2} \end{array}$$

Avec:
$$(K_c)_{w_i} = \Psi\left(\frac{\overline{\mu_{en}}}{\rho}\right)_{w_i}$$

$$D_{w_1} \stackrel{\text{CPE}}{=} \Psi \left(\frac{\overline{\mu_{en}}}{\rho} \right)_{w_1}$$

$$= D_1 \ _m \overline{S}_g^{w_1} = \frac{Q_1}{\rho V_1} \left(\frac{\overline{W}}{e} \right)_q {}_m \overline{S}_g^{w_1}$$

Second corollaire de la relation B-G (3)

$$D_{w_2} \stackrel{\text{CPE}}{=} \Psi\left(\frac{\overline{\mu_{en}}}{\rho}\right)_{w_2}$$

$$= D_2 _m \overline{S}_g^{w_2} = \frac{Q_2}{\rho V_2} \left(\frac{\overline{W}}{e}\right)_q {}_m \overline{S}_g^{w_2}$$

avec Q_1 et Q_2 , les charges produites dans 1 et 2 et $\left(\overline{\mu_{en}/\rho}\right)_{w_1,w_2}$ les coefficients massiques d'absorption d'énergie moyennés sur les spectres des photons

Second corollaire de la relation B-G (4)

Le rapport des charges Q₁ et Q₂ donne donc (avec (W/e)_g constant pour des énergies ≈ keV) →

$$\frac{Q_2}{Q_1} = \frac{V_2}{V_1} \frac{(\overline{\mu_{en}/\rho})_{w_2}}{(\overline{\mu_{en}/\rho})_{w_1}} \frac{{}_m \overline{S}_g^{w_1}}{{}_m \overline{S}_g^{w_2}}$$

• Si Φ_E est le même pour les 2 chambres (interaction Compton citée auparavant) \rightarrow

$$\frac{Q_2}{Q_1} = \frac{V_2}{V_1} \frac{(\mu_{en}/\rho)_{w_2}}{(\overline{\mu_{en}/\rho})_{w_1}} {}_m \overline{S}_{w_2}^{w_1}$$

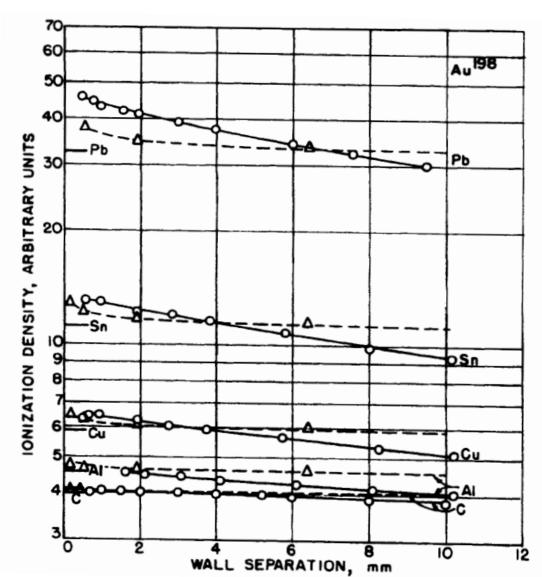
• Dans ce cas $\rightarrow Q_2/Q_1$ est indépendant du choix du gaz g

Second corollaire de la relation B-G pour des neutrons

$$\frac{Q_2}{Q_1} = \frac{V_2}{V_1} \frac{\overline{F_n}_{w_2}}{\overline{F_n}_{w_1}} \frac{{}_m \overline{S}_g^{w_1}}{{}_m \overline{S}_g^{w_2}} \frac{(\overline{W}/e)_1}{(\overline{W}/e)_2}$$

avec le rapport des (W/e) qui doit être conservé si w_1 et w_2 sont suffisamment \neq pour produire des spectres de particules chargées lourdes caractérisés par des valeurs de $(W/e) \neq$ dans un même gaz

Critique de la relation B-G



La théorie B-G ne tient pas compte des $e^-\delta \rightarrow$ Modification de la fluence et modification importante de l'énergie des e^- incidents sur la cavité

Exemple: Densités d'ionisation pour une chambre d'ionisation (air) avec des parois en matériaux variables en fonction de la distance entre les parois pour des γ de 412 keV

Théorie de la cavité de Spencer (Spencer-Attix)

- Tenir compte des effets des $e^-\delta$
- Tenir compte des effets de taille des cavités
- Conditions:
 - Les 2 Conditions B-G sont respectées
 - CPE
 - Pas de Bremsstrahlung

Énergie Seuil

- La cavité est caractérisée par un paramètre Δ (dépendant de la taille de la cavité), défini comme l'E cinétique moyenne des edont le parcours projeté est juste assez grand que pour traverser la cavité
- - 1. Le groupe « rapide »: e^{-} avec $E \ge \Delta$ et qui transportent E et traversent la cavité
 - 2. Le groupe « lent »: e avec $E < \Delta$ et qui sont supposés avoir un range nul \rightarrow Ils perdent leur E au point où $E < \Delta \rightarrow$ ne peuvent ni rentrer dans la cavité ni transporter E

Calcul de la dose selon la théorie S-A (1)

La dose absorbée en un point de w avec CPE →

$$D_w \stackrel{\text{CPE}}{=} \int_{\Delta}^{E_{max}} {}^{\delta} \Phi_E \left(\frac{dE_{\Delta}}{\rho dx} \right)_{elec, w} dE$$

- $dE_{\Delta}/\rho dx$: pouvoir d'arrêt restreint pour des e⁻ incluant seulement les pertes $E < \Delta \rightarrow$ seuls les e⁻ de faible E contribuent à la dose \rightarrow les autres transportent leur E ailleurs
- La limite inférieure de l'intégrale est Δ car les e⁻ avec $E < \Delta$ n'ont pas de range

Calcul de la dose selon la théorie S-A (2)

Une expression similaire est obtenue pour D dans la cavité →

$$D_g \stackrel{\text{CPE}}{=} \int_{\Delta}^{E_{max}} \delta \Phi_E \left(\frac{dE_{\Delta}}{\rho dx}\right)_{elec,g} dE$$

$$\frac{D_g}{D_w} \stackrel{\text{CPE}}{=} \frac{\int_{\Delta}^{E_{max}} \delta \Phi_E \left(\frac{dE_{\Delta}}{\rho dx}\right)_{elec,g} dE}{\int_{\Delta}^{E_{max}} \delta \Phi_E \left(\frac{dE_{\Delta}}{\rho dx}\right)_{elec,w} dE}$$

Rapport de $\delta \Phi_E/\Phi_E$

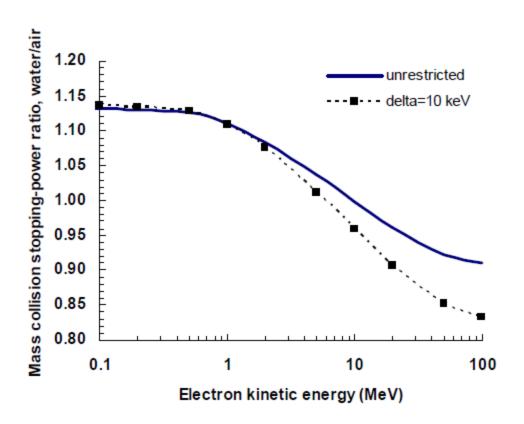
E/E ₀	С	Al	Cu	Sn	Pb
1.00	1.00	1.00	1.00	1.00	1.00
0.50	1.00	1.00	1.00	1.00	1.00
0.25	1.05	1.05	1.06	1.06	1.07
0.125	1.21	1.23	1.25	1.27	1.29
0.062	1.60	1.66	1.73	1.79	1.85
0.031	2.4	2.6	2.8	2.9	3.1
0.016	4.4	4.7	5.2	5.5	6.0
0.008	8.5	9.4	10.5	11.3	12.3
0.004	17	19	22	24	

Moyenne pour E_0 =1.31, 0.65 et 0.33 MeV

Comparaison entre D_g/D_w pour S-A et B-G

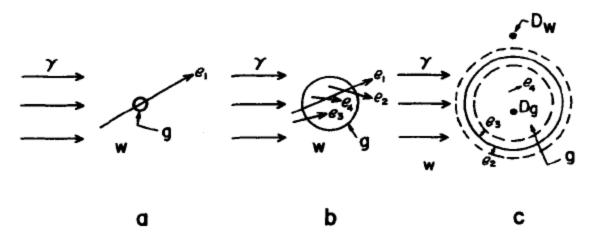
Wall	E ₀	$\Delta (\text{keV}) =$	D_{g}/D_{w}						
			Spencer						
			2.5	5.1	10.2	20.4	40.9	81.8	Bragg-
Medium	(keV)	$Range^{b} (mm) =$	0.015	0.051	0.19	0.64	2.2	7.2	Gray
С	1308		1.001	1.002	1.003	1.004	1.004	1.005	1.005
	654		0.990	0.991	0.992	0.992	0.993	0.994	0.994
	327		0.985	0.986	0.987	0.988	0.988	0.989	0.989
Al	1308		1.162	1.151	1.141	1.134	1.128	1.123	1.117
	654		1.169	1.155	1.145	1.137	1.131	1.126	1.125
	327		1.175	1.161	1.151	1.143	1.136	1.130	1.134
Cu	1308		1.456	1.412	1.381	1.359	1.340	1.327	1.312
	654		1.468	1.421	1.388	1.363	1.345	1.329	1.327
	327		1.485	1.436	1.400	1.375	1.354	1.337	1.353
Sn	1308		1.786	1.694	1.634	1.592	1.559	1.535	1.508
	654		1.822	1.723	1.659	1.613	1.580	1.551	1.547
	327		1.861	1.756	1.687	1.640	1.602	1.571	1.595
Pb	1308		_	2.054	1.940	1.865	1.811	1.770	1.730
	654			2.104	1.985	1.904	1.848	1.801	1.796
	327		_	2.161	2.030	1.946	1.881	1.832	1.876

Rapport des pouvoirs d'arrêt: restreint/non-restreint



Théorie de la cavité de Burlin (Théorie générale de la cavité)

La théorie S-A ne s'applique pas bien aux très grande cavités

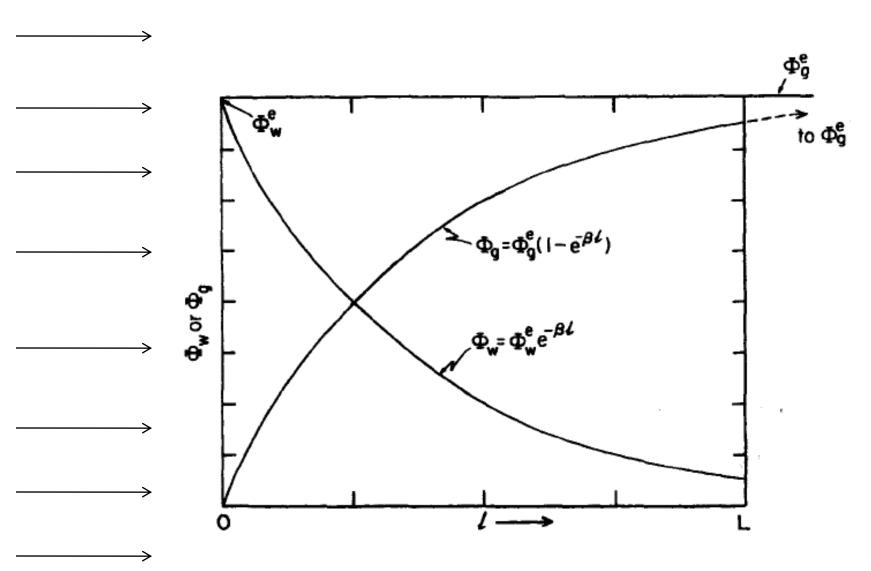


- Effet de taille:
 - a. Petite cavité: D délivrée par des « crossers » (e₁)
 - b. Cavité intermédiaire: D délivrée par des crossers (e_1) , des « starters » (e_2) , des « stoppers » (e_3) et des « insiders » $(e_4) \rightarrow$ dose non-uniforme
 - c. Grande cavité: D délivrée par des insiders (e_4) (rayonnements γ)

Conditions de Burlin

- 1. Les milieux w (parois) et g sont homogènes
- 2. Un champ homogène de rayonnements γ existe dans w et g (pas d'atténuation)
- 3. CPE existe pour tous les points de w et g qui sont à une distance de la frontière de la cavité plus grande que le range maximum des e
- 4. Les spectre des e secondaires générés en w et g sont identiques
- 5. La fluence des e⁻ venant des parois est atténuée exponentiellement lorsqu'ils traversent g (la distribution en *E* reste identique)
- 6. La fluence des e⁻ qui sont créés à l'intérieur de la cavité augmente exponentiellement en fonction de la distance par rapport à la frontière
- 7. Les coefficients d'atténuation de 5. et d'accroissement de 6. sont identiques: β

Condition 7. pour w=g



Relation de cavité de Burlin

$$\frac{\overline{D_g}}{D_w} = d\left({}_{m}\overline{S}_w^g\right) + (1 - d)\left(\frac{\overline{\mu_{en}}}{\rho}\right)_w^g$$

- d: paramètre de la cavité: 1 pour les petites cavités et 0 pour les grandes
- \overline{D}_g : dose moyenne dans le milieu g de la cavité
- $D_w = (K_c)_w$ (sous CPE)
- ${}_m\overline{S}^g_w$: rapport des pouvoirs d'arrêt électronique de g et w (obtenus par B-G ou S-A)
- $(\overline{\mu_{en/\rho}})_w^g$:rapport des coefficient d'absorption massique en énergie pour g et w

Distance d pour w = g

 Par définition de Burlin et avec L, la corde moyenne de la cavité (L=4V/S pour une cavité convexe):

$$d \equiv \frac{\overline{\Phi}_w}{\overline{\Phi}_w^e} = \frac{\int_0^L \Phi_w^e e^{-\beta l} dl}{\int_0^L \Phi_w^e dl} = \frac{1 - e^{-\beta L}}{\beta L}$$

$$1 - d \equiv \frac{\overline{\Phi}_g}{\overline{\Phi}_g^e} = \frac{\int_0^L \Phi_w^e (1 - e^{-\beta l}) dl}{\int_0^L \Phi_w^e dl} = \frac{\beta L + e^{-\beta L} - 1}{\beta L}$$

Distance *d* pour w ≠ g

 Pour w ≠ g → plus de β identiques pour l'accroissement et l'atténuation → pas considéré par Burlin mais →

$$\frac{\overline{\Phi}_g}{\overline{\Phi}_g^e} \equiv d' \neq (1 - d)$$

$$d' + d \neq 1$$

• Choix de β par Burlin \rightarrow

$$e^{-\beta t_{max}} = 0.01$$

avec t_{max} la profondeur maximale de pénétration des e-

Janssens propose 0.04 (meilleur accord avec l'expérience)

Application de la relation de Burlin

• Dose mesurée dans un empilement de dosimètres thermoluminescents LiF pris en sandwich entre des parois faites en matériaux variés et irradié par des 60 Co- γ



Relation de Burlin pour des e incidents

$$\frac{\overline{D_g}}{D_w} = d\left(_m \overline{S}_w^g\right)$$

- Petite cavité $\rightarrow d = 1 \rightarrow \text{Relation B-G}$
- Grande cavité $\rightarrow d = 0$ et $D_g \cong 0 \rightarrow E$ déposée dans une couche superficielle de la cavité \rightarrow effet nul sur la dose moyenne

Autres théories de la cavité

- D'autres théories existent encore → de plus en plus compliquées → parfois difficilement applicables
- Les méthodes de Monte Carlo rendent inutiles de complexifier à l'extrême les théories de la cavité ->
 - Plus simples à appliquer
 - Plus rapides
 - Seules utilisables pour des géométries complexes
- Les théories de la cavité simples continuent d'être utiles dans des cas simples ou pour une première estimation de cas plus compliqués

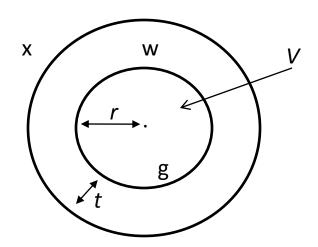
Théorème de Fano

Dans un milieu infini d'une composition atomique donnée et exposé à un champ uniforme de rayonnements indirectement ionisants, le champ de rayonnement des particules secondaires est aussi uniforme et indépendant de la densité du milieu ainsi que des variations de densité entre deux points

Conséquences du théorème de Fano

- La fluence de particules chargées en tout point où la CPE existe est indépendante des variations de densité dans le volume d'origine des particules
- La première condition B-G (cavité petite pour ne pas perturber le champs des particules chargées) peut être ignorée et remplacée par la condition que les parois et la cavité aient des compositions atomiques concordantes (eau et polystyrène par exemple)
- Attention: effet de polarisation négligé → une particule chargée qui traverse un milieu dense le polarise → effet de densité → pour que le théorème soit valable l'effet de densité doit être ≈ dans le 2 milieux
- Théorème de Fano démontré avec l'équation de transport

Dosimètre simple en termes de la théorie de la cavité



- Volume V (la cavité) rempli par un milieu g (gaz, liquide, solide) et entouré d'une paroi d'un milieu w
- La paroi est à la fois une source de particules secondaires chargées qui créent à la dose en V, un blindage contre les particules chargées originaires de l'extérieur x, un filtre, une protection contre les dommages extérieurs,...

Pour les photons et les neutrons (1)

Photons:

$$D \stackrel{\text{CPE}}{=} K_c = \Psi\left(\frac{\mu_{en}}{\rho}\right)$$

$$D \stackrel{\text{TCPE}}{=} K_c(1 + \mu'\overline{x}) = K_c\beta = \Psi\left(\frac{\mu_{en}}{\rho}\right)\beta$$

Neutrons:

$$D \stackrel{\text{CPE}}{=} K = \Phi F_n$$

$$D \stackrel{\text{TCPE}}{=} K_c (1 + \mu' \overline{x}) = K\beta = \Phi F_n \beta$$

Pour les photons et les neutrons (2)

- Si *t* suffisamment grand pour exclure les particules chargées extérieures et au moins aussi grand que le range maximum des particules chargées créées en w
- Si r est suffisamment petit pour satisfaire la 1^{ère} condition B-G
- Si w est irradié de manière uniforme
 - → CPE existe dans la cavité
 - \rightarrow La lecture du dosimètre donne D_g
 - \rightarrow B-G, Spencer ou Burlin (attention à d) permet d'obtenir D_w
 - → Si un milieu x remplaçait g (dans les même conditions) →

$$D_x \stackrel{ ext{CPE}}{=} D_w rac{(\mu_{en}/
ho)_x}{\overline{(\mu_{en}/
ho)_w}}$$
 pour des photons $D_x \stackrel{ ext{CPE}}{=} D_w rac{(\overline{F}_n)_x}{\overline{(\overline{F}_n)_x}}$ pour des neutrons

Pour les particules chargées

- Si r est suffisamment petit pour satisfaire la 1^{ère} condition B-G
- Si t suffisamment petit pour ne pas perturber le champ
- \rightarrow Règle de bonne pratique: ni la paroi, ni la cavité ne peuvent excéder \sim 1% du range des particules chargées incidentes
- Si CPE pour la cavité \rightarrow a lieu si les e⁻ δ produits dans la paroi contrebalancent ceux qui s'échappent de la cavité \rightarrow correspondance obligatoire (en nombre atomique et densité) entre les matériaux de le paroi et de la cavité

$$D = \Phi\left(\frac{dE}{\rho dx}\right)_{elec}$$

Pour des e⁻ incidents → problème du scattering!