Chapitre II: Grandeurs radiométriques et dosimétriques

Grandeurs radiométriques

Grandeurs stochastiques et non-stochastiques

Grandeur stochastique:

- Se produit aléatoirement → sa probabilité d'occurrence est déterminée par sa distribution de probabilité
- Est définie sur un domaine fini (non-infinitésimal) et varie de manière discontinue dans l'espace et le temps → on ne peut pas parler de gradient
- En principe, peut être mesurée avec une erreur arbitrairement faible
- Son espérance mathématique N_e est telle que $\overline{N} \to N_e$ pour $n \to \infty$

Grandeur non-stochastique:

- Dans des conditions données, peut être déterminée par calcul
- Peut être définie en un point et varie de manière continue dans l'espace et le temps → on peut parler de gradient
- Dans le contexte des rayonnements ionisants, sa valeur est égale à l'espérance mathématique d'une quantité stochastique apparentée (ou peut en être déduite)

Dosimétrie et microdosimétrie

- En dosimétrie → quantités non-stochastiques → les quantités infinitésimales telles que dV, dm, dt, ... ont un sens
- Les grandeurs non-stochastiques utilisées en dosimétrie sont obtenues en prenant la moyennes de la grandeur stochastique correspondante
- Les processus stochastiques considérés obéissent à une distribution de Poisson qui est uniquement déterminée par sa valeur moyenne (ex: décroissance radioactive)
- En microdosimétrie (détermination de l'énergie déposée dans un volume petit mais fini - ex: au niveau cellulaire) des quantités stochastiques doivent être considérées

Grandeurs radiométriques

- Grandeurs non-stochastiques définies en tout point de l'espace caractérisant le champ de rayonnement (qui peut être constitué de plusieurs types de particules différentes)
- Chaque grandeur radiométrique est relative à un type de particules
- Deux classes de grandeurs radiométriques:
 - Relative au nombre de particules
 - Relative à l'énergie qu'elles transportent
- Les grandeurs radiométriques peuvent être scalaires ou vectorielles. En pratique → grandeurs scalaires requises

Nombre de particules N – Energie radiante R

- N: Nombre (moyen) de particules émises, transmises ou reçues
- R: **Energie radiante** (unités: J, eV) \rightarrow somme des énergies des particules émises, transmises ou reçues (à l'exclusion de l'énergie de masse) \rightarrow si toutes les particules ont une énergie E $\rightarrow R = EN$ (\rightarrow Coefficient de transfert massique d'énergie devient (μ_{tr}/ρ) = $(dR_{tr}/R)/(\rho dI)$ avec $R_{tr} = E_{tr}N$)
- Ces grandeurs sont appelées globales
- En pratique: type de particules, temps de comptage, ... doivent être précisés

Flux et flux d'énergie

• \dot{N} : flux de particules \rightarrow quotient de dN par dt où dN est l'accroissement du nombre moyen de particules dans l'intervalle de temps dt (unité: s⁻¹):

$$\dot{N} = \frac{dN}{dt}$$

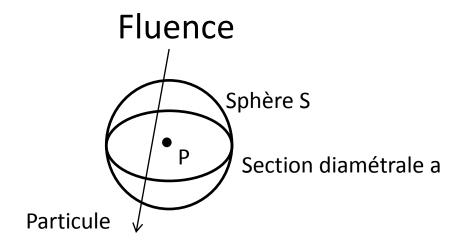
• \dot{R} : flux d'énergie \rightarrow quotient de dR par dt où dR est l'accroissement de l'énergie radiante dans l'intervalle de temps dt (unité: Js-1 ou W):

 $\dot{R} = \frac{dR}{dt}$

 Grandeurs souvent associées à une surface → le flux est alors le nombre de particules qui traversent cette surface par unité de temps. Si la surface entoure une source radioactive → le flux est le taux d'émission de la source

Distributions N_E et R_E

- Pour *E* ∈ [*E*,*E*+*dE*]:
 - Distribution en énergie du nombre de particules: $N_E = \frac{dN}{dE}$
 - Distribution en énergie de l'énergie radiante: $R_E = \frac{dR}{dE}$
- $\bullet \quad R_E = EN_E$
- Par déduction: $N=\int_E N_{E'}dE'$ et $R=\int_E E'N_{E'}dE'$
- Une description complète du champ de rayonnement →
 distributions spatiales, directionnelles et temporelles →
 définition de quantités radiométriques basées sur la
 différentiation de N et R par rapport au temps, à l'aire au
 volume, à la direction, à l'énergie → grandeurs locales:
 dépendent du point de l'espace considéré (non indiqué
 explicitement)



Soit N, nombre moyen de particules monodirectionnelles pénétrant une sphère S finie entourant un point P durant un intervalle de temps Δt entre un temps t_0 et un temps $t \to S$ la sphère est réduite au point P (section diamétrale $da \perp a$ la direction de propagation des particules) \to définition de la **fluence (de particules)** Φ : quotient de dN par da (unité: m^{-2}) \to

$$\Phi = \frac{dN}{da}$$

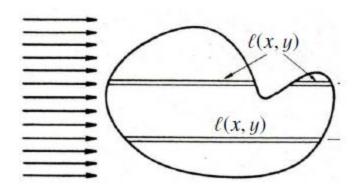
Définition alternative de la fluence

La fluence au point P est numériquement égale à la valeur moyenne de la somme ds des longueurs de traces (supposées rectilignes) des particules à l'intérieur d'un volume infinitésimal dV (non obligatoirement sphérique) en P, divisé par dV (avec l_i la longueur de la trace de la i^e particule)

$$\Phi = \lim_{\Delta V \to 0} \frac{\sum_{i} l_{i}}{\Delta V} = \frac{ds}{dV}$$

→ définition particulièrement utile pour des simulations Monte Carlo

Démonstration



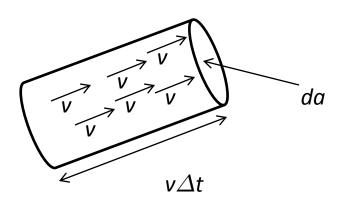
Divisons un volume V traversé par N particules en tubes de section da et de longueur l(x,y) avec le plan OXY \bot à la direction des particules \rightarrow au point (x,y): la section du tube est traversée par dN particules. Par définition de la fluence $\rightarrow dN = \Phi da \rightarrow$ remarquant que la somme des longueurs des traces dans un tube $ds = \sum_i l_i = l(x,y)dN \rightarrow ds = l(x,y)\Phi da = \Phi dV$ puisque $dV = l(x,y)da \rightarrow \Phi = ds/dV$

Cas particulier pour la fluence

Pour un champs de particules de vitesse v qui ne varie pas dans un intervalle de temps Δt (avec n le nombre de particules par unité de volume) \rightarrow

$$\Phi = nv\Delta t$$

Démonstration: $\Phi = dN/da = ndV/da = ndav\Delta t/da = nv\Delta t$



Densité de flux (ou débit de fluence)

• $\varphi = \Phi$: densité de flux (ou débit de fluence) \rightarrow quotient de $d\Phi$ par dt où $d\Phi$ est l'accroissement de la fluence dans l'intervalle de temps dt (unité: m⁻²s⁻¹):

$$\varphi = \dot{\Phi} = \frac{d\Phi}{dt} = \frac{d^2N}{dadt}$$

• La fluence dans l'intervalle de temps $[t_1,t_2]$ est la somme des fluences $\varphi(t)dt$:

$$\Phi(t_1, t_2) = \int_{t_1}^{t_2} \varphi(t) dt$$

Fluence énergétique

• Ψ : **fluence énergétique** au point P \rightarrow quotient de dR par da où dR est l'énergie radiante incidente sur une sphère centrée en P et de section diamétrale $da \perp$ à la direction de propagation des particules (unité: Jm $^{-2}$) \rightarrow

$$\Psi = \frac{dR}{da}$$

 Dans le cas particulier où uniquement des particules d'une énergie constante E sont présentes →

$$R = EN \Rightarrow \Psi = E\Phi$$

Débit de fluence énergétique

• $\dot{\Psi}$: **débit de fluence énergétique** \rightarrow quotient de d Ψ par dt où d Ψ est la variation de la fluence énergétique dans l'intervalle de temps dt (unité: Jm⁻²s⁻¹):

$$\dot{\Psi} = \frac{d\Psi}{dt} = \frac{d^2R}{dadt}$$

• La fluence énergétique dans l'intervalle de temps $[t_1,t_2]$ est la somme des fluences énergétiques $\dot{\psi}(t)dt$:

$$\Psi(t_1, t_2) = \int_{t_1}^{t_2} \dot{\Psi}(t) dt$$

 Dans le cas particulier où uniquement des particules d'une énergie constante E sont présentes →

$$\dot{\Psi} = E\varphi$$

Grandeurs différentielles en angle et énergie

Grandeurs précédentes suffisantes si particules de même énergie qui se déplacent de manière isotrope

→ si non: il faut considérer les distributions angulaires des trajectoires et les distributions en énergie

Fluence spectrique et fluence énergétique spectrique

• Φ_E : fluence spectrique \rightarrow distribution en énergie de la fluence avec $d\Phi$ la fluence de particules dont l'énergie est dans l'intervalle [E,E+dE] (unité: $J^{-1}m^{-2}$):

$$\Phi_E = \frac{d\Phi}{dE}$$

• Ψ_E : fluence énergétique spectrique \rightarrow distribution en énergie de la fluence énergétique avec $d\Psi$ la fluence énergétique de particules dont l'énergie est dans l'intervalle [E,E+dE] (unité: m⁻²):

$$\Psi_E = \frac{d\Psi}{dE}$$

Radiance de particules et radiance énergétique

• $\dot{\Phi}_{\Omega} = \varphi_{\Omega}$: radiance de particules \rightarrow quotient de $d\dot{\Phi}$ par $d\Omega$ où $d\dot{\Phi}$ est le débit de fluence des particules qui se propagent dans l'angle solide $d\Omega$ autour d'une direction particulière $\overrightarrow{1_{\Omega}}$ (unité: m-2s-1sr-1):

$$\varphi_{\Omega} = \dot{\Phi}_{\Omega} = \frac{d\dot{\Phi}}{d\Omega}$$

• Ψ_{Ω} : radiance énergétique \rightarrow quotient de $d\dot{\Psi}$ par $d\Omega$ où $d\dot{\Psi}$ est le débit de fluence énergétique des particules qui se propagent dans l'angle solide $d\Omega$ autour d'une direction particulière $\overrightarrow{1_{\Omega}}$ (unité: Wm⁻²sr⁻¹):

$$\dot{\Psi}_{\Omega} = \frac{d\dot{\Psi}}{d\Omega}$$

Distribution en énergie de la radiance et de la radiance énergétique

$$\dot{\Phi}_{\Omega,E} = \frac{d\dot{\Phi}_{\Omega}}{dE}$$

$$\dot{\Psi}_{\Omega,E} = \frac{d\dot{\Psi}_{\Omega}}{dE}$$

Fluence planaire

Fluence planaire: nombre de particules qui traversent un plan donné dans les deux sens (sommation par addition scalaire) par unité de surface du plan

Grandeurs vectorielles

Pour décrire la propagation de particules dans une direction $\overrightarrow{1_\Omega}$ spécifique \rightarrow définition de grandeurs vectorielles associées aux grandeurs précédentes

Exemple:

Flux net (grandeur vectorielle associée à la fluence planaire): nombre de particules par unité de temps qui traversent une unité de surface d'un plan donné dans un sens **moins** le nombre de particules par unité de temps qui le traversent dans l'autre sens

→ **Attention**: La dosimétrie requiert une addition scalaire de l'effet des particules

Grandeurs dosimétriques

Grandeurs dosimétriques

- Les grandeurs dosimétriques → caractérisation de l'effet «physique» des rayonnements sur la matière en terme d'énergie transférée ou de dépôt d'énergie
- Les grandeurs dosimétriques → « combinaison» entre grandeurs radiométriques et les coefficients d'interaction des rayonnements ionisants → calculs: tout doit être connu → mesures: accès direct à certaines grandeurs dosimétriques
- Définition d'un certain nombre de grandeurs stochastiques → la moyenne donnera la valeur non-stochastique correspondante
- Dans la suite → volume V et masse m
- Remarque: les neutrinos et l'énergie qu'ils transportent sont négligés en physique radiologique et dosimétrie car pas d'interaction avec la matière et indétectables

Énergie déposée par une particule

 ϵ_i : énergie déposée (unité: J ou eV) \rightarrow énergie déposée en seule interaction i au point de transfert (\rightarrow stochastique) \rightarrow

$$\epsilon_i = \epsilon_{in} - \epsilon_{out} + Q$$

avec $\epsilon_{\it in}$: énergie de la particule incidente ($\it E$ au repos exclue) $\epsilon_{\it out}$: somme des énergies des particules après l'interaction ($\it E$ au repos exclue)

Q: variation de l'E de masse des particules impliquées dans l'interaction (Q>0: \searrow de l'E au repos; Q<0: \nearrow de l'E au repos)

Énergie impartie

 ϵ: énergie impartie (unité: J ou eV) → somme des énergies déposées dans V (→ stochastique) →

$$\epsilon = \sum_{i} \epsilon_{i}$$

- La somme se fait sur l'ensemble des événements se produisant dans V (un ou plusieurs)
- Un événements est défini comme l'ensemble des interactions dans le volume dues à des particules statistiquement corrélées (interactions d'une même particule primaire et des secondaires qu'elle produit)

Énergie impartie moyenne

 $\overline{\epsilon}$:énergie impartie moyenne (unité: J ou eV) \rightarrow grandeur stochastique correspondant à l'énergie impartie \rightarrow

$$\bar{\epsilon} = R_{in} - R_{out} + \sum \bar{Q}$$

avec $R_{\it in}$: énergie radiante de toutes les particule (chargées ou non) qui entrent dans V

 $R_{\it out}$: énergie radiante de toutes les particule (chargées ou non) qui quittent $\it V$

 $\sum \bar{Q}$: somme sur toutes les variations de l'E de masse des particules impliquées dans les interactions (Q>0: \searrow de l'E au repos; Q<0: \nearrow de l'E au repos)

Énergie spécifique

z: énergie spécifique (unité: Jkg⁻¹) \rightarrow quotient de l'énergie impartie ϵ dans V par la masse de matière m de ce volume \rightarrow

$$z = \frac{\epsilon}{m}$$

Dose absorbée

• D: **dose absorbée** au point P (unité: Jkg⁻¹ ou gray, Gy) \rightarrow quotient de $\overline{d\epsilon}$ par dm avec $\overline{d\epsilon}$ l'énergie impartie moyenne dans le volume dV, de masse dm, autour de P \rightarrow

$$D = \frac{\overline{d\epsilon}}{dm}$$

On a aussi:

$$D = \lim_{V \to 0} \overline{\left(\frac{\epsilon}{m}\right)} = \lim_{V \to 0} \overline{z}$$

 La dose absorbée est donc la valeur moyenne de l'énergie impartie à la matière par unité de masse à un point donné

Dose intégrale

• Pour milieu non-uniforme $\rightarrow \rho(\overline{r}) \rightarrow$

$$\overline{d\epsilon} = \int_V D(\overline{r}) \rho(\overline{r}) d\overline{r}$$

 De manière équivalente, pour milieu V non-uniforme avec une masse moyenne m →

$$\overline{D} = \frac{(d\epsilon)_e}{dm}$$

 $avec(\overline{d\epsilon})_e = \overline{D}dm$: la dose intégrale (unité: J ou eV)

Débit de dose

• \hat{D} : **Débit de dose**: quotient de dD et de dt, avec dD: variation de la dose absorbée dans l'intervalle de temps dt (unité: Jkg⁻¹s⁻¹ ou Gys⁻¹) \rightarrow

$$\dot{D} = \frac{dD}{dt}$$

La dose absorbée entre des temps t₁ et t₂ →

$$D(t_0, t_1) = \int_{t_0}^{t_1} \dot{D}(t) dt$$

Énergie transférée

 $\overline{\epsilon}_{tr}$: énergie transférée (unité: J ou eV) \rightarrow somme moyenne des énergies cinétiques initiales de toutes les particules chargées libérées dans V par les particules non chargées incidentes à V-y compris les e^- Auger \rightarrow

$$\bar{\epsilon}_{tr} = (R_{in})_u - (R_{out})_u^{nonr} + \sum \bar{Q}$$

avec $(R_{\rm in})_{\rm u}$: énergie radiante des particule non chargées qui entrent dans V

 $(R_{out})_u^{nonr}$: énergie radiante des particule non chargées qui quittent V (à l'exception des pertes d'E radiatives, dans V, des particules chargées libérées dans $V \rightarrow$ Bremsstrahlung ou annihilation en vol d'un e⁺)

Énergie nette transférée

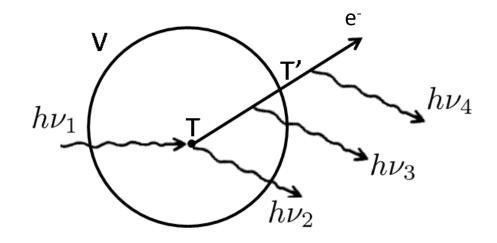
 $\overline{\epsilon}_{tr}^n$: énergie nette transférée (unité: J ou eV) \rightarrow somme moyenne des énergies cinétiques communiquées par les particules non chargées incidentes à V aux particules chargées libérées dans V moins l'énergie que celles-ci perdent lors de collisions radiatives (quel que soit l'endroit où la perte a lieu) \rightarrow

$$\bar{\epsilon}_{tr}^{n} = (R_{in})_{u} - (R_{out})_{u}^{nonr} - (R_{out})_{u}^{rad} + \sum \bar{Q}$$

$$\rightarrow \bar{\epsilon}_{tr}^{n} = \bar{\epsilon}_{tr} - (R_{out})_{u}^{rad}$$

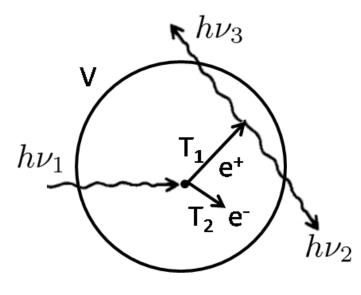
avec $(R_{out})_u^{rad}$: la partie de la radiance $(R_{out})_u^{nonr}$ qui correspond aux pertes d'énergie radiatives (quel que soit l'endroit où la perte a lieu)

Exemple 1



$$\overline{\epsilon} = h\nu_1 - (h\nu_2 + h\nu_3 + T')$$
 $\overline{\epsilon}_{tr} = h\nu_1 - h\nu_2 = T$
 $\overline{\epsilon}_{tr}^n = h\nu_1 - h\nu_2 - (h\nu_3 + h\nu_4) = T - (h\nu_3 + h\nu_4)$

Exemple 2



$$h\nu_2 = 0.511 \text{ MeV} + T_3$$

$$h\nu_3 = 0.511 \text{ MeV} + T_4$$

$$\to T_5 = T_3 + T_4$$

$$\sum_{i} \bar{Q} = -1.022 \text{ MeV} + 1.022 \text{ MeV} = 0$$
$$h\nu_1 - 1.022 \text{ MeV} = T_1 + T_2$$

$$\overline{\epsilon} = h\nu_1 - (h\nu_2 + h\nu_3) = h\nu_1 - 1.022 \text{ MeV} - T_5 = T_1 + T_2 - T_5$$

 $\overline{\epsilon}_{tr} = h\nu_1 - 1.022 \text{ MeV} = T_1 + T_2$

 $\overline{\epsilon}_{tr}^n = h\nu_1 - 1.022 \text{ MeV} - T_5 = T_1 + T_2 - T_5$

Kerma

- Quantité applicable uniquement aux particules non-chargées
- K: **Kerma** (Kinetic energy released per unit mass) au point P (unité: Jkg⁻¹ ou Gy) \rightarrow quotient de $\overline{d\epsilon}_{tr}$ par dm avec $\overline{d\epsilon}_{tr}$ l'énergie transférée dans le volume dV, de masse dm, autour de P \rightarrow

$$K = \frac{\overline{d\epsilon}_{tr}}{dm}$$

 Kerma: valeur moyenne de l'E cinétique transférée par des particules non-chargées à des particules chargées par unité de masse au point d'intérêt P

Kerma collisionnel

• K_c : **Kerma collisionnel** au point P (unité: Jkg⁻¹ ou Gy) \rightarrow quotient de $\overline{d\epsilon}_{tr}^n$ par dm avec $\overline{d\epsilon}_{tr}^n$ l'énergie nette transférée dans le volume dV, de masse dm, autour de P \rightarrow

$$K_c = \frac{\overline{d\epsilon}_{tr}^n}{dm}$$

- Kerma collisionnel: valeur moyenne de l'E nette transférée par des particules non-chargées à des particules chargées par unité de masse au point d'intérêt P → correspond à l'E destinée à être perdue par ionisations ou excitations
- $K = K_c + K_r$ avec K_r (r pour radiatif) qui correspond à l'E destinée à être emportée par des photons
- Neutrons \rightarrow *E* cédée à des particules lourdes \rightarrow Bremsstrahlung faible \rightarrow *K* = K_c

$K \text{ et } K_c \longleftrightarrow Fluence \'energ\'etique (photons)$

Pour des photons d'énergie E et de fluence énergétique Ψ traversant un milieu de masse volumique ρ et composé d'atomes de numéro atomique Z → au point P

$$K = \Psi \left(\frac{\mu_{tr}}{\rho}\right)_{E,Z}$$
$$K_c = \Psi \left(\frac{\mu_{en}}{\rho}\right)_{E,Z}$$

• Si E non constant \rightarrow spectre en E entre E = 0 et $E = E_{max} \rightarrow$

$$K = \int_{0}^{E_{max}} \Psi_{E} \left(\frac{\mu_{tr}}{\rho}\right)_{E,Z} dE$$

$$K_{c} = \int_{0}^{E_{max}} \Psi_{E} \left(\frac{\mu_{en}}{\rho}\right)_{E,Z} dE$$

K ←→ Fluence (neutrons)

- Pour des neutrons → décrit en terme de fluence et non de fluence énergétique comme les photons
- Définition d'un facteur (ou coefficient) de Kerma F_n (souvent tabulé à la place de μ_{tr} dans la littérature pour des neutrons) \rightarrow

$$(F_n)_{E,Z} = \left(\frac{\mu_{tr}}{\rho}\right)_{E,Z} E$$

• K devient \rightarrow

$$K = \Phi(F_n)_{E,Z}$$

$$K = \int_0^{E_{max}} \Phi_E(F_n)_{E,Z} dE$$

Coefficients moyens

$$\frac{\overline{\left(\frac{\mu_{tr}}{\rho}\right)}_{\Psi_{E}(E),Z} = \frac{K}{\Psi} = \frac{\int_{0}^{E_{max}} \Psi_{E}\left(\frac{\mu_{tr}}{\rho}\right)_{E,Z} dE}{\int_{0}^{E_{max}} \Psi_{E} dE}$$

$$\frac{\overline{\left(\frac{\mu_{en}}{\rho}\right)}_{\Psi_{E}(E),Z} = \frac{K_{c}}{\Psi} = \frac{\int_{0}^{E_{max}} \Psi_{E}\left(\frac{\mu_{en}}{\rho}\right)_{E,Z} dE}{\int_{0}^{E_{max}} \Psi_{E} dE}$$

$$\overline{(F_{n})}_{\Phi_{E}(E),Z} = \frac{K}{\Phi} = \frac{\int_{0}^{E_{max}} \Phi_{E}(F_{n})_{E,Z} dE}{\int_{0}^{E_{max}} \Phi_{E} dE}$$

Débit de Kerma

• K: **Débit de Kerma**: quotient de dK et de dt, avec dK: variation de Kerma dans l'intervalle de temps dt (unité: $Jkg^{-1}s^{-1}$ ou Gys^{-1}) \rightarrow

$$\dot{K} = \frac{dK}{dt}$$

• Le Kerma entre des temps t_1 et $t_2 \rightarrow$

$$K(t_0, t_1) = \int_{t_0}^{t_1} \dot{K}(t) dt$$

Exposition

X: Exposition (unité: Ckg⁻¹) → quotient de dQ par dm avec dQ la valeur absolue de la charge de tous les ions d'un même signe produits dans l'air quand tous les e⁻ et les e⁺ libérés ou créés par des rayons X ou des γ dans un volume dV d'air (de masse dm) sont stoppés dans l'air →

$$X = \frac{dQ}{dm}$$

- Exposition
 → mesure de l'ionisation produite dans de l'<u>air</u> par des <u>rayons X</u> ou des <u>rayons γ</u>
- Les ionisations produites par les e Auger sont inclues dans dQ mais pas celles dues aux photons provenant des processus radiatifs
- Équivalent en « charge » du Kerma collisionnel dans l'air pour des rayons X ou des γ

Énergie transférée à une unité de masse d'air (par unité d'exposition)

- Pour de l'air sec→ l'énergie moyenne dépensée dans le milieu par paire d'ions formée W_{air} = 33.97 eV (pour des rayons X et γ avec E > quelques keV) → constant
- Énergie transférée à une unité de masse d'air (par unité d'exposition) ->

$$\frac{W_{air}}{e} = \frac{33.97 \times 1.602 \times 10^{-19}}{1.602 \times 10^{-19}} = 33.97 \text{ J/C}$$

$X \longleftrightarrow K_c \longleftrightarrow \Psi$ ou Φ

• Exposition à un point P due à des photons d'énergie E et de fluence énergétique $\Psi \rightarrow$

$$X = (K_c)_{air} \left(\frac{e}{W}\right)_{air} = (K_c)_{air} / 33.97$$

$$X = \Psi\left(\frac{\mu_{en}}{\rho}\right)_{E,air} \left(\frac{e}{W}\right)_{air}$$

• Si E non constant \rightarrow spectre en E entre E = 0 et $E = E_{max} \rightarrow$

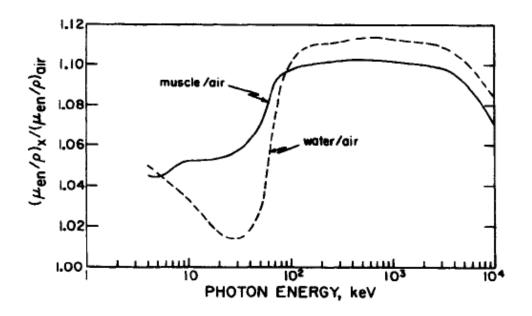
$$X = \int_{0}^{E_{max}} \Psi_{E} \left(\frac{\mu_{en}}{\rho}\right)_{E,air} (e/W)_{air} dE$$

$$X = (e/W)_{air} \int_{0}^{E_{max}} E\Phi_{E} \left(\frac{\mu_{tr}}{\rho}\right)_{E,air} (1-g) dE$$

Signification de l'exposition

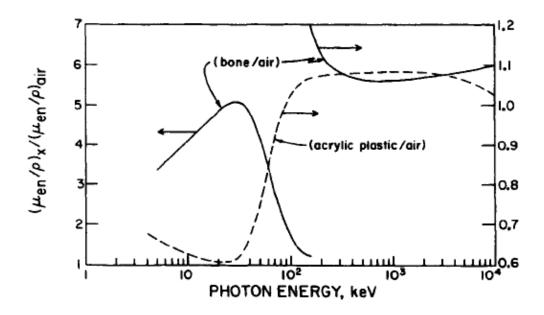
• Pour *E* constant \rightarrow X $\propto \Psi$

• L'air est approximativement « tissu-équivalent » (muscles) pour des rayons X ou $\gamma \rightarrow$ l'air est un bon milieu de référence



Signification de l'exposition (2)

On note la grande différence entre l'absorption dans l'air et dans l'os → dû à ↗ de l'effet photoélectrique dans l'os car Z ↗ (os: calcium (Z = 20) et phosphore (Z = 15))



Signification de l'exposition (3)

• Pour Ψ et E donnés \rightarrow X \propto $(\mu_{\rm en}/\rho)_{\rm E,air}$

•
$$(\mu_{\rm en}/\rho)_{\rm E,muscle} / (\mu_{\rm en}/\rho)_{\rm E,air} \approx 1.07 \pm 3\%$$

- K_c dans le muscle \propto ($\mu_{\rm en}/
 ho$)_{E,muscle}
- K_c dans le muscle, par unité d'exposition, est approximativement indépendant de l'énergie du photon

Débit d'exposition

• X: **Débit d'exposition** \rightarrow quotient de dX et de dt, avec dX: variation de l'exposition dans l'intervalle de temps dt (unité: $Ckg^{-1}s^{-1}) \rightarrow$

$$\dot{X} = \frac{dX}{dt}$$

L'exposition entre des temps t₁ et t₂ →

$$X(t_0, t_1) = \int_{t_0}^{t_1} \dot{X}(t)dt$$

Cema

- Quantité applicable uniquement aux particules chargées
- C: Cema (converted energy per unit mass) au point P (unité: Jkg^{-1}) \rightarrow quotient de $\overline{d\epsilon}_{elec}$ par dm avec $\overline{d\epsilon}_{elec}$ l'énergie perdue durant des interactions électroniques par les particules chargées, à l'exception des électrons secondaires, dans le volume dV, de masse dm, autour de $P \rightarrow$

$$C = \frac{d\epsilon_{elec}}{dm}$$

• Le Cema peut être exprimé en fonction de $\Phi \rightarrow$

$$C = \int_0^{E_{max}} \Phi_E \left(\frac{dE}{\rho dx}\right) dE$$

• La fluence spectrique $\Phi_{\rm E}$ n'inclut pas les e secondaires \to ceux-ci déposent leur énergie localement

Cema restreint

- OK pour ions mais problème pour e⁻ → fluence des e⁻ incidents ne peut pas être sépare de celle des e⁻ secondaires
- Solution définition du Cema restreint:

$$C = \int_0^{E_{max}} \Phi_E' \frac{L_\Delta}{\rho} dE$$

avec Φ' qui inclut les e⁻ secondaires avec $E > \Delta$

• Ce ne sont plus les e⁻ secondaires mais les e⁻ avec $E < \Delta$ qui sont absorbés localement

Débit de Cema

• C: **Débit de Cema** \rightarrow quotient de dC et de dt, avec dC: variation de Cema dans l'intervalle de temps dt (unité: Jkg⁻¹ s⁻¹) \rightarrow

$$\dot{C} = \frac{dC}{dt}$$

Le Cema entre des temps t₁ et t₂ →

$$C(t_0, t_1) = \int_{t_0}^{t_1} \dot{C}(t)dt$$

Dose équivalente

- w_R : Facteur de pondération pour les rayonnements R \rightarrow grandeur adimensionnelle caractérisant les risques pour un être humain des différents types et énergies de rayonnements ionisants et devant être appliquée comme un facteur de pondération à la dose absorbée pour le rayonnement R
- H_T : **Dose équivalente** dans un organe ou un tissu (unité: Jkg⁻¹ ou sievert (Sv)) \rightarrow

$$H_T = \sum_R w_R D_{T,R}$$

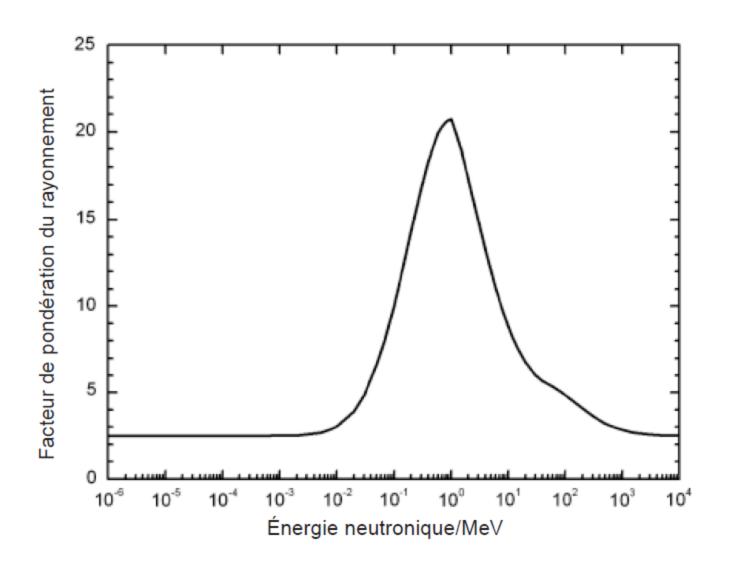
où $D_{T,R}$ est la dose absorbée moyenne dans le volume d'un organe ou d'un tissu T spécifié

• Attention \rightarrow pour être rigoureux: unité de w_R : Sv/Gy

Facteurs de pondération pour les rayonnements (ICRP 103)

Type de rayonnement	Facteur de pondération pour les rayonnements, w _R
Photons	1
Électrons ^a et muons	1
Protons et pions chargés	2
Particules alpha, fragments de fission, ions lourds	20
Neutrons	Une fonction continue de l'énergie des neutrons

Facteurs de pondération pour les neutrons (ICRP 103)



Dose effective

- w_T : Facteur de pondération pour les tissus $T \rightarrow$ « Ces valeurs de w_T sont choisies pour représenter les contributions des divers organes et tissus, pris individuellement, au détriment global associé aux effets stochastiques radio-induits. » (ICRP103) $\rightarrow \sum_T w_T = 1$
- E: Dose effective (unité: Sv) → la somme pondérée des doses équivalentes reçues par les tissus

$$E = \sum_{T} w_T H_T = \sum_{T} w_T \sum_{R} w_R D_{T,R}$$

Facteur de pondération pour les tissus

Tissu	w _T	$\sum w_{T}$
Moelle osseuse (rouge), côlon, poumons, estomac, sein, tissus restants*	0,12	0,72
Gonades	0,08	0,08
Vessie, œsophage, foie, thyroïde	0,04	0,16
Surface osseuse, cerveau, glandes salivaires, peau	0,01	0,04
	Total	1,00

^{*} Tissus restants : surrénales, région extrathoracique (ET), vésicule biliaire, cœur, reins, ganglions lymphatiques, muscle, muqueuse buccale, pancréas, prostate (♂), intestin grêle, rate, thymus, utérus/col de l'utérus(♀).

Remarque sur les unités

Historiquement, d'autres unités ont été utilisées pour certaines grandeurs → actuellement, les unités SI sont obligatoires, mais parfois vous rencontrerez encore ces autres unités (USA):

- Erg (erg): Unité CGS de l'énergie \rightarrow 1 erg = 10^{-7} J
- Rad (rad): dose relative équivalente à 100 ergs d'énergie absorbés dans un gramme de matière → 1 rad = 10⁻² Gy
- Rem (rem): Roentgen Equivalent Man \rightarrow 1 rem = 10⁻² Sv
- Unité de charge électrostatique (esu): Unité CGS de la charge électrique → 1 esu = 3.3356×10⁻¹⁰ C
- Roentgen (R): exposition qui produit, dans 1 cm³ d'air sec à pression et température normale, une esu \rightarrow 1 R = 2.58 10⁻⁴ C/kg
- Curie (Ci): activité de 1 g de 226 Ra \rightarrow 1 Ci = 3.7 1010 Bq