Chapitre X: Dosimètres à luminescence stimulée optiquement Dosimètres à luminescence stimulée optiquement

- A nouveau → processus de luminescence → cette fois-ci stimulée par de la lumière (UV, visible, IR)
- Quand la luminescence stimulée optiquement est utilisée en dosimétrie → dosimètre OSL
- Grand développement lors des dernières années
- Remarque → quand on excite le défaut par une processus lumineux → radiophotoluminescence (RPL) → fin du chapitre
- Références:
 - L. Bøtter-Jensen, S.W.S. McKeever, A.G. Wintle, Optically stimulated luminescence dosimetry (Elsevier Science) 2003
 - S.W.S. McKeever, Optically stimulated luminescence dosimetry, Nuclear Instruments and Methods in Physics Research B: 184 (2001) 29–54

Historique

- Les 1^{ère} mesures OSL « pratiques » ont été faites en 1985 sur du quartz et du feldspath → via la détermination de la dose environnementale absorbée par ces matériaux → détermination de l'âge de matériaux archéologiques ou géologiques
- La mesure de la luminescence du matériau est une mesure de la dose absorbée depuis la dernière exposition à la lumière → par comparaison avec des échantillons de référence → datation
- Pour la dosimétrie personnelle → développement tardif dû à l'absence de « bons » matériaux (sensible aux rayonnements, Z_{eff} petit, faible fading,...)
- Actuellement → développement de « bons » matériaux → Al₂O₃:C, quartz,...

Avantages des OSL

- Techniques de lecture plus simples que pour TLD \rightarrow uniquement optique
- Pas de chauffage \rightarrow pas de thermal quenching
- Multiples lectures possibles → pas nécessaire de stimuler tous les pièges lors de la 1^{ère} lecture
- Processus de lecture rapide

Probabilité de libération p

• Thermoluminescence \rightarrow

$$p = s \exp\left(-\frac{E}{kT}\right)$$

• Stimulation optique à une longueur d'onde λ donnée \rightarrow

$$p(E_0) = \Phi\sigma(E_0)$$

avec Φ , l'intensité de la stimulation optique, σ , la section efficace de photoionisation pour l'état métastable et E_0 , l'énergie de stimulation optique seuil pour la libération de l'e⁻ du piège

Section efficace de photoionisation (1)

- $\sigma(E_0)$ présente une valeur seuil en énergie \rightarrow pour $E < E_0 \rightarrow \sigma(E_0) = 0$
- ≠ expressions ont été établies pour la dépendance en fréquence de $\sigma(E_0) \rightarrow \sigma(h\nu, E_0)$ en fonction du potentiel au voisinage du défaut
- Pour un piège peu profond → potentiel hydrogénoïde (et onde plane pour le e⁻) →

$$\sigma(h\nu, E_0) \propto \frac{(h\nu - E_0)^{3/2}}{(h\nu)^5}$$

 Pour un piège profond → potentiel en fonction-delta pour le défaut (modèle de Lucovsky) avec l'hypothèse que la masse de l'e⁻ dans l'état localisé est égale à la masse effective (m_e) de l'e⁻ dans la bande de conduction →

$$\sigma(h\nu, E_0) \propto \left[\frac{4(h\nu - E_0)E_0}{(h\nu)^2}\right]^{3/2}$$

Section efficace de photoionisation (2)

 Piège profond → modèle de Grimmeis et Lebedo qui considèrent une masse m₀ (masse au repos) pour l'e⁻ dans l'état localisé →

$$\sigma(h\nu, E_0) \propto \frac{(h\nu - E_0)^{3/2}}{h\nu[h\nu - E_0(1 - m_0/m_e)]^2}$$

 D'autres modèles existent encore mais pour OSL → pièges profonds → les modèles de Lucovsky ou de Grimmeis et Lebedo sont les plus souvent utilisés

 $\sigma(h\nu, E_0)$ pour E_0 = 3.0 et m₀/m_e = 2 (courbes normalisées pour avoir σ_{max} = 1): 1: hydrogénoïde, 2: Lucovsky, 3: Grimmeis et Lebedo

Modes de stimulation optique

- 1. Φ = constante (et λ constant aussi) \rightarrow luminescence stimulée optiquement en mode continu (continuous-wave OSL ou CW-OSL)
- 2. Introduction d'une dépendance en temps pour $\Phi(t)$ ou $\lambda(t) \rightarrow$ exemple 1: accroissement linéaire de l'intensité de la stimulation optique pour λ fixé (avec $\beta_{\Phi} = d\Phi/dt$) \rightarrow

 $\Phi(t) = \Phi_0 + \beta_\Phi t$

→ luminescence stimulée optiquement en mode linéaire (linear modulation OSL ou LM-OSL)

3. \rightarrow exemple 2: stimulation pulsée \rightarrow luminescence stimulée optiquement en mode pulsé (pulsed OSL ou POSL) avec Δt , la largeur de l'impulsion et τ , la période \rightarrow

$$\begin{cases} \Phi(t) = \Phi_0 \text{ pour } t_0 \leq t < t_0 + \Delta t \\ \Phi(t) = 0 \text{ pour } t_0 + \Delta t \leq t < t_0 + \tau \end{cases}$$

Représentation des 3 modes en OSL

CW-OSL

- Mode le plus souvent utilisé en pratique à cause de sa simplicité d'application
- Modèle le plus simple: 1 piège 1 centre de recombinaison (comme pour TL)

 Complexités supplémentaires peuvent être ajoutées par la suite

1 piège – 1 centre de recombinaison: 1^{er} ordre

- Hypothèse de quasi-équilibre (QE)
- Repiégeage négligeable
- Equation similaires à celles obtenues pour TL \rightarrow

$$I_{OSL}(t) = -\frac{dm}{dt} = -\frac{dn}{dt} = np$$
$$I_{OSL}(t) = n_0 p \exp(-tp) = I_0 \exp(-t/\tau_d)$$

avec $\tau_d^{-1} = p = \Phi \sigma$ avec τ_d la constante de décroissance du mode CW-OSL

- Modèle du 1^{er} ordre et décroissance exponentielle de l'intensité lumineuse
- Quand tous les pièges sont vidés I_{OSL} = 0

• n_0 est égal à l'aire de $I_{OSL}(t) \rightarrow$

$$\int_0^\infty I_{OSL}(t)dt = n_0$$

• L'intensité initiale est \propto à n_0 et $\Phi \rightarrow I_{OSL}(0) = n_0 \Phi \sigma$

1 piège – 1 centre de recombinaison: 2^{ème} ordre

• Taux de repiégeage significatif \rightarrow

$$I_{OSL}(t) = np - n_c(N - n)A_n$$

• Pour $N \gg n$ et $R = A_n / A_m \gg n / (N-n) \rightarrow$ on obtient la forme du 2^{ème} ordre \rightarrow

$$I_{OSL}(t) = \frac{n^2 p}{NR} = -\frac{an}{dt}$$
$$I_{OSL}(t) = I_0 \left(1 - \frac{n_0 pt}{NR}\right)^{-2}$$

avec $I_0 = rac{n_0^2 p}{NR}$

1 piège – 1 centre de recombinaison: ordres supérieurs

$$I_{OSL}(t) = I_0 \left(1 - \frac{n_0 p t}{NR}\right)^{\frac{b}{1-b}}$$

avec
$$I_0 = \frac{n_0^b p}{NR}$$

Modèles contenant des pièges et des centres multiples

Pièges indépendants

 Considérons 2 pièges (1 et 2) sensibles optiquement et indépendants → soient des concentrations de pièges n₁ et n₂ et des probabilités de libération p₁ = τ_{d1}⁻¹ et p₂ = τ_{d2}⁻¹ → principe de superposition →

$$-\frac{dm}{dt} = -\frac{dn_1}{dt} - \frac{dn_2}{dt}$$

$$I_{OSL}(t) = n_{10}p_1 \exp(-tp_1) + n_{20}p_1 \exp(-tp_2)$$

= $I_{01} \exp(-t/\tau_1) + I_{02} \exp(-t/\tau_2)$

• Principe de superposition s'applique à plus de 2 pièges

Piège profond supplémentaire sans stimulation optique

- Piège profond supplémentaire sans stimulation optique (piège 2) se produit pour une stimulation à longue longueur d'onde insuffisante pour stimuler le piège profond → piège concurrent au centre de recombinaison
- L'intensité OSL s'écrit (avec N₂, n₂ et An₂, la concentration de pièges vides, la concentration de pièges occupés et la probabilité de repiégeage pour le piège profond) →

$$I_{OSL}(t) = n_{10}p \exp\left(-t/\tau_d\right) - n_c A_{n2}(N_2 - n_2)$$

- L'intensité est réduite dû au piégeage dans le piège profond
- La décroissance n'est plus exponentielle

Piège peu profond supplémentaire avec thermoluminescence

 $I_{OSL}(t) = n_{10}p \exp\left(-t/\tau_d\right) + n_2 s \exp\left(-E/kT\right) - n_c A_{n2}(N_2 - n_2)$

- Les 2 derniers termes se combinent pour produire une composante longue et dépendante en température à la courbe OSL
- Cela peut impliquer (en fonction des paramètres) une croissance initiale de I_{OSL} suivie par une décroissance → on ne peut plus parler de courbe de décroissance OSL

Second centre de recombinaison (non-radiatif)

- Un second centre de recombinaison (2) peut exister et être non-radiatif (ou émettre de la lumière dans une fréquence endehors de la fenêtre sensible du détecteur)
- Soient m₁ et m₂, les concentrations de h⁺ en R₁ et R₂
- Comme seul la recombinaison e^- h⁺ en 1 est radiative \rightarrow

$$I_{OSL}(t) = -\frac{dm_1}{dt}$$
$$I_{OSL}(t) = np \exp\left(-t/\tau_d\right) - \frac{dm_2}{dt}$$

• A nouveau réduction de I_{OSL}

Modèles plus complexes

- Pour les modèles précédents → on ajoute 1 piège profond <u>ou</u> 1 piège peu-profond <u>ou</u> 1 centre de recombinaison
- Pour des matériaux réels → ils contiennent de multiples pièges, profonds ou non, et de de multiples centres de recombinaison (radiatifs ou non) → modèle avec tous les éléments →

Résultats pour ce modèle complexe

LM-OSL

 Méthode alternative introduite en 1996 par Bulur → l'intensité de la stimulation est augmentée linéairement

$$\Phi(t) = \Phi_0 + \beta_\Phi t$$

- La réponse OSL est une série de pics, chaque pic correspondant à la libération optique de charge d'un piège de type donné → les pièges pour lesquels la section efficace de photoionisation est la plus grande sont vidés en premier
- Les pièges caractérisés par des libérations lentes, moyennes ou rapides sont plus facilement discriminés qu'en CW-OSL
- Pas souvent employé en pratique à cause d'une complexité technique plus grande que pour CW-OSL mais aussi une plus grande complexité mathématique

1 piège – 1 centre de recombinaison: 1^{er} ordre

- 1^{er} ordre → hypothèses de quasi-équilibre et de repiégeage négligeable
- Considérons comme forme pour $\Phi(t) \rightarrow$

$$\Phi(t) = \gamma t$$

$$\frac{dn}{dt} = -\sigma\gamma tn$$

• Cette équation a comme solution une fonction gaussienne \rightarrow

$$n = n_0 \exp\left(-\frac{\sigma\gamma}{2}t^2\right)$$
$$I_{OSL} = n_0 \sigma\gamma t \exp\left(-\frac{\sigma\gamma}{2}t^2\right)$$

Caractéristiques du 1^{er} ordre

- La courbe OSL démarre de 0 en *t* = 0
- La courbe a un maximum en

$$t = t_{max} = \sqrt{1/\sigma\gamma}$$

- Pour γ connu \rightarrow on peut obtenir σ
- L'intensité maximale de la courbe vaut \rightarrow

$$I_{OSL}^{max} = \frac{n_0}{t_{max}} \exp\left(-\frac{1}{2}\right)$$

• L'intégrale de *I_{OSL}* donne n₀

Exemples de courbes LM-OSL

Multiples pièges indépendants

• Le principe de superposition s'applique \rightarrow pour k pièges caractérisés par leur occupation n_i et leur section efficace de photoionisation $\sigma_i \rightarrow$

$$I_{OSL} = \gamma t \sum_{i=1}^{k} n_{0i} \sigma_i \exp\left(-\frac{\sigma_i \gamma}{2} t^2\right)$$

• Courbe OSL \rightarrow somme de k courbes présentant chacune un maximum dépendant de $\sigma_i \rightarrow$

Caractéristiques aux ordres supérieurs

- QE mais taux de repiégeage important
- Pour 1 type de piège \rightarrow

$$\frac{dn}{dt} = -\frac{\sigma\gamma tn^b}{n_0^{b-1}}$$

$$I_{OSL} = n_0\sigma\gamma t \left[(b-1)\frac{\sigma\gamma t^2}{2} + 1 \right]^{b/(1-b)}$$

• Maximum t_{max} pour une valeur de I^{max} \rightarrow

$$t_{max} = \sqrt{\frac{2}{\sigma\gamma(b+1)}} \quad \text{et} \quad I_{OSL}^{max} = \left(\frac{2n_0}{b+1}\right) \left(\frac{1}{t_{max}}\right) \left(\frac{2b}{b+1}\right)^{b/(1-b)}$$

 Attention → pour plusieurs types de pièges → le repiégeage implique que les pièges ne sont **pas** indépendants → pas de superposition possible comme au 1^{er} ordre → complexité

POSL

- POSL permet de séparer efficacement la lumière de luminescence de la lumière de stimulation
- Réduction importante de bruit de fonds dû à la lumière de stimulation diffusée
- Méthode très puissante pour la dosimétrie à faible dose

Principes de la POSL (1)

- Considérons plusieurs impulsions de stimulation (fournies par des LEDs ou des lasers) d'intensités Φ_i et de durées (largeurs) T_i variables mais telles que $\Phi_i T_i = \Phi T = \text{constante}$ (énergie absorbée par impulsion fixée)
- En considérant un modèle du 1^{er} ordre \rightarrow

$$\Delta n = \int_0^T n\sigma \Phi dt$$

Pour une stimulation faible (∆n ≪ n → concentration de charges libérées par impulsion négligeable par rapport à la concentration de charges piégées) → ∆n ∝ ΦT → la charge libérée par les pièges est toujours la même après chaque impulsion

Principes de la POSL (2)

- Auparavant, lorsque l'on écrivait les équations de bilans → on considérait que chaque recombinaison donnait lieu à une émission immédiate de lumière
- En réalité → le centre de recombinaison est d'abord excité (centre de luminescence) avant de se relaxer par émission de lumière → existence d'un délai (temps de vie de l'état excité) τ
- Si on considère n_e , la concentration des états excités \rightarrow

$$\frac{dn_e}{dt} = \frac{dm}{dt} - \frac{n_e}{\tau}$$

• Un photon est émis lorsque l'état excité se relaxe \rightarrow

$$I_{OSL} = \frac{n_e}{\tau}$$

Principes de la POSL (3)

- Si \(\tau \le \mathbf{T} \rightarrow \text{conditions de quasi-équilibre \(\rightarrow dn_e / dt \approx 0 et I_{OSL} \approx -dm/dt \) comme d'habitude (comme c'est le cas pour CW-OSL)
- Si *τ* ≥ T → situation ≠ → un certain nombre de centres se relaxent après la fin de l'impulsion de stimulation
- Si τ ≫ T → la majorité des photons sont émis après l'impulsion (pour Al₂O₃:C → 90% de la lumière est émise après l'impulsion si elle est suffisamment étroite)
- Pour t < T \rightarrow I_{OSL} \nearrow quand t \nearrow (stimulation optique des pièges)
- Pour t > T → I_{OSL} ↘ quand t ↗ (relaxation avec une constante de temps τ)

Illustration schématique de la POSL

- POSL après des impulsions avec Φ = 10³, 10² et 22 u.e./s → on a les T correspondants: T = 6.6, 66 et 300 ms (τ = 100 ms a été choisi)
- Le rapport des aires sous la courbe après l'impulsion et pendant l'impulsion ↗ quand T ↘
 34

POSL pour du Al_2O_3 :C stimulé par un laser pendant 0.1 ms R apport des aires sous la courbe après l'impulsion et pendant l'impulsion pour du Al₂O₃:C

Détermination de la dose par POSL

- L'intégrale totale de la courbe POSL correspondant à 1 impulsion est égale aux charges libérées des pièges et est $\propto n_0$
- L'intégrale de la courbe après la fin de l'impulsion est \propto aux charges libérées des pièges et est donc aussi $\propto n_0$ mais le coefficient de proportionnalité change avec la largeur des impulsions T
- Avec ∆n ≪ n → quelques impulsions de stimulations suffisent
 → plusieurs mesures possibles
- POSL surtout appliqué avec Al₂O₃:C mais très prometteur
$Al_2O_3:C$

- $Al_2O_3 \rightarrow sous forme \alpha Al_2O_3 : corindon ou alumine alpha$
- Al₂O₃:C est le matériau le plus utilisé en OSL
- Al₂O₃:C est le seul matériau utilisé en POSL

Al_2O_3 :C: Structure du α - Al_2O_3

- La structure cristalline du α-Al₂O₃ est un arrangement légèrement déformée d'ions O²⁻ qui forment un réseau hexagonal compact avec des ions Al³⁺ qui occupent deux interstices octaédriques sur trois
- Chaque ion Al³⁺ est entouré par 6 ions O²⁻ comme plus proches voisins octaédriques

Défauts et impuretés

- Les défauts thermodynamiques sont des vacances oxygène ou aluminium → centres de type F et V, respectivement
- La vacance d'un O^{2-} implique une compensation de charge \rightarrow
 - l'occupation de la vacance par 2 e⁻ donne centre F neutre
 - l'occupation de la vacance par 1 e⁻ donne centre F⁺ positif
- L'ajout d'impuretés de carbone améliore grandement la sensibilité du matériau
- L'ion carbone divalent C²⁺ remplace un ion trivalent Al³⁺ → nécessite une compensation de charge → création de vacances oxygène sous la forme de centre F⁺

Configuration de la compensation F⁺ qui accompagne une impureté C²⁺

Mécanismes d'émission

- La sensibilité du Al₂O₃:C dépend de la concentration de centres F⁺ qui constituent les centres de recombinaison
- La bande d'émission dominante du Al₂O₃:C est une bande relativement large centrée à 420 nm et attribuée à un centre F de luminescence
- Les e⁻ sont libérés des pièges et recombinent avec un centre F⁺
 → création de centre F excités qui se relaxent et produisent la
 luminescence
- Le temps de vie du centre F excité est de 35 ms à T ambiante

$$F^+ + e^- \longrightarrow F^* \xrightarrow{\tau = 35 \text{ ms}} F + h\nu_{420} \text{nm}$$

 L'identité des défauts responsables de la capture des porteurs de charge durant l'ionisation n'est pas connue

Spectre d'émission du Al₂O₃:C

Propriétés dosimétriques du Al₂O₃:C (1)

- La bande d'énergie interdite du Al₂O₃ est très large (~ 9.5 eV)
 → possibilité de développer des pièges profonds stables (peu sensibles à la T)
- Al₂O₃:C est très sensible aux rayonnements (sensibilité → rapport entre le nombre de photons émis et la dose absorbée) à cause de l'absence de thermal quenching et du très faible bruit de fonds (surtout pour POSL) → 60 × plus sensible que le TLD-100 qui est la référence
- Cette sensibilité permet de faire des mesures à faibles doses \rightarrow $D = 1 \,\mu \text{Gy}$
- Al₂O₃:C présente une réponse à la dose linéaire sur toute une gamme 1 μGy < D < 10 Gy → sur 5 décades (supralinéarité apparaît à 10 Gy et sublinéarité à 100 Gy)

Réponse à la dose pour Al₂O₃:C

« strong » et « weak » caractérisent la puissance de la stimulation (1.2 W et 0.01 W)

Propriétés dosimétriques du Al₂O₃:C (2)

- Re-lecture possible du dosimètre → grâce à la grande sensibilité du Al₂O₃:C → une mesure est suffisamment précise si on vide une partie seulement des pièges → en prenant en compte la fraction de charges libérées lors d'une 1^{ère} mesure, on peut faire une 2^{ème} mesure (voire une 3^{ème}, etc.)
- En POSL, re-lecture encore plus évidente → quelques impulsions de stimulations suffisent → tant que Δn ≪ n → on peut refaire la mesure
- Possibilité aussi de réutilisation du dosimètre OSL après chauffage à haute T pour vider tous les pièges
- Al₂O₃:C n'est pas tissu-équivalent (Z_{eff} = 10.2 ≠ 7.35) → dépendance et énergie (surestimation) pour E < 200 kEV → 1 filtre peut corriger ce problème

Fading

• Fading comparable au TLD-100 (5%/an)

 Un signal transitoire apparaît pour t < 10 min → dû à des pièges peu profonds qui se vident rapidement → après, signal stable

Caractéristiques du Al₂O₃:C et d'autres OSL

	Rel. OSL	Linear dose	Stimulation wavelength	Main emission wavelength	Fading rate in	Effective Z (Tissue
USL material	Sensitivity	range	(nm)	(nm)	сагк	=7.4)
Al ₂ O ₃ :C (Landauer Inc.)	1.00	µGy-10 Gy	450-550	~420	<5% /y	10.2
Al ₂ O ₃ :C (BARC, India)	~0.3	50 μGy- 1 Gy	470	420	negligible in a month	10.2
**Al ₂ O ₃ :B	~0.17	100 µGy- 15 Gy	470	420	Negligible in a month	10.2
BeO sintered pellets (Germany)	~1.00	µGy-10 Gy	~435	~335	1% in six months	7.2
MgO:Tb	weak	100 µGy- 10 Gy	500-560	375,420,440, 470,500,650	43% in 1 st 36h and then nil	10.8
NaMgF ₃ :Eu	~10.0	μGy- 100 Gy	~470	360	40% in 1 st 24h and then nil	10.4
Mg₂SiO₄:Tb	~0.11	30 µGy- 10 Gy	<532	370,420 and 440	30% in 1 st 10h and then nil	11.23
[∗] LiMgPO₄:Tb,B (BARC, India)	~1.00	20 µGy -1 kGy	470	380,417,440	16% in 4 days and stable thereafter	11.20

Dosimètres Al₂O₃:C en pratique

- Sous forme de monocristal
 - \rightarrow très sensible \rightarrow excellent pour la mesure de petites doses
 - → peut être chauffé → pièges profonds sont vidés → peut être réutilisé indéfiniment
 - → manque d'uniformité entre 2 cristaux → grande variabilité entre dosimètres de ce type → calibration individuelle
- Sous forme de poudre (Landauer Inc.) → cristaux convertis en poudre et noyés dans une matrice de plastique
 - \rightarrow très bonne uniformité
 - → ne peut pas être chauffé → pièges profonds ne sont pas vidés → perte de sensibilité à terme
- Microcristaux et fibre optique
 - \rightarrow dosimétrie in-vivo
 - \rightarrow dosimétrie en temps réel
 - \rightarrow possibilité encore à explorer

Lecteurs OSL: Propriété de base

Une installation de base requiert:

- 1. Une source lumineuse pour la stimulation (LED, laser,...)
- 2. Des filtres pour sélectionner la longueur d'onde de la source lumineuse
- 3. Des filtres pour sélectionner la longueur d'onde de la lumière de luminescence
- 4. Un détecteur de lumière (photomultiplicateur,...)
- 5. L'électronique associée

Longueur d'onde de la lumière de stimulation

- La longueur d'onde de la lumière de stimulation la plus efficace est le bleu ($\lambda \approx 470$ nm) mais trop proche du maximum de luminescence ($\lambda = 420$ nm)
- En pratique en dosimétrie on utilise du vert ($\lambda \approx 525$ nm)

Lecteurs OSL en pratique (1)

- Lecteurs OSL pour la recherche
 - \rightarrow grande automaticité
 - \rightarrow permet des mesure OSL ou TLD
 - \rightarrow source de calibration souvent incorporée
 - \rightarrow équipé de LEDs bleues ou vertes

Lecteurs OSL en pratique (2)

- Lecteur OSL Landauer \rightarrow en mode POSL
 - \rightarrow OSL stimulé par un laser Nd:YAG (532 nm) à courte période
 - \rightarrow l'intensité OSL est mesurée entre les impulsions
 - → en fonction de la dose → ≠ puissances de stimulation
- Lecteur OSL Landauer \rightarrow en mode CW-OSL
 - \rightarrow stimulation courte (1s) par des LEDs vertes
 - → nombre de LEDs (et donc puissance) variable en fonction de la dose à mesurer

Lecteurs OSL en pratique (3)

- Système à fibre optique
 - → la fibre optique délivre la stimulation OSL et ensuite recueille le luminescence
 - \rightarrow laser vert pour la stimulation
 - \rightarrow fonctionne en mode POSL
 - \rightarrow permet des mesures in-vivo et en temps réel

Dosimètre OSL: en pratique à l'ULB (1)

- Dosimètres Landauer IPLUS en Al₂O₃:C
- A partir de cristaux d'oxyde d'aluminium → poudre d'oxyde d'aluminium qui est appliquée entre 2 films plastiques

Dosimètre OSL: en pratique à l'ULB (2)

- Pour IPLUS → stimulation optique réalisée à partir d'un ensemble de diodes electro luminescentes émettant en continu une lumière de 532 nm (vert) → CW-OSL
- Signal émis par les détecteurs (lumière bleue d'environ 420 nm) mesuré par un photomultiplicateur

Dosimètre OSL: en pratique à l'ULB (3)

- Réanalyse du dosimètre: La stimulation optique maintient plus de 99 % de l'information dans le détecteur rendant les lectures multiples et l'archivage possible du dosimètre pour des investigations postérieures
- Pas de calibration requise: La sensibilité du détecteur est déterminée pendant le processus de fabrication → la valeur de sensibilité gravée sur le détecteur est automatiquement prise en compte lors du processus de lecture
- Sensibilité stable dans le temps: Sensibilité définie pour toujours
- Fading très faible: Inférieur à 1,5 % / mois et <4% / an → le fading ne nécessite pas d'être corrigé lors de l'estimation de la dose
- Réponse au rayonnement neutronique: Aucune sensibilité au neutron n'a pu être mise en évidence

Dosimètre OSL: en pratique à l'ULB (4)

- Température et hydrométrie: Gamme d'utilisation: -10°C à 40°C et de 0 % à 90%
- Exposition à la lumière: pas de restriction particulière en condition normale
- **Dosimètre robuste et léger:** Dosimètres robustes, compacts, légers, entièrement personnalisés et personnalisables
- Type de rayonnement mesuré :
 - photon: énergies de 16 keV à 6 MeV (jusqu'à 18 MeV en énergie maximale)
 - béta: énergies supérieures à 250 keV
- Réutilisation possible: dose maximum 100 mSv et nombre maximum de réutilisation: supérieur à 1000
- Homogénéité de sensibilité par lot: < 10% (généralement < 2,4%)

Dosimètre OSL: en pratique à l'ULB (5)

- Détecteur comportant :
 - Carte détectrice avec 4 pastilles sensibles en Al₂O₃:C
 - Un boitier porte-filtres sur lequel est collé un code barre imprimé de manière lisible et comportant 4 filtres: plastique, aluminium, titane, étain

Dosimétrie par radiophotoluminescence (RPL)

- A nouveau processus de luminescence stimulée par de la lumière
- Pour la radiophotoluminescence (RPL) → pas d'ionisation du défaut mais excitation de celui-ci → lors de sa relaxation → émission de lumière
- Avantage principal → conservation des charges piégées → la mesure peut être refaite indéfiniment → archivage
- Processus ≠ de OSL → autre catégorie de dosimètre (même si stimulation optique)
- Développement très récent \rightarrow doit encore faire ses preuves
- Références:

T. Yamamoto, D. Maki, F. Sato, Y. Miyamoto, H. Nanto, T. Iida, *The recent investigations of rdiophotoluminescence and its application,* Radiations Measurements 46 (2011) 1554-1559

Historique

- Découverte et 1^{ère} application en 1951 par Schulman
- Problème rencontré → Photoluminescence inhérente aux matériaux considérés → émission de lumière en l'absence d'irradiation → bruit de fonds important → frein à son utilisation alors que propriétés extrêmement intéressantes
- Dernièrement → développement d'un système à laser pulsé + matériaux parfaitement contrôlés + électronique améliorée → diminution du bruit de fonds à un niveau correct
- Possibilité de devenir dans le futur une méthode très appréciée (actuellement: Japon et IRSN en France)

Modèle simple pour la RPL (1)

- Avec n₁, la concentration d'e⁻ piégés en 1 (état fondamental du piège), n₂, la concentration d'e⁻ piégés en 2 (état excité du piège), α et β, les probabilité de transition 1 → 2 et 2 → 1
- Le matériau est soumis à une source de lumière de courte longueur d'onde (UV) d'intensité l_{in} (constant) → il en résulte une lumière de plus grande longueur d'onde visible et d'intensité l_{out}

Modèle simple pour la RPL (2)

• Les équations gouvernant le processus sont \rightarrow

$$\begin{cases} \frac{dn_1}{dt} = \beta n_2 - \alpha I_{in} n_1 \\ I_{out} = \beta n_2 \end{cases}$$

• En considérant un état stationnaire $\rightarrow dn_1/dt = dn_2/dt = 0 \rightarrow$

$$n_2 = \frac{\alpha I_{in} n_1}{\beta}$$

$$I_{out} = \alpha I_{in} n_1$$

Modèle simple pour la RPL (3)

• Le paramètre important lié à la dose est $n_t = n_1 + n_2 \rightarrow$

$$n_{t} = n_{1} + \frac{\alpha I_{in} n_{1}}{\beta}$$

$$n_{1} = \frac{n_{t}}{1 + \alpha I_{in}/\beta}$$

$$I_{out} = \frac{\alpha I_{in}}{1 + \alpha I_{in}/\beta} n_{t}$$

- Si la source est un laser puissant $\rightarrow I_{in} > \rightarrow$ dénominateur important
- Si la source est un LED $\rightarrow I_{in} < \rightarrow I_{out} = \alpha I_{in} n_t$
- Si signal alors que dose = 0 → I_{out} = αI_{in}(n_t + n_b) → effet de pré-dose (photoluminescence)

Dosimètre RPL: Verre phosphatique à impuretés d'argent

- Verre phosphatique → type de verre dans lequel le SiO₂ est remplacé par du P₂O₅
- Le P₂O₅ cristallise principalement en P₄O₁₀ → chaque atome P est entouré par 4 atomes d'O sous forme de tétraèdre →

Verre phosphatique: Impuretés d'argent

- De nombreuses compositions existent mais toutes contiennent des impuretés d'Ag (exemple: le FD-7 → Na: 11.00%, P: 31.55%, 0: 51.16%, Al: 6.12%, Ag: 0.17%)
- La concentration optimale d'Ag est déterminée de manière phénoménologique
- Dans le verre phosphatique, l'Ag existe de manière stable sous forme d'ions Ag⁺
- Les e⁻ et h⁺ créés par les rayonnements ionisants dans le verre diffusent dans celui-ci et finissent par produire les réactions →

$$\begin{cases} Ag^+ + e^- \to Ag^0 \\ Ag^+ + h^+ \to Ag^{2+} \end{cases}$$

Mécanisme de luminescence

 Ag⁰ et Ag²⁺ sont des centres de luminescence stables à T ambiante

Quand le verre est exposé à des rayonnements UV (345 et 308 nm) → excitation des impuretés Ag⁰ et Ag²⁺ et ensuite relaxation de celles-ci par émission de lumière visible (460 nm: bleu et 560 nm: jaune-orange)

Spectres d'absorption et d'émission

Il y a donc combinaison des 2 rayonnements visibles émis \rightarrow le spectre d'émission est dépendant du spectre d'absorption

Effet de build-up

 En particulier pour l'émission à 560 nm → temps d'attente nécessaire après l'irradiation par les rayonnements ionisants pour stabiliser l'intensité lumineuse par RPL → phénomène de « build-up »

 Il a été suggéré que, initialement, le h⁺ est capturé par un tétraèdre PO₄ → seulement après un certain temps: Ag⁺ + hPO₄⁺ → Ag²⁺ + PO₄

Dosimètre RPL: En pratique

- Les dosimètres basés sur le phénomène de radiophotoluminescence sont appelés des RPLD
- Pour les dosimètres faits en FD-7: $Z_{eff} = 12.0 \rightarrow$ pas tissu-équivalent ($Z_{eff} = 7.35$) \rightarrow dépendance en énergie pour les faibles énergies (effet photoélectrique)
- Pour corriger cette non-linéarité → introduction de filtres (par exemple: Sn, Al, Cu, PE,...)

Réponse en énergie

(a) Réponses en énergie pour des γ incidents avec ≠ filtres (b) Réponse corrigée du dosimètre ($R = \sum_i k_i R_i$)

→ Réponse linéaire et égale à 1 (avec corrections)

Réponse en dose: Faibles doses

• Réponse linéaire pour les faibles doses

- Réponse linéaire pour les doses élevées
- Réponse linéaire pour 20 μ Gy < *D* < 10 Gy
Fading - Reproductibilité

- Les données de fading sont variables en fonction des matériaux considérés (et des laboratoires de mesures) mais fading ≤ 1%/mois est généralement observé
- Les mesures reproduites plusieurs fois après des temps d'attentes variables (t < 10 jours) et des doses variables (20 μ Gy < D < 10 Gy) donnent des résultats identiques à 1.5% près

TL dosimeters	OSL dosimeters	RPL dosimeters
High sensitivity of materials: LiF:Mg,Cu,P, LiF:Mg,Cu,Si, CaSO ₄ :Dy	High sensitivity due to absence of thermal quenching and IR background: Al ₂ O ₃ :C and BeO	High sensitivity of materials such as silver-activated phosphate glass
Stable sensitivity possible	Stable sensitivity possible	Stable sensitivity possible
Easy handling (no light sensitivity using LiF:Mg,Cu,P, LiF:Mg,Ti.	Highly light sensitive, but can be managed with appropriate precautions during storage and use.	No light sensitivity for visible light (λ>366nm), as RPL emission is stimulated by UV light.
Dose re-estimation possible. Doses as low as 0.2 mGy can be re- estimated using PTTL in LiF:Mg, Cu,P*	Multiple dose re-estimations possible. Multiple measurements of OSL from Al ₂ O ₃ :C using either pulsed or continuous wave stimulation have been reported.**	Dosimeter can be read as many times as necessary without depleting the signal.
Flat photon energy response for LiF:Mg, Cu,P (100keV – 3MeV)	Flat photon energy response for BeO OSL dosimeters. (100keV – 3MeV)	Use of appropriate filters gives nearly flat photon energy response: 10 keV to 10 MeV.
Identification of static/dynamic exposure is somewhat difficult	Identification of static/dynamic exposure is possible.	Identification of static/dynamic exposure is possible.
Dose imaging difficult	Dose imaging possible.	Dose imaging possible.
Complex thermal annealing steps for some TL materials	Elimination of thermal annealing steps, as heating of samples is not required during OSL readout	The RPL dosimeter must undergo heat treatment at 70°C to stabilize the build- up of colour centers before readout.
Real-time measurements- not possible	Using Optical Fiber based OSL dosimetry system: real-time (on- line) measurements.	No published report on this aspect of use is available.
Readout time for commercial systems: acquisition time:13.3s per readout using hot air #	~1-2s per readout; 12-13s per 4-element dosimeter (using CW- OSL mode).	<1s per readout
Dose range: 1µGy to 100Gy	10µGy to 10 Gy	14µGy–10 Gy
Post irradiation fading: <2% in 6months	<5% per year	1% per month