
Octave Quick Reference Octave Version 3.0.0

Starting Octave
octave start interactive Octave session

octave file run Octave on commands in file

octave --eval code Evaluate code using Octave

octave --help describe command line options

Stopping Octave
quit or exit exit Octave

INTERRUPT (e.g. C-c) terminate current command and

return to top-level prompt

Getting Help
help list all commands and built-in variables

help command briefly describe command

doc use Info to browse Octave manual

doc command search for command in Octave manual

lookfor str search for command based on str

Motion in Info
SPC or C-v scroll forward one screenful

DEL or M-v scroll backward one screenful

C-l redraw the display

Node Selection in Info
n select the next node

p select the previous node

u select the ‘up’ node

t select the ‘top’ node

d select the directory node

< select the first node in the current file

> select the last node in the current file

g reads the name of a node and selects it

C-x k kills the current node

Searching in Info
s search for a string

C-s search forward incrementally

C-r search backward incrementally

i search index & go to corresponding node

, go to next match from last ‘i’ command

Command-Line Cursor Motion
C-b move back one character

C-f move forward one character

C-a move to the start of the line

C-e move to the end of the line

M-f move forward a word

M-b move backward a word

C-l clear screen, reprinting current line at top

Inserting or Changing Text
M-TAB insert a tab character

DEL delete character to the left of the cursor

C-d delete character under the cursor

C-v add the next character verbatim

C-t transpose characters at the point

M-t transpose words at the point

[] surround optional arguments ... show one or more arguments

Killing and Yanking
C-k kill to the end of the line

C-y yank the most recently killed text

M-d kill to the end of the current word

M-DEL kill the word behind the cursor

M-y rotate the kill ring and yank the new top

Command Completion and History
TAB complete a command or variable name

M-? list possible completions

RET enter the current line

C-p move ‘up’ through the history list

C-n move ‘down’ through the history list

M-< move to the first line in the history

M-> move to the last line in the history

C-r search backward in the history list

C-s search forward in the history list

history [-q] [N] list N previous history lines, omitting

history numbers if -q

history -w [file] write history to file (~/.octave hist if no

file argument)

history -r [file] read history from file (~/.octave hist if

no file argument)

edit history lines edit and then run previous commands

from the history list
run history lines run previous commands from the history

list

[beg] [end] Specify the first and last history

commands to edit or run.
If beg is greater than end, reverse the list of commands

before editing. If end is omitted, select commands from

beg to the end of the history list. If both arguments are

omitted, edit the previous item in the history list.

Shell Commands
cd dir change working directory to dir

pwd print working directory

ls [options] print directory listing

getenv (string) return value of named environment

variable
system (cmd) execute arbitrary shell command string

Matrices
Square brackets delimit literal matrices. Commas separate

elements on the same row. Semicolons separate rows. Commas

may be replaced by spaces, and semicolons may be replaced by

one or more newlines. Elements of a matrix may be arbitrary

expressions, assuming all the dimensions agree.

[x, y, ...] enter a row vector

[x; y; ...] enter a column vector

[w, x; y, z] enter a 2×2 matrix

Multi-dimensional Arrays
Multi-dimensional arrays may be created with the cat or

reshape commands from two-dimensional sub-matrices.

squeeze (arr) remove singleton dimensions of the array.

ndims (arr) number of dimensions in the array.

permute (arr, p) permute the dimensions of an array.

ipermute (arr, p) array inverse permutation.

shiftdim (arr, s) rotate the array dimensions.

circshift (arr, s) rotate the array elements.

Sparse Matrices
sparse (...) create a sparse matrix.

speye (n) create sparse identity matrix.

sprand (n, m, d) sparse rand matrix of density d.

spdiags (...) sparse generalization of diag.

nnz (s) No. non-zero elements in sparse matrix.

Ranges
base : limit

base : incr : limit

Specify a range of values beginning with base with no

elements greater than limit. If it is omitted, the default

value of incr is 1. Negative increments are permitted.

Strings and Common Escape Sequences
A string constant consists of a sequence of characters enclosed

in either double-quote or single-quote marks. Strings in double-

quotes allow the use of the escape sequences below.

\\ a literal backslash

\" a literal double-quote character

\’ a literal single-quote character

\n newline, ASCII code 10

\t horizontal tab, ASCII code 9

Index Expressions
var (idx) select elements of a vector

var (idx1, idx2) select elements of a matrix

scalar select row (column) corresponding to

scalar
vector select rows (columns) corresponding to the

elements of vector
range select rows (columns) corresponding to the

elements of range
: select all rows (columns)

Global and Persistent Variables
global var1 ... Declare variables global.

global var1 = val Declare variable global. Set initial value.

persistent var1 Declare a variable as static to a function.

persistent var1 =
val

Declare a variable as static to a function

and set its initial value.
Global variables may be accessed inside the body of a function

without having to be passed in the function parameter list

provided they are declared global when used.

Selected Built-in Functions
EDITOR editor to use with edit history
Inf, NaN IEEE infinity, NaN

NA Missing value

PAGER program to use to paginate output

ans last result not explicitly assigned

eps machine precision

pi π

1i
√
−1

realmax maximum representable value

realmin minimum representable value

Copyright 1996, 1997, 2007 John W. Eaton Permissions on back

Assignment Expressions
var = expr assign expression to variable

var (idx) = expr assign expression to indexed variable

var (idx) = [] delete the indexed elements.

var {idx} = expr assign elements of a cell array.

Arithmetic and Increment Operators
x + y addition

x - y subtraction

x * y matrix multiplication

x .* y element by element multiplication

x / y right division, conceptually equivalent to

(inverse (y’) * x’)’

x ./ y element by element right division

x \ y left division, conceptually equivalent to

inverse (x) * y

x .\ y element by element left division

x ^ y power operator

x .^ y element by element power operator

- x negation

+ x unary plus (a no-op)

x ’ complex conjugate transpose

x .’ transpose

++ x (-- x) increment (decrement), return new value

x ++ (x --) increment (decrement), return old value

Comparison and Boolean Operators
These operators work on an element-by-element basis. Both

arguments are always evaluated.

x < y true if x is less than y

x <= y true if x is less than or equal to y

x == y true if x is equal to y

x >= y true if x is greater than or equal to y

x > y true if x is greater than y

x != y true if x is not equal to y

x & y true if both x and y are true

x | y true if at least one of x or y is true

! bool true if bool is false

Short-circuit Boolean Operators
Operators evaluate left-to-right. Operands are only evaluated if

necessary, stopping once overall truth value can be determined.

Operands are converted to scalars using the all function.

x && y true if both x and y are true

x || y true if at least one of x or y is true

Operator Precedence
Table of Octave operators, in order of increasing precedence.

; , statement separators

= assignment, groups left to right

|| && logical “or” and “and”

| & element-wise “or” and “and”

< <= == >= > != relational operators

: colon

+ - addition and subtraction

* / \ .* ./ .\ multiplication and division

’ .’ transpose

+ - ++ -- ! unary minus, increment, logical “not”

^ .^ exponentiation

Paths and Packages
path display the current Octave function path.

pathdef display the default path.

addpath(dir) add a directory to the path.

EXEC PATH manipulate the Octave executable path.

pkg list display installed packages.

pkg load pack Load an installed package.

Cells and Structures
var.field = ... set a field of a structure.

var{idx} = ... set an element of a cell array.

cellfun(f, c) apply a function to elements of cell array.

fieldnames(s) returns the fields of a structure.

Statements
for identifier = expr stmt-list endfor

Execute stmt-list once for each column of expr. The variable

identifier is set to the value of the current column during

each iteration.

while (condition) stmt-list endwhile

Execute stmt-list while condition is true.

break exit innermost loop

continue go to beginning of innermost loop

return return to calling function

if (condition) if-body [else else-body] endif
Execute if-body if condition is true, otherwise execute else-

body.

if (condition) if-body [elseif (condition) elseif-body] endif
Execute if-body if condition is true, otherwise execute the

elseif-body corresponding to the first elseif condition that

is true, otherwise execute else-body.

Any number of elseif clauses may appear in an if
statement.

unwind protect body unwind protect cleanup cleanup end

Execute body. Execute cleanup no matter how control exits

body.
try body catch cleanup end

Execute body. Execute cleanup if body fails.

Strings
strcmp (s, t) compare strings

strcat (s, t, ...) concatenate strings

regexp (str, pat) strings matching regular expression

regexprep (str, pat, rep) Match and replace sub-strings

Defining Functions

function [ret-list] function-name [(arg-list)]
function-body

endfunction

ret-list may be a single identifier or a comma-separated list of

identifiers delimited by square-brackets.

arg-list is a comma-separated list of identifiers and may be

empty.

Function Handles
@func Define a function handle to func.

@(var1, ...) expr Define an anonymous function handle.

str2func (str) Create a function handle from a string.

functions (handle)Return information about a function

handle.
func2str (handle) Return a string representation of a

function handle.
handle (arg1, ...) Evaluate a function handle.

feval (func, arg1,
...)

Evaluate a function handle or string,

passing remaining args to func

Anonymous function handles take a copy of the variables in the

current workspace.

Miscellaneous Functions
eval (str) evaluate str as a command

error (message) print message and return to top level

warning (message) print a warning message

clear pattern clear variables matching pattern

exist (str) check existence of variable or function

who, whos list current variables

whos var details of the variable var

Basic Matrix Manipulations
rows (a) return number of rows of a

columns (a) return number of columns of a

all (a) check if all elements of a nonzero

any (a) check if any elements of a nonzero

find (a) return indices of nonzero elements

sort (a) order elements in each column of a

sum (a) sum elements in columns of a

prod (a) product of elements in columns of a

min (args) find minimum values

max (args) find maximum values

rem (x, y) find remainder of x/y

reshape (a, m, n) reformat a to be m by n

diag (v, k) create diagonal matrices

linspace (b, l, n) create vector of linearly-spaced elements

logspace (b, l, n) create vector of log-spaced elements

eye (n, m) create n by m identity matrix

ones (n, m) create n by m matrix of ones

zeros (n, m) create n by m matrix of zeros

rand (n, m) create n by m matrix of random values

Linear Algebra
chol (a) Cholesky factorization

det (a) compute the determinant of a matrix

eig (a) eigenvalues and eigenvectors

expm (a) compute the exponential of a matrix

hess (a) compute Hessenberg decomposition

inverse (a) invert a square matrix

norm (a, p) compute the p-norm of a matrix

pinv (a) compute pseudoinverse of a

qr (a) compute the QR factorization of a matrix

rank (a) matrix rank

sprank (a) structural matrix rank

schur (a) Schur decomposition of a matrix

svd (a) singular value decomposition

syl (a, b, c) solve the Sylvester equation

Equations, ODEs, DAEs, Quadrature
*fsolve solve nonlinear algebraic equations

*lsode integrate nonlinear ODEs

*dassl integrate nonlinear DAEs

*quad integrate nonlinear functions

perror (nm, code) for functions that return numeric codes,

print error message for named function

and given error code

* See the on-line or printed manual for the complete list of

arguments for these functions.

Signal Processing
fft (a) Fast Fourier Transform using FFTW

ifft (a) inverse FFT using FFTW

freqz (args) FIR filter frequency response

filter (a, b, x) filter by transfer function

conv (a, b) convolve two vectors

hamming (n) return Hamming window coefficients

hanning (n) return Hanning window coefficients

Image Processing
colormap (map) set the current colormap

gray2ind (i, n) convert gray scale to Octave image

image (img, zoom) display an Octave image matrix

imagesc (img, zoom) display scaled matrix as image

imread (file) load an image file

imshow (img, map) display Octave image

imshow (i, n) display gray scale image

imshow (r, g, b) display RGB image

imwrite (img, file) write images in various file formats

ind2gray (img, map) convert Octave image to gray scale

ind2rgb (img, map) convert indexed image to RGB

rgb2ind (r, g, b) convert RGB to Octave image

save a matrix to file

C-style Input and Output
fopen (name, mode) open file name

fclose (file) close file

printf (fmt, ...) formatted output to stdout
fprintf (file, fmt, ...) formatted output to file

sprintf (fmt, ...) formatted output to string

scanf (fmt) formatted input from stdin
fscanf (file, fmt) formatted input from file

sscanf (str, fmt) formatted input from string

fgets (file, len) read len characters from file

fflush (file) flush pending output to file

ftell (file) return file pointer position

frewind (file) move file pointer to beginning

freport print a info for open files

fread (file, size, prec) read binary data files

fwrite (file, size, prec) write binary data files

feof (file) determine if pointer is at EOF

A file may be referenced either by name or by the number

returned from fopen. Three files are preconnected when Octave

starts: stdin, stdout, and stderr.

Other Input and Output functions
save file var ... save variables in file

load file load variables from file

disp (var) display value of var to screen

Polynomials
compan (p) companion matrix

conv (a, b) convolution

deconv (a, b) deconvolve two vectors

poly (a) create polynomial from a matrix

polyderiv (p) derivative of polynomial

polyreduce (p) integral of polynomial

polyval (p, x) value of polynomial at x

polyvalm (p, x) value of polynomial at x

roots (p) polynomial roots

residue (a, b) partial fraction expansion of ratio a/b

Statistics
corrcoef (x, y) correlation coefficient

cov (x, y) covariance

mean (a) mean value

median (a) median value

std (a) standard deviation

var (a) variance

Plotting Functions
plot (args) 2D plot with linear axes

plot3 (args) 3D plot with linear axes

line (args) 2D or 3D line

patch (args) 2D patch

semilogx (args) 2D plot with logarithmic x-axis

semilogy (args) 2D plot with logarithmic y-axis

loglog (args) 2D plot with logarithmic axes

bar (args) plot bar charts

stairs (x, y) plot stairsteps

stem (x, y) plot a stem graph

hist (y, x) plot histograms

contour (x, y, z) contour plot

title (string) set plot title

axis (limits) set axis ranges

xlabel (string) set x-axis label

ylabel (string) set y-axis label

zlabel (string) set z-axis label

text (x, y, str) add text to a plot

legend (string) set label in plot key

grid [on|off] set grid state

hold [on|off] set hold state

ishold return 1 if hold is on, 0 otherwise

mesh (x, y, z) plot 3D surface

meshgrid (x, y) create mesh coordinate matrices

Edition 2.0 for Octave Version 3.0.0. Copyright 1996, 2007, John

W. Eaton (jwe@octave.org). The author assumes no responsibility

for any errors on this card.

This card may be freely distributed under the terms of the GNU

General Public License.

TEX Macros for this card by Roland Pesch (pesch@cygnus.com),

originally for the GDB reference card

Octave itself is free software; you are welcome to distribute copies

of it under the terms of the GNU General Public License. There is

absolutely no warranty for Octave.

