Analyse Numérique

Travaux Pratiques 2024 – 2025 Séance 2

Pour l'ensemble des exercices on suppose que les calculs numériques sont faits sur une machine conforme au standard IEEE; u dénote l'erreur d'arrondi; les termes $\mathcal{O}(u^2)$ (ou le produit de $\mathcal{O}(u^2)$ avec d'autres termes) peuvent être négligés.

1. Démontrez la formule (5) du Chapitre 1. (Aide : montrez d'abord que $\frac{|\mathrm{fl}(x)-x|}{|\mathrm{fl}(x)|} \leq u$)

2. Estimez l'erreur d'arrondi sur l'opération e*(1/7)*7 sachant qu'Octave utilise par défaut la précision double. Vérifiez ce résultat numériquement.

3. Soient deux réels positifs $\widetilde{x}, \widetilde{y} \in \mathbb{F}$ tels que

$$\widetilde{x} = (1 + \epsilon_1)x, \quad \widetilde{y} = (1 + \epsilon_2)y, \quad \text{avec} \quad |\epsilon_1|, |\epsilon_2| \le u.$$

Estimez l'erreur relative de $\widetilde{x} \oplus \widetilde{y}$, $\widetilde{x} \odot \widetilde{y}$, $\widetilde{x} \oslash \widetilde{y}$. Aidez-vous de l'Exemple 2 du Chapitre 1 des transparents.

4. On peut approcher la dérivée d'une fonction f dérivable en x_0 par

$$f'(x_0) \approx f'_h(x_0) := \frac{f(x_0 + h) - f(x_0)}{h}$$
 (1)

pour h > 0 «petit». Considérons cette formule pour $f = x^2$ et $x_0 = 1$.

a) Montrez qu'en arithmétique exacte l'erreur d'approximation satisfait

$$f'_h(1) - f'(1) = h.$$

- b) Existe-t-il un risque d'annulation pour l'évaluation numérique de (1)?
- c) Evaluez numériquement l'erreur d'approximation

$$f_h'(1) - f'(1)$$

en fonction de h pour $h = 10^{-6}$, 10^{-8} , 10^{-10} et 10^{-12} . Qu'observez-vous?

d) Montrez qu'en arithmétique en virgule flottante

$$f'_h(1) - f'(1) \approx h + 3\frac{\epsilon}{h},$$

avec $|\epsilon| \leq u$.