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Multigrid methods [?] are used to compute the solution u of the system of equations

Lu = f ,

where L is typically a discretization of a partial different equations (PDE) and f a
corresponding, given right hand side. Local Fourier Analysis (LFA) [?, ?, ?] is well
known to provide quantitative estimates for the speed of convergence of multigrid
methods, by analyzing the involved operators in the frequency domain.

For the initial formulation of LFA [?] it was crucial to assume that all involved
operators have constant coefficients. For many PDE operators the coefficients vary
continuously in space. Thus if the grid is fine enough the discrete operator L will only
vary slightly between neighboring grid points and hence can be well approximated
by an operator with locally constant coefficients. Thus constant coefficient are often
reasonable assumption.

However, when analyzing more complex problems or even the multigrid method
as a whole this assumption is too restrictive. Interpolation and restriction operators
typically act differently on variables that have a coarse grid representative and those
who do not have one. Another example are patter relaxation schemes like the Red-
Black Gauß-Seidel method where red points of the grid are treated differently from
the black ones.

It is possible to analyze these cases [?, ?] when allowing for interaction of cer-
tain frequencies (see also [?, ?]). Even more, it turns out that when we allow for
more frequencies to interact we can analyze operators given by increasingly complex
patterns. In our talk we will illustrate a general framework for analyzing pattern
structured operators, i.e., operators whose action is invariant under certain shifts of
the input function. Furthermore, we discuss different applications.
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