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Foreword
The European Multigrid Conference (EMG2014) provides a forum for researchers to present and

discuss recent research on the development, theory, and application of multigrid, multilevel, and
multiscale methods. Previous EMG meetings took place in Cologne (1981 and 1985), Bonn (1990),
Amsterdam (1993), Stuttgart (1996), Ghent (1999), Hohenwart (2002), Scheveningen (2005), Bad
Herrenhalb (2008), Ischia (2010) and Schwetzingen (2012).

The 2014 edition in the EMG series of conferences is held in Leuven, Belgium, in the historical
setting of the Irish College. Central topics of the conference are algebraic multigrid, multigrid
for systems of PDEs, parallel multigrid, non-PDE applications, industrial applications, multilevel
optimization, Schwarz and domain decomposition methods, multiscale modeling, data-sparse rep-
resentations, sparse grids approaches.

The conference brings together around 85 participants from all over the world : Germany (27),
Belgium (21), The Netherlands (5), United Kingdom (5), United States (5), Austria (4), Italy (4),
Israel (3), Spain (3), Canada (2), France (2), Czech Republic (1), Ecuador (1), Norway (1), Saudi
Arabia (1). Of those participants, 20 are PhD-students.

Plenary speakers

• Hans De Sterck, University of Waterloo, Canada

• Wolfgang Hackbusch, Max Planck Institute, Leipzig, Germany

• Arne Nägel, Ghoete-Universität Frankfurt am Main, Germany

• Luke Olson, University of Illinois at Urbana-Champaign, USA

• Dorit Ron, Weizmann Institute of Science, Rehovot, Israel

• Giovanni Samaey, KU Leuven - University of Leuven, Belgium

• Robert Scheichl, University of Bath, UK

• Klaus Stüben, Fraunhofer Institute, Sankt Augustin, Germany

• Philippe Toint, Université de Namur, Belgium

• Wim Vanroose, Antwerp University, Belgium

• Jinchao Xu, Penn State University, USA

Organisation committee

• Artem Napov, Université Libre de Bruxelles (local organiser)

• Yvan Notay, Université Libre de Bruxelles (local organiser)

• Stefan Vandewalle, KU Leuven - University of Leuven (local organiser)

• Erik Dick, Ghent University

• Wolfgang Hackbusch, Max Planck Institute, Leipzig

• Cornelis Oosterlee, Delft University of Technology

• Annick Sartenaer, Université de Namur

• Gabriel Wittum, Ghoete-Universität Frankfurt am Main
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Programme

Monday, September 8, 2014

Registration
17h00–19h00

Welcome reception
18h00–19h00
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Tuesday, September 9, 2014

Welcoming remarks
8h45–9h00

Auditorium, Chair : Stefan Vandewalle

9h00–
9h45

Solution of linear systems for boundary value problems in high spatial dimensions,
Wolfgang Hackbusch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.9

9h45–
10h30

Multigrid for far and near field maps of the Helmholtz equation, Wim Vanroose . . . . . . . . . . . p.13

Coffee break

LFA for MG Parallel-in-time MG
Auditorium, Chair : Artem Napov Conference Room 1, Chair : Stefan Vandewalle

11h00–
11h25

Finite element multigrid framework for mimetic
finite difference discretizations,
Carmen Rodrigo . . . . . . . . . . . . . . . . . . . . . . . . . p.36

Parallel time integration with multigrid for
parabolic problems, Stephanie Friedhoff . . p.23

11h25–
11h50

Local Fourier analysis for ILU smoothers on tri-
angular grids,
Marcio Augusto Villela Pinto . . . . . . . . . . . . p.32

Time-parallelism using inexact PFASST,
Robert Speck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.39

11h50–
12h15

Local Fourier Analysis of Pattern Structured Op-
erators, H. Rittich . . . . . . . . . . . . . . . . . . . . . . . p.35

A parallel space-time multigrid solver for the
Navier-Stokes equations, Martin Neumüller p.31

Lunch

Auditorium, Chair : Yvan Notay

14h00–
14h45

A Review on AMG: From Academia to Industry, Klaus Stüben . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.12

AMG Nonlinear MG
Auditorium, Chair : Yvan Notay Conference Room 1, Chair : Francisco Gaspar

14h50–
15h15

BootCMatch: an alpha-AMG solver based on
Compatible Weighted Matching,
Pasqua D’Ambra . . . . . . . . . . . . . . . . . . . . . . . . . p.20

Newton-Multigrid or Nonlinear Multigrid?,
Keeran Brabazon . . . . . . . . . . . . . . . . . . . . . . . . . p.17

15h15–
15h40

Theoretical Advances in non-Galerkin Algebraic
Multigrid, Eran Treister . . . . . . . . . . . . . . . . . p.42

Truncated Nonsmooth Newton multigrid meth-
ods for vector valued minimization problems,
Carsten Gräser . . . . . . . . . . . . . . . . . . . . . . . . . . p.25

15h40–
16h05

Parallel Filtering Algebraic Multigrid for Linear
Elasticity Problems, Martin Rupp . . . . . . . . p.36

Multigrid Method for Systems of Nonlinear
Equations arising from Poroelasticity Problem,
Peiyao Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.30

Coffee break

Helmholtz Applications
Auditorium, Chair : Wim Vanroose Conference Room 1, Chair : Luke Olson

16h30–
16h55

A multigrid based iterative solver for the fre-
quency domain elastic wave equation,
Gabrio Rizzuti . . . . . . . . . . . . . . . . . . . . . . . . . . . p.36

A Fast Method for Modeling Water Infiltration
in Porous Media, Craig Douglas . . . . . . . . . . p.21

16h55–
17h20

A new level-dependent coarse grid correc-
tion scheme for indefinite Helmholtz problems,
Siegfried Cools . . . . . . . . . . . . . . . . . . . . . . . . . . . p.19

Mechanistic dynamics of Hepatitis C virus repli-
cation in single liver cells,
Markus M. Knodel . . . . . . . . . . . . . . . . . . . . . . . p.28

17h20–
17h45

A hybrid multigrid-domain decomposition
method for the Helmholtz equation,
Chris Stolk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.41

Three-stage multiscale algebraic preconditioner
for highly heterogeneous diffusion subsurface
problem on unstructured mesh,
Davide Baroli . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.17

17h45–
18h10

Coarse-grid-correction preconditioner for the
Helmholtz Equation, A. H. Sheikh . . . . . . . p.38

Condition number estimates for higher order
NURBS discretizations, Krishan Gahalaut p.23

Guided tour through Leuven
18h30–19h30, departure from City Hall
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Wednesday, September 10, 2014

Auditorium, Chair : Klaus Stüben

9h00–
9h45

Improving Convergence and Reducing Complexity in Algebraic Multigrid through a Root-node
Method, Luke Olson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.10

9h45–
10h30

Three decades of multilevel optimization strategies, Dorit Ron . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.11

Coffee break

Structured preconditioners MG for special discretizations

Auditorium, Chair : Wolfgang Hackbusch Conference Room 1, Chair : Stefan Vandewalle

11h00–
11h25

Block H-LU preconditioners for higher-order
FEM, Sabine Le Borne . . . . . . . . . . . . . . . . . . .p.29

Symbol-based multigrid methods for isogeomet-
ric analysis, Hendrik Speleers . . . . . . . . . . . . .p.40

11h25–
11h50

H2-matrix preconditioners, Steffen Börm . p.18 Multigrid algorithms for high-order Discontinu-
ous Galerkin discretizations, Marco Sarti . p.37

Auditorium, Chair : Wolfgang Hackbusch

11h55–
12h40

A unified study of geometric and algebraic multigrid methods, Jinchao Xu . . . . . . . . . . . . . . . . p.14

Lunch

Excursion to Brussels

Departure from the Irish College at 14h30

Departure from the Leuven train station at 15h00
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Thursday, September 11, 2014

Auditorium, Chair : Gabriel Wittum

9h00–
9h45

Multilevel Uncertainty Quantification Methods, Robert Scheichl . . . . . . . . . . . . . . . . . . . . . . . . . . . p.11

9h45–
10h30

Adaptive Algebraic Multigrid for Singular Value and Tensor Decompositions, Hans De Sterck p.9

Coffee break

Multilevel approaches Parallel MG

Auditorium, Chair : Robert Scheichl Conference Room 1, Chair : Bram Reps

11h00–
11h25

A Multilevel Approach for l-1 Regularized Con-
vex Optimization with Application to Covari-
ance Selection, Irad Yavneh . . . . . . . . . . . . . . . p.45

A Hybrid Multigrid Algorithm for Elliptic Prob-
lems using Adaptive Higher-Order Cut Cells,
Hans Johansen . . . . . . . . . . . . . . . . . . . . . . . . . . .p.26

11h25–
11h50

Multigrid Method for Solving Elliptic Monge-
Ampere Equation Arising from Image Registra-
tion, Justin Wan . . . . . . . . . . . . . . . . . . . . . . . . .p.43

On a highly scalable infrastructure for massively
parallel multigrid solvers, Sebastian Reiter p.33

11h50–
12h15

A Multilevel Proximal Algorithm for Large Scale
Composite Convex Optimization,
Panos Parpas . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.32

A Parallel Geometric Multigrid Solver for Den-
sity Driven Flow, Andreas Vogel . . . . . . . . . .p.43

Lunch

Auditorium, Chair : Craig Douglas

14h00–
14h45

Ideas in multilevel optimization, Philippe Toint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.13

High-performance MG MG and neurons

Auditorium, Chair : Craig Douglas Conference Room 1, Chair : Arne Nägel

14h50–
15h15

A high arithmetic intensity multigrid precondi-
tioner based on matrix polynomials,
Bram Reps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.34

Subdivision surfaces refinement for generating
multigrid hierarchies with application in neuro-
scientific numerical simulations,
Martin Stepniewski . . . . . . . . . . . . . . . . . . . . . . p.40

15h15–
15h40

Multigrid method on Intel Xeon Phi (MIC),
Kab Seok Kang . . . . . . . . . . . . . . . . . . . . . . . . . . p.27

A Multiscale Model of Synaptic Contacts be-
tween Brain Cells, Gillian Queisser . . . . . . p.33

15h40–
16h05

GPU Multigrid Solver for the Navier-Stokes
Equations, Vladimir Klement . . . . . . . . . . . . p.27

Simulating ion dynamics in neurons,
Markus Breit . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.18

Coffee break

MG for CFD Optimization

Auditorium, Chair : Justin Wan Conference Room 1, Chair : Dorit Ron

16h30–
16h55

HYMLS: A Multilevel ILU approach for coupled
fluid and transport equations, Fred Wubs .p.44

A FE based Multigrid scheme for elliptic Nash-
equilibrium optimal control problems,
Mohammad Tanvir Rahman . . . . . . . . . . . . . .p.33

16h55–
17h20

Parallel Hierarchical Hybrid Multigrid Solver for
Variable Viscosity, Markus Huber . . . . . . . . p.25

Optimal-order multigrid preconditioners for lin-
ear systems arising in the semi-smooth Newton
solution of certain PDE-constrained optimiza-
tion problems, Andrei Draganescu . . . . . . . .p.21

17h20–
17h45

Comparison of different AMG implementations
for non-symmetric problems in CFD,
Frank Hülsemann . . . . . . . . . . . . . . . . . . . . . . . . p.25

Robust preconditioners for PDE-constrained op-
timization with limited observations,
Magne Nordaas . . . . . . . . . . . . . . . . . . . . . . . . . . p.31

17h45–
18h10

Algebraic Multigrid Methods for Velocity Pres-
sure Coupling in CFD, Sarah Engleder . . . p.22

MGOPT Methods for Optimization Problems
Arising in Non-Newtonian Fluids Simulation,
Sergio González-Andrade . . . . . . . . . . . . . . . . . p.24

Conference dinner

19h00–22h00, KU Leuven - University of Leuven Faculty Club
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Friday, September 12, 2014

Auditorium, Chair : Irad Yavneh

9h00–
9h45

Efficient solvers for coupled problems in geophysics, Arne Nägel . . . . . . . . . . . . . . . . . . . . . . . . . . . p.10

9h45–
10h30

A micro-macro parareal algorithm for slow-fast systems with applications to molecular dynamics,
Giovanni Samaey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.11

Coffee break

MG for special and coupled PDEs Applications and optimization

Auditorium, Chair : Artem Napov Conference Room 1, Chair : Hans De Sterck

11h00–
11h25

Challenges in multigrid for mixed ellip-
tic/hyperbolic problems in radiation transport,
Steven Dargaville . . . . . . . . . . . . . . . . . . . . . . . . . p.21

Adaptive fracture approximation,
Sabine Stichel . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.41

11h25–
11h50

A multigrid preconditioner for the Hellan-
Herrmann-Johnson mixed method for bihar-
monic problems, Walter Zulehner . . . . . . . . p.45

A simulation technique for density-driven flow
in porous media with complicated fracture net-
works, Dmitry Logashenko . . . . . . . . . . . . . . . p.29

11h50–
12h15

A new multigrid strategy for Stokes problems,
Yvan Notay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.31

Multigrid methods for boundary control prob-
lems, Dirk Abbeloos . . . . . . . . . . . . . . . . . . . . . . p.17

Lunch
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Plenary sessions

List of speakers
(in alphabetical order by last name)

Hans De Sterck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.9

Wolfgang Hackbusch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.9

Arne Nägel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.10

Luke Olson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.10

Dorit Ron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.11

Giovanni Samaey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.11

Robert Scheichl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.11

Klaus Stüben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.12

Philippe Toint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.13

Wim Vanroose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.13

Jinchao Xu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.14

List of abstracts
(in alphabetical order by last name)

Adaptive Algebraic Multigrid for Singular Value and Tensor
Decompositions

Hans De Sterck
Department of Applied Mathematics

University of Waterloo

An adaptive algebraic multigrid (AMG) method is presented for the rank-K canonical tensor decom-

position problem, which aims to approximate a data tensor by a sum of K rank-one terms. This canonical

tensor decomposition is widely used in a variety of application areas that include chemometrics, signal

processing, neuroscience, and social network analysis. An adaptive version of AMG is required for this

problem to ensure that error components that converge slowly during relaxation lie approximately in the

range of interpolation. The method uses the bootstrap adaptive AMG approach and is derived by first

considering an adaptive AMG method for the singular value decomposition, which is the matrix version

of canonical tensor decomposition.

Solution of linear systems for boundary value problems in high spatial
dimensions

Wolfgang Hackbusch
Max-Planck-Institut

Mathematik in den Naturwissenschaften

Consider an elliptic boundary value problem in the domain D1 x D2 x ... x Dd, where the spatial

dimension d may be much larger than 3. In such a case, standard methods lead to linear systems of a size

too huge for any computer. Because of the Cartesian product domain, tensor methods can be applied.

We show how iterative methods with a good preconditioner can be constructed. Even multigrid ideas can

be applied.

9



Efficient solvers for coupled problems in geophysics

Arne Nägel
Goethe-Center for Scientific Computing

Goethe University Frankfurt a.M.

Many problems in geophysics comprise interactions of processes, and are typically formulated as a

system of coupled PDEs. In most cases this systems are transient and often also non-linear. Hence,

developing efficient solvers is often a delicate task and must include combining suitable schemes for (i)

time integration, (ii) linearization, and (iii) geometric and algebraic multigrid solvers. In this presentation

we take an application oriented approach and focus on the problem classes of density-driven-flow and

poroelasticity problems. For these two examples, we first comment on similarities and differences, and

then provide details on their respective solution strategy:

For density-driven-flow problems, the fluid flow is density dependent and coupled non-linearly to a

second quantity such as a substance concentration or heat, which is transported as well. For this problem

class we investigate different non-linear solvers and decoupling strategies. In benchmark computations,

an iterative coupling (single step nonlinear Gauss-Seidel) outperforms a partial Newton method (single

step non-linear Jacobi). This effect is less pronounced for the iterative coupling, and mitigates after the

first simulation phase when the velocity profile has stabilized. In the latter case corrections are computed

independently, thus, this scheme shows to be inappropriate for this highly nonlinear problem class. The

fully coupled Newton method, requiring a monolithic linear solver, however, proofs being superior to both

approaches.

The poroelasticity problems considered in the second part of the talk are linear and are known to be

decoupled efficiently by iterative coupling strategies. Since the mechanics sub-system can be considered

as time-independent constraint, this the problem perfectly suited for (algebraic) multigrid solvers. We

provide scalability results and also comment on the monolithic (fully coupled) solution.

Improving Convergence and Reducing Complexity in Algebraic Multigrid
through a Root-node Method

Luke Olson
Computer Science

University of Illinois at Urbana-Champaign

Recent approaches to improving multigrid convergence through modified coarsening and enhanced

interpolation have shown to be effective in a general setting (e.g. complex, non-Hermitian, and indefinite).

Yet, the the resulting multigrid hierarchies may exhibit higher complexities than necessary. In this talk

we outline a root-node based approach to multigrid, which can be viewed as a hybrid of classical and

aggregation based multigrid methods. This allows both point-wise decisions in the setup while retaining

the framework of aggregation. We give an overview of root-node multigrid using interpolation based on

energy minimization and show how the complexity of the multigrid cycle is controlled through selective

filtering by utilizing a root-node. The method yields improved interpolation (and convergence), while

limiting the total work of the cycle with minimal tuning of parameters. We present several numerical

results in support and discuss directions for further theoretical and numerical development.
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Three decades of multilevel optimization strategies

Dorit Ron
Department of Computer Science and Applied Mathematics

Weizmann Institute of Science

Multilevel approach has become common in many applications involving optimization problems. Many

of these problems may consist of millions of discrete state variables and are known to be NP-hard. In

many theoretical and industrial fields, this class of problems is often addressed and actually poses a

computational bottleneck, e.g., graph visualization, facility location problem, VLSI layout, etc. We have

developed fast multilevel solvers for a variety of such combinatorial optimization problems including

graph and hypergraph problems. In particular, we suggest a local measure, the algebraic distance, for

the graph coarsening process yielding a multiscale graph organization. Another problem we introduce is

an optimization problem of continuous state variables under non-linear global constraints describing the

movement of a soft robotic arm inspired by the octopus extension and fetching movements.

A micro-macro parareal algorithm for slow-fast systems with applications
to molecular dynamics

Giovanni Samaey
Dept. Computer Science

KU Leuven

joint work with Frederic Legoll, Tony Lelievre

We introduce a micro-macro parareal algorithm for the time-parallel integration of multiscale-in-

time systems. The algorithm first computes a cheap, but inaccurate, solution using a coarse propagator

(simulating an approximate slow macroscopic model), which is iteratively corrected using a fine-scale

propagator (accurately simulating the full microscopic dynamics). This correction is done in parallel

over many subintervals, thereby reducing the wall-clock time needed to obtain the solution, compared

to the integration of the full microscopic model. We provide a numerical analysis of the algorithm

for a prototypical example of a micro-macro model, namely singularly perturbed ordinary differential

equations. We show that the computed solution converges to the full microscopic solution (when the

parareal iterations proceed) only if special care is taken during the coupling of the microscopic and

macroscopic levels of description. The convergence rate depends on the modeling error of the approximate

macroscopic model. We illustrate these results with numerical experiments, including a non-trivial model

inspired by molecular dynamics.

Multilevel Uncertainty Quantification Methods

Robert Scheichl
Mathematical Sciences

University of Bath

The coefficients in mathematical models of physical processes are often impossible to determine fully or

accurately, and are hence subject to uncertainty. It is of great importance to quantify the uncertainty in the

model outputs based on the (uncertain) information that is available on the model inputs. This invariably

leads to very high dimensional quadrature problems associated with the computation of statistics of

quantities of interest, such as the time it takes a pollutant plume in an uncertain subsurface flow problem

to reach the boundary of a safety region or the buckling load of an airplane wing. Higher order methods,

such as stochastic Galerkin or polynomial chaos methods, suffer from the curse of dimensionality and

when the physical models themselves are complex and computationally costly, they become prohibitively
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expensive in higher dimensions. Instead, some of the most promising approaches to quantify uncertainties

in continuum models are based on Monte Carlo sampling and the ”multigrid philosophy”. Multilevel

Monte Carlo (MLMC) Methods have been introduced recently and successfully applied to many model

problems, producing significant gains. In this talk I want to recall the classical MLMC method and then

show how the gains can be improved further (significantly) by using quasi-Monte Carlo (QMC) sampling

rules. More importantly the dimension independence and the improved gains can justified rigorously

for an important model problem in subsurface flow. In the final part of my talk I will move away

from the simple problem of uncertainty propagation from model inputs to model outputs and discuss

how multilevel methods can also be used very successfully in Bayesian inference, i.e. stochastic inverse

problems incorporating also some measurements of model outputs.

A Review on AMG: From Academia to Industry

Klaus Stüben
NUSO

Fraunhofer Institut SCAI

The development of algebraic multigrid (AMG) started over 30 years ago, driven by the attempt

to automate and generalize geometric multigrid for the efficient solution of elliptic partial differential

equations. The original AMG approach was effectively restricted to particular classes of problems, an

important one being the class of linear algebraic systems with matrices close to rowsum zero M-matrices.

In such cases, the original AMG is very mature and can handle large linear systems much more efficiently

than any one-level method. While geometric multigrid solvers, when available, are generally still faster

than their algebraic counterpart, the strengths of AMG-based solvers are its robustness and ease of use,

its applicability in complex geometric situations with unstructured grids, and its capability to even solve

certain (non-PDE) problems which are beyond the reach of geometric multigrid.

In spite of its potential, it took until around 1995 before there was a remarkable increase of interest in

AMG, essentially caused by two facts: First, on the scientific side, the increasing geometrical complexity

of applications, discretized on large and unstructured grids, technically limited the immediate use of

geometric multigrid. Here AMG-based techniques appeared to be a promising alternative to tackle such

problems. Second, in industrial simulation, models have been rapidly growing in geometric complexity,

heterogeneity and size, causing the computational time required to solve linear systems of equations to

become the major bottleneck. The classical one-level solvers used in industrial software packages seriously

limited the practicability of numerical simulation. The potential of AMG-based solvers – their numerical

efficiency, robustness and scalability – together with their ease-of-use as “plug-in” solvers have caused a

growing industrial interest in such solvers.

Fostered by this situation, R&D on AMG-based and related methods has become a significant part of

the general R&D on multigrid. Various extensions of the original AMG approach have been introduced,

aiming at increasing its range of applicability. Several other possibilities to generalize AMG have been

investigated; research on various new and related approaches has started and is still ongoing today. Most

important from a practical point of view, substantial progress has been achieved regarding the efficient

treatment of coupled systems of PDEs.

In this presentation we will give a review on the history of AMG in general and its impact on various

branches of industrial simulation in particular. In contrast to geometric multigrid methods, AMG methods

have found their way into many industrial and commercial simulation programs. We will summarize on

our experiences and difficulties to bridge the gap between academia and industry.
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Ideas in multilevel optimization

Philippe Toint
Mathematics

University of Namur

joint work with S. Gratton, A. Sartenaer, D. Tomanos, M. Mouffe

A review of some recent ideas for exploiting the multilevel structure in nonlinear optimization will be

discussed. In many case, optimization problems involve variables which correspond to a discretization of

an underlying continuous problem, and more than one level of discretization may be considered. We will

briefly discuss three approaches which attempt to exploit this structure, in different algorithmic contexts.

The first is that of trust-region methods for (possibly bound-constrained) optimization and the second is

that of variable-metric methods for unconstrained problems. The third is simpler (a more standard mesh

refinement scheme) but operates in the observation space of large-scale data fitting problems.

Multigrid for far and near field maps of the Helmholtz equation

Wim Vanroose
Mathematics and Computer Science

Universiteit Antwerpen

joint work with Siegfried Cools, Bram Reps

The Helmholtz equation desribes the scattering of electrons in small microscopic systems such a

molecules. These problems are high-dimensional and are characterized by a smoothly varying wave number

in contrast to typical engineering problems where the wave number has material jumps. Understanding

these scattering process is important to basic sciences such as chemistry and biology.

In this talk we show that the far and near field scattering amplitudes for these Helmholtz equations

can be efficiently be calculated using multigrid. Indeed, these amplitudes are integral expressions over the

solution of the Helmholtz equation solved on a finite numerical box with absorbing boundary conditions

covering the object of interest. A typical calculation has two steps. The first step is to solve the high-

dimensional Helmholtz equation, which is a computationally very expensive and requires supercomputer

infrastructure for the most challenging problems. The second step is to integrate over the solution to

obtain the far field or near field amplitude. The latter is cheap can be done as a post processing step on

a laptop.

By deforming the contour of integration into complex plane in the second step, the Helmholtz problem

in the first step becomes much easier. Indeed, we show that the deformation of the contour turns the

Helmholtz into a Complex shifted Laplacian problem, known to be solvable in a scalable way.

We validate the method for some benchmark problems and show the O(n) scalability on 3D Helmholtz

and Schrödinger equations.

References

[1] Cools, S., Reps, B., and Vanroose, W. An Efficient Multigrid Calculation of the Far Field Map for

Helmholtz and Schrödinger Equations, SIAM Journal on Scientific Computing 36 p267-395 (2014).

13



A unified study of geometric and algebraic multigrid methods

Jinchao Xu
Department of Mathematics

Penn State University

In this talk, I will report on a unified study of a number of multilevel methods including geometric

and algebraic methods and upscaling methods. Emphasis will be on two classes of algebraic multigrid

methods: one optimizing the coarsening with a fixed smoother, and the other optimizing the smoother

with a fixed coarsening.
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List of abstracts
(in alphabetical order by last name)

Multigrid methods for boundary control problems

Dirk Abbeloos
Department of Computer Science

University of Leuven

joint work with Stefan Vandewalle

In this talk we give an overview of multigrid methods designed for parabolic boundary control prob-

lems, i.e. a class of optimization problems where right-hand sides of the boundary conditions needs to

be found in order to minimize an objective. We present multigrid components, e.g smoother and coarse

grid operator, designed for Dirichlet and Robin type of boundary control problems. Numerical results are

presented and illustrated through a half-space analysis, which is a mode analysis based on a half-space

domain where the effect of only one boundary condition at a time can be included.

Three-stage multiscale algebraic preconditioner for highly heterogeneous
diffusion subsurface problem on unstructured mesh

Davide Baroli
Departement of Mathematics, Laboratory for Modeling and Scientific Computing

Politecnico di Milano

joint work with Luca Formaggia

In subsurface problem, diffusion flow with multiscale coefficients and nature of media properties pose

significant challenges for numerical methods. We investigate a novel multiscale domain decomposition

preconditioner for solving the Darcian flow characterized by highly heterogeneous and highly anisotropic

permeability field. Among multiscale domain decomposition framework, we present a three-stage multi-

scale algebraic preconditioner that yield condition number bound independent of the contrast in the media

properties, extending the recent two-scale additive Schwarz preconditioner based on spectral coarse space

introduced by Efendiev. In this work the third stage of multiscale solver is provided by auxiliary coarse

space based on variational subgrid correction, which is able to capture the high oscillatory energy modes

inside and across the coarse-grid block. We also present different synthetic test cases of porous media

problem with high degree of variability due to presence of barrier, inclusion, and salt triangular layers to

validate the robustness of the multiscale solver proposed.

Newton-Multigrid or Nonlinear Multigrid?

Keeran Brabazon
School of Computing
University of Leeds

joint work with Peter Jimack and Matthew Hubbard

Nonlinear multigrid methods such as the Full Approximation Scheme (FAS) and Newton-multigrid

(Newton-MG) are well established as fast solvers for nonlinear PDEs of elliptic and parabolic type. In

this presentation Newton-MG and FAS iterations are considered in a general setting and a theoretical

approximation of the execution time of the algorithms is derived, which is shown to be sharp, that clearly

demonstrates that Newton-MG is a faster iteration for finite element discretisations. Results are provided

for elliptic and parabolic problems, demonstrating a faster execution time as well as greater stability of the
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Newton-MG iteration. Results are tied in with current theory for the convergence of multigrid methods,

giving a qualitative insight into how the nonlinear multigrid methods can be expected to perform in

practice.

Simulating ion dynamics in neurons

Markus Breit
Goethe-Center for Scientific Computing

University of Frankfurt

joint work with Gillian Queisser

The neurosciences are a very active field of research. Numerical simulation, however, has not (yet)

been broadly used where the experimental approach is costly or otherwise difficult. A key system to a

huge variety of processes (such as maintenance and development of neurons in the context of learning

or degenerative disease) is the regulation of intracellular calcium dynamics. Many players are involved,

especially ion channel and pump activities in the cell membrane and the membranes of cell organelles are

of interest and often have quite complex behaviour. We have developed a model including diffusion and

reaction processes of calcium and other species as well as highly nonlinear membrane fluxes that can be

applied in simulations for various neuroscientific purposes.

H2-matrix preconditioners

Steffen Börm
Department of Computer Science

University of Kiel

joint work with Knut Reimer

Generalised regularity results imply that the solution operators of strongly elliptic PDEs are rank-

structured, i.e., that the interaction between well-separated subdomains can be approximated by low-rank

operators. This holds true even for differential operators with discontinuous and anisotropic coefficients.

The H2-matrix representation takes advantage of this property in order to find efficient preconditioners

or solve eigenvalue problems.

In this talk, we consider new algorithms for constructing H2-matrix approximations of products,

inverses and factorisations of the stiffness matrices corresponding to FEM and BEM problems. The

algorithms rely on recursion and two fundamental algebraic operations: the simultaneous multiplication

of an H2-matrix by k vectors and the update of an H2-matrix by a matrix of rank k. Both operations

can be performed in linear complexity and give rise to higher-level algorithms of complexity O(nk2 log n).

In particular, we can construct efficient preconditioners for FEM and BEM problems in O(n log n)

operations requiring O(n) units of storage, and we can perform a step of the “slicing the spectrum”

method for approximating arbitrary eigenvalues of PDEs in O(n log n) operations.
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A new level-dependent coarse grid correction scheme for indefinite
Helmholtz problems

Siegfried Cools
Mathematics and Computer Science

University of Antwerp

joint work with Bram Reps and Wim Vanroose

Fast and efficient numerical solvers for indefinite Helmholtz problems are of great interest in many

scientific domains that study acoustic, seismic or electromagnetic wave scattering. Applications such

as engine design, oil exploration, medical imaging, but even quantum mechanical problems describing

particle interaction [1], are governed by underlying Helmholtz equations of the form

Hu(x) = (−∆− k(x)2)u(x) = f(x), with x ∈ R. (1)

Pushed by the rising interest in high resolution requirements and high-dimensional applications, the

diffusion term in the Laplacian equation drives the condition number of the associated discretized operator

to undesirable sizes for standard iterative methods to converge rapidly. In addition, for realistic values of

the wavenumber k(x) in (1), the Helmholtz operator H becomes indefinite, destroying the convergence

behaviour of much preferred sparse linear system solvers such as e.g. Krylov subspace methods and

classical geometric multigrid.

When the negative shifting term −k(x)2 in the Helmholtz operator in (1) is replaced by a complex

valued shift −(β1 + ıβ2)k(x)2 the resulting operator is still closely related to the original, yet can effi-

ciently be inverted with e.g. standard multigrid methods. This idea defined a well-known and successful

Helmholtz preconditioning technique called complex shifted Laplacian [2]. The choice of the optimal value

of the scaling parameter β1 + ıβ2 is a trade-off between a good preconditioner on the one hand and a

computationally cheap inversion of that preconditioner on the other hand.

Inspired by the complex shifted Laplacian, we present the construction and analysis of a modified

multigrid method that is capable of solving the original indefinite Helmholtz equation (1) on the finest

grid using a series of multigrid cycles with a level-dependent complex shift, i.e. gradually perturbing the

original Helmholtz operator throughout the hierarchy, leading to a stable correction scheme on all levels.

It is rigorously shown that the adaptation of the complex shift throughout the multigrid cycle maintains

the functionality of the two-grid correction scheme, as no smooth modes are amplified in or added to the

error. Complementary, a sufficiently smoothing relaxation scheme should be applied to ensure damping of

the oscillatory error components. Contrary to classical multigrid preconditioning techniques like shifted

Laplacian, the proposed level-dependent multigrid scheme is capable of directly solving the Helmholtz

system (1) instead of being used as a preconditioner.

Numerical experiments on various physically relevant benchmark problems show the level-dependent

multigrid solver to be competitive with or even outperform contemporary multigrid-preconditioned Krylov

methods that use the classical level-fixed complex shift preconditioner.
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BootCMatch: an alpha-AMG solver based on Compatible Weighted
Matching

Pasqua D’Ambra
Institute for High-Performance Computing and Networking

National Research Council of Italy

joint work with Panayot S. Vassilevski

In [2] we introduced a new adaptive Algebraic Multigrid (αAMG) method to solve symmetric positive

definite (s.p.d.) systems of linear equations without exploiting any a-priori knowledge or assumptions on

characteristics of the algebraic smoothness (or near null components of the system). Our method relies

on a bootstrap strategy aimed to compute a sequence of AMG hierarchies composed in a multiplicative

way. The goal is to obtain a composite solver with a desired convergence rate. Starting from a general

(random) given vector, at each step of the bootstrap procedure, a new algebraically smooth vector re-

lated to the current composite solver is computed. Each successive hierarchy is built by using pairwise

aggregation of unknowns driven by a weighted matching algorithm with weights depending on the most

recently computed algebraically smooth vector utilizing a notion of the compatible relaxation [1]. Match-

ing algorithms in a matrix graph were successfully exploited in reordering schemes designed to enhance

matrix diagonal dominance in sparse direct methods [3]; we apply linear-time complexity approximate

weighted matching in a graph [4] to form aggregates of unknowns and build the coarse-vector space by

simple piecewise constant interpolation of the current algebraically smooth vector. This coarsening pro-

cess, which we referred to as compatible weighted matching, is completely automatic and algebraic, and it

replaces the commonly used characterization of strength of connections in both the coarse space selection

and in the interpolation scheme.

In the present work, we describe an extension of the method, including aggressive coarsening obtained

by combining multiple sweeps of the pairwise aggregation procedure, as well as utilizing more accurate

interpolation operators obtained by weighted-Jacobi smoothing of the piecewise constant interpolation

operators. This leads to smoothed aggregation type adaptive AMG (or SA-αAMG) method, which

exhibits improved convergence properties and reduced building setup cost.

We present some main features of the BootCMatch: αAMG based on Bootstrap Compatible Matching,

a C-language implementation of the method, and discuss performance results on a suite of symmetric

positive-definite linear systems arising from discretization of elliptic PDEs as well as on problems from

the University of Florida Sparse Matrix Collection.
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Challenges in multigrid for mixed elliptic/hyperbolic problems in radiation
transport

Steven Dargaville
Applied Modelling and Computation Group, Earth Science and Engineering

Imperial College London

A Buchan, M Goffin, R Smedley-Stevenson and C Pain

The Boltzmann transport equation is a linear PDE which governs the transport of neutral particles

(i.e., neutrons, photons) in radiation transport problems. The steady-state, monoenergetic version of this

PDE has 3 spatial dimensions (which we discretise with the FEM on unstructured grids) and 2 angular

dimensions (of which there are several common discretisations), which results in a very large linear system,

which forces the use of matrix-free methods. Furthermore, given different physical materials, the PDE

can behave in both an elliptic or hyperbolic fashion in a single domain.

This makes designing effective multigrid schemes challenging, as directional information in hyperbolic

regions is encapsulated within angular variables. Traditional AMG approaches also perform poorly on

this system. An approach based on coarsening algorithms from AMGe and simple interpolation will be

presented that performs well in diffuse regions, but suffers from difficulties in strongly hyperbolic regions.

A Fast Method for Modeling Water Infiltration in Porous Media

Craig Douglas
School of Energy Resources and Mathematics

University of Wyoming

joint work with Mookwon Se, Derrick Cerwinsky, and Han Yu

Water infilitration from the surface to the groundwater level is usually simulated using a model based

on either Richards equation or a reservoir model. In this talk we present a model derived from Darcy’s

law known as the Talbot-Ogden (T-O) model. Instead of one of the usual 3D models, we have a depth

versus water content based on a water content domain. We investigate three ways of implementing the

T-O model and evaluate each in terms of computational complexity, parallelism potential, and accuracy

based on lab and field experiments and data.

Optimal-order multigrid preconditioners for linear systems arising in the
semi-smooth Newton solution of certain PDE-constrained optimization

problems

Andrei Draganescu
Mathematics and Statistics

University of Maryland, Baltimore County

joint work with Jyoti Saraswat

We present a new technique for constructing multigrid preconditioners arising in the semi-smooth

Newton solution process of optimization problems of the form

min
u∈L2(Ω)

1

2
‖Ku− b‖2 +

β

2
‖u‖2 , u ≤ u ≤ u , (2)

where K : L2(Ω) → Y is a bounded linear operator, with the embedding Y ↪→ L2(Ω) being compact,

and Ω ⊂ Rd, d = 1, 2, 3, is bounded domain. Problem (1) can be regarded as the reduced form of
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a PDE-constrained optimization problem with K being the solution operator of a PDE (for example,

K = (−∆)−1 : L2(Ω)→ H1
0 (Ω)).

For a piecewise constant discretization of the discrete control space Vh, each semi-smooth Newton

(outer) iteration requires the solution of a linear system whose matrix is a principal submatrix of Gh =

KT
hKh+βI, where Kh is the matrix representing the discretization of K, and h is the mesh size. In a large-

scale context these (inner) linear systems are solved using preconditioned conjugate gradient. An earlier

technique [1] produced a multigrid preconditioner Mh for Gh that satisfies, under reasonable conditions

1− Ch
1
2

β
≤ 〈Mhu, u〉
〈Ghu, u〉

≤ 1 + C
h

1
2

β
, ∀u ∈ Vh \ {0} . (3)

As a result of (2), the number of inner linear iterations needed to solve the system at each outer iteration

decreases with h ↓ 0. While this result is interesting from a theoretical point of view (and qualitatively

consistent with the behavior of the preconditioner for the full system), its practicality is limited by the

suboptimal factor h1/2 in (2).

The new technique, relying on constructing larger and non-conforming coarse spaces, produces multi-

grid preconditioners Mh that are able to capture the character of the operator Gh in an optimal way,

namely we have

1− C h
β
≤ 〈Mhu, u〉
〈Ghu, u〉

≤ 1 + C
h

β
, ∀u ∈ Vh \ {0} .
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[1] Andrei Drăgănescu, Multigrid Preconditioning of Linear Systems for Semismooth Newton Methods

Applied to Optimization Problems Constrained by Smoothing Operators, Optimization Methods and

Software (DOI:10.1080/10556788.2013.854356), 2013.

Algebraic Multigrid Methods for Velocity Pressure Coupling in CFD

Sarah Engleder
RICAM

Austrian Academy of Sciences

In standard commercial Computational Fluid Dynamics (CFD) programs the Navier-Stokes equations

are solved using the SIMPLE algorithm, which is a segregated approach that solves only for one single

physical unknown at a time (velocity, pressure).

Here a coupled approach is investigated where velocity and pressure equation are solved simultaneously,

which leads to a block matrix system. For both segregated and coupled approach we use Algebraic Multi-

grid Methods as preconditioner. We compare the two approaches regarding convergence and robustness

with respect to mesh size and quality. Further we investigate the application of block preconditioners for

the matrix which arises from the coupled approach.

The velocity pressure coupling is implemented in the framework of the CFD software AVL FIRE R©. We

illustrate our results by industrial benchmark examples.
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Parallel time integration with multigrid for parabolic problems

Stephanie Friedhoff
Department of Computer Science

KU Leuven

joint work with Robert Falgout, Tzanio Kolev, Scott MacLachlan, and Jacob Schroder

With current trends in computer architectures leading towards systems with more, but not faster,

processors, faster time-to-solution must come from greater parallelism. These trends particularly impact

the numerical solution of the linear systems arising from the discretization of partial differential equations

(PDEs) with evolutionary behavior, such as parabolic (space-time) problems. The classic view of applying

multigrid to this class of problems is based on a time-marching approach: discretization of the PDE leads

to a discrete elliptic problem at each time step when an implicit scheme is used. Multigrid is then used as

an iterative solver for these elliptic equations. Parallelization in this approach is limited to parallelization

in the elliptic (spatial) solver, since the time-stepping procedure is sequential.

While two-level methodologies, such as parareal, are well-established for parallel-in-time integration,

true multilevel approaches remain uncommon. In this talk, we present one such technique, derived based

on multigrid reduction principles. The resulting multigrid-reduction-in-time (MGRIT) algorithm is a

non-intrusive approach, which only uses an existing time propagator and, thus, easily allows one to

exploit substantially more computational resources than standard sequential time stepping. We discuss

progress to date in applying MGRIT to parabolic (space-time) problems. In particular, we demonstrate

that MGRIT offers excellent strong and weak parallel scaling up to thousands of processors for solving

diffusion equations in two and three space dimensions.

Condition number estimates for higher order NURBS discretizations

Krishan Gahalaut
CEMSE division

King Abdulla University of Science and Technology

joint work with Satyendra Tomar and Craig Douglas

The discretization matrix A gets denser by increasing the polynomial degree p. Therefore, the cost for

solving large problems becomes prohibitively expensive. The most practical way to solve them is to resort

to a iterative method. Since the convergence rate of such methods ,e.g. multigrid methods, is strongly

affected by the condition number of the system matrix A, it is important to assess this quantity as a

function of the mesh size h for the h-refinement, or as a function of the degree p for the p-refinement.

In this talk, we will derive bounds for the minimum and maximum eigenvalues and the spectral con-

dition number of matrices for higher order NURBS discretizations of elliptic partial differential equations

in an open, bounded, simply connected Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3}. We consider refinements

based on mesh size h and polynomial degree p with maximum regularity of spline basis functions. For the

h-refinement, the condition number of the stiffness matrix is bounded above by a constant times h−2 and

the condition number of the mass matrix is uniformly bounded. For the p-refinement, the condition num-

ber grows exponentially and is bounded above by p2d+24pd and p2d4pd for the stiffness and mass matrices,

respectively. Rigorous theoretical proofs of these estimates will be provided and supporting numerical

results.
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MGOPT Methods for Optimization Problems Arising in Non-Newtonian
Fluids Simulation

Sergio González-Andrade
Research Center on Mathematical Modelling

Escuela Politécnica Nacional de Quito

This work is concerned with the application of multigrid methods to the numerical solution of the

following class of optimization problems: find y ∈W 1,ν
0 (Ω) such that

min
y∈W 1,ν

0

J(y) :=
1

ν

∫
Ω
|∇y|ν dx+ g

∫
Ω
|∇y| dx−

∫
Ω
fy dx,

where g > 0 and f ∈ W−1,ν′(Ω) is a given function. This kind of problems arise in the modelization

of non-Newtonian fluids e.g. the Herschel-Bulkley model . We propose a Huber regularization of the

non-differentiable term in the functional J . Well posedness of the regularized problems is proved, and

convergence of the regularized solutions to the solution of the original problem is verified. Further, we

discuss the finite element discretization of the problem. Our main interest is to develop a multigrid

algorithm to solve these kind of problems at big scale. Therefore, we propose a multigrid for optimization

method (MGOPT) for the numerical solution of the discretized problem. This method is based on the

well known full approximation storage (FAS) scheme. As an important feature of this work, we propose

to use a preconditioned descent method combined with an innovative linesearch method as the smoothing

process. Finally, several numerical experiments are carried out to show the efficiency of the approach.

Particularly, we discuss the application of our algorithm to simulate the flow of non-Newtonian fluids.
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Truncated Nonsmooth Newton multigrid methods for vector valued
minimization problems

Carsten Gräser
Institut für Mathematik
Freie Universität Berlin

joint work with Oliver Sander

The extension of the classical Gauß–Seidel method to scalar problems with separable nonsmooth terms

is straight forward. In contrast to this vector valued block separable problems demand for smoothers with

local solvers tailored to the structure on the nonsmooth terms. Similarly the construction of coarse grid

corrections has to take care on this structure.

We will present truncated nonsmooth Newton multigrid (TNNMG) methods that rely on nonlinear in-

exact block Gauß–Seidel smoothers and linear coarse grid corrections derived using ideas from nonsmooth

analysis. While the performance and efficiency of TNNMG is comparable to linear multigrid it is more

flexible and easier to implement than other schemes. Numerical examples from applications in material

science, continuum mechanics, and glacier modeling show the flexibility, efficiency, and robustness of this

approach.

Comparison of different AMG implementations for non-symmetric
problems in CFD

Frank Hülsemann
SINETICS

EDF R & D

joint work with S. Khelifi, E. Santerre, N. Méchitoua and F. Magoulès

In our approach to multiphase flow simulations, we encounter the well-known convection-diffusion

equation and a weighted sum of diffusion operators, with one diffusion term per phase. In our finite

volume discretization, both (scalar) equations result in non-symmetric linear systems.

We applied the AMG implementations BoomerAMG, ML, GAMG and AGMG as well as our finite

volume based aggregation scheme to a number of test cases. The presentation contains the obvious conver-

gence comparisons in terms of number of iterations, sequential wall-clock times and memory consumption,

and also some remarks on usability from a user’s point of view.

Parallel Hierarchical Hybrid Multigrid Solver for Variable Viscosity

Markus Huber
Informatics, Chair for System Simulation

Friedrich-Alexander-University Erlangen-Nürnberg

joint work with B. Gmeiner, U. Rüde, C. Waluga, B. Wohlmuth

The hierachical hybrid grid (HHG) framework is designed to close the gap between the flexibility

of finite elements and the performance of geometric multigrid by employing semi-structured meshes. It

provides excellent scalability up to a million parallel threads and can solve in excess of 1012 unknowns

in less than 2 minutes compute time on state of-the-art supercomputers. The framework has recently

been extended to solve the Stokes system as a building block for geophysical flow simulations. In this

presentation we will concentrate on the analyzing the multigrid convergence in case of variable viscosity.

In the cases of interest, close to optimal multigrid convergence can be maintained by combining suitable

smoothers and Krylov space acceleration.
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A Multilevel Bilinear Programming Algorithm for the Vertex Separator
Problem

James Hungerford
Department of Computer Science

University of Pisa

joint work with William Hager and Ilya Safro

Given a simple undirected graph G, the vertex separator problem (VSP) is to find the smallest

collection of vertices whose removal separates G into two disconnected sets of approximately the same

size. Applications include VLSI design, sparse matrix factorizations, and hypergraph partitioning. In

this talk, we present a multilevel algorithm for solving large-scale instances of this VSP. A key feature

of our algorithm is in the refinement phase. While most modern multilevel graph partitioners carry out

refinements using node-swapping heuristics such as the Fiduccia Mattheyses algorithm, our algorithm

refines solutions by solving a recently discovered continuous bilinear programming formulation of the

VSP. Numerical results are given comparing our algorithm with the VSP solver METIS, which employs

traditional node-swapping heuristics.

A Hybrid Multigrid Algorithm for Elliptic Problems using Adaptive
Higher-Order Cut Cells

Hans Johansen
Computational Research Division

Lawrence Berkeley National Laboratory

joint work with D. Graves, P. Devendran

We propose a hybrid geometric-algebraic multigrid approach for solving elliptic equations on domains

with complex geometries. The discretization uses a novel higher-order (p = 2, 4, 6) finite volume, cell

average cut cell representation to discretize the variable coefficient elliptic operator on a Cartesian mesh.

The benefit of this is a regular stencil in most of the domain, thereby avoiding difficulties associated

with algebraic coarsening of a global mesh. However, the challenge introduced with cut cells is two-fold:

the resulting operators are typically not symmetric, and small cut cells can generate very large negative

eigenvalues in the finite volume formulation. In addition, traditional geometric coarsening introduces

very different representations of the cut cell operator on coarser meshes, and can produce topological

constraints on the coarsest mesh, where we can apply an algebraic solver more effectively. We find that

the hybrid approach realizes many of the benefits of geometric coarsening while retaining the robustness of

algebraic multigrid. We demonstrate this approach for a number of examples of complex geometries in an

adaptive mesh hierarchy implemented in the Chombo parallel framework. Our results show that we obtain

both higher-order accuracy and near-optimal multigrid convergence rates, without being constrained by

traditional aggregation methods or adjoint operators for restriction and prolongation.

Structure Preserving Algebraic Multigrid

Karsten Kahl
Fachbereich Mathematik und Naturwissenschaften

Bergische Universität Wuppertal

joint work with James Brannick

We develop an algebraic multigrid method for solving linear systems of equation with non-Hermitian

matrices that possess a simple symmetrizing operator, e.g., Saddle-point problems, Hamiltonian matrices.

In particular we develop a method for the Wilson discretization of the 2-dimensional Dirac equation. The
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proposed approach uses a bootstrap setup algorithm based on a multigrid eigensolver. It computes test

vectors which define the least squares interpolation operators by working mainly on coarse grids, leading

to an efficient and integrated self learning process for defining algebraic multigrid interpolation.

The algorithm is motivated by the γ5-symmetry of the Dirac equation, which carries over to the

Wilson discretization. This discrete γ5-symmetry is used to reduce a general Petrov Galerkin bootstrap

setup algorithm to a Galerkin method for the Hermitian and indefinite formulation of the Wilson matrix.

Kaczmarz relaxation is used as the multigrid smoothing scheme in both the setup and solve phases of

the resulting Galerkin algorithm. Extensive numerical results are presented to motivate the design and

demonstrate the effectiveness of the proposed approach.

Multigrid method on Intel Xeon Phi (MIC)

Kab Seok Kang
NMPP

Max-Planck Institute for Plasma Physics

The multigrid method is a well-known, fast and efficient algorithm to solve many classes of problems.

In general, the ratio of the communication costs to computation costs increases on the coarser level, i.e.,

the communication costs are high on the coarser levels in comparison to the computation costs. So,

reducing the costs of the communication is a major issue in implementation of the parallel multigrid

method. Using a hybrid programming model which uses OpenMP for parallelization inside node and

MPI for message passing between nodes and can reduce the number of MPI tasks, we have better scaling

properties on a massively parallel computer.

Modern computer architectures have highly hierarchical system design, i.e., multi-socket multi-core

shared-memory computer nodes which are connected via high-speed interconnects, and now accelerators

such as Intel Xeon Phi (MIC) coprocessors or GPUs (Graphics Processing Units) are emerged. The

OpenMP 4 standard supports to use these accelerators. In this talk, we present the performance results

of the parallel multigrid method with hibridization implementation on a MIC partition of the Helios

machine which is dedicated machine for Europe and Japan Fusion community.

GPU Multigrid Solver for the Navier-Stokes Equations

Vladimir Klement
Department of Mathematics

Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical University in Prague

joint work with Petr Bauer and Tomas Oberhuber

This contribution present a GPU implementation of a multigrid method for the problem of 2D air

flow over a simplified urban canopy governed by the incompressible Navier-Stokes equations. In the first

part we present this problem which is discretized by means of the mixed finite element method with semi-

implicit time stepping and then the arising linear saddle-point problem which is solved by the geometric

multigrid method with the Vanka type smoother.

In the second part the GPU implementation itself and issues that had to be resolved are described.

Finally the obtained speed-ups will be shown. We have achieved the speed-up of 5 compared to the

parallel code based on OpenMP and 26 compared to the sequential code.
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Mechanistic dynamics of Hepatitis C virus replication in single liver cells

Markus M. Knodel
Goethe Center for Scientific Computing

University of Frankfurt

joint work with A. Nägel, S. Reiter, M. Rupp, P. Targett-Adams, E. Herrmann, G. Wittum

Infection with hepatitis C virus (HCV) causes chronic liver diseases. HCV-related liver damage is

the main reason for liver transplantations in the western world. Spatial resolution is an aspect that has

not yet been appreciated in current modeling simulations despite strong biological evidence that suggests

intracellular spatial dependence is a crucial factor in the process the virus uses to replicate its RNA

genome. HCV replication is believed to occur in specialized compartments within virus-infected cells,

termed replication complexes, which are derived from altered regions (called the membranous web) of the

endoplasmic reticulum (ER - the ER is a central structure of each cell). Trafficking of both replication

complexes, and their components, is likely a dynamic process occurring in three dimensions that is both

difficult to capture experimentally and conceptually visualize. Therefore, we are developing a spatially-

resolved biophysical model of HCV replication dynamics in single liver cells. We used data derived

from 3D confocal microscopy of HCV-infected human hepatoma cells labeled for the ER membrane in

order to reconstruct 3D geometries of single hepatocytes using NeuRA2. On top of these geometries, we

developed a model using (surface) partial differential equation of viral RNA replication dynamics with

particular emphasis upon RNA movement, viral protein production, cleavage and movement, and viral

RNA replication within the membranous web. The arising (s)pde s on the ER surface are solved using

the simulation platform UG4 within a Finite Volume framework combined with multigrid techniques.

Our approach is based on two columns which are intended to grow together in the middle run: On the

one hand side, we are doing parameter estimations of single components of viral replication based on the

Gauss-Newton algorithm in order for extracting e.g. the diffusion constant of basic viral proteins on the

surface of the ER using experimental FRAP time series. On the other hand side, we are developing the

model which mimics the interplay of all important component of virus replication, e.g. viral RNA and

various states of viral proteins. The estimated parameters are entering the model step by step. Therefore,

the presented work is a practical application of the powerful tool UG4 and its multigrid techiques for the

case of a huge number of DoFs (about 106) already at base level and demonstrates the excellent usability

(and scalability) of UG4 in the context of modern biophysical research.
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Performance Computing in Science and Engineering ’12. Springer (2013)
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Block H-LU preconditioners for higher-order FEM

Sabine Le Borne
Mathematics

Hamburg University of Technology

The finite element discretization of partial differential equations requires the selection of suitable finite

element spaces. While higher order finite elements lead to solutions of higher accuracy, their associated

discrete linear systems of equations are often more difficult to solve than those of lower order elements.

Here, we present efficient preconditioners for these types of linear systems of equations. More specif-

ically, we will use hierarchical (H-) matrices to build block H-LU preconditioners. H-matrices provide

a powerful technique to compute and store approximations to dense matrices in a data-sparse format.

The basic idea is the approximation of matrix data in hierarchically structured subblocks by low rank

representations. The preconditioners will be of a “hybrid blackbox” nature: The setup of the precondi-

tioner will occur in a “blackbox” fashion, i.e., only the stiffness matrix is needed as input. However, the

“hybrid” part implies that certain knowledge of the origin of the system is available and will possibly be

exploited. Such knowledge could include a certain sparsity structure (e.g. produced through particular

types of finite elements) or even a certain block structure (e.g. in mixed finite elements). We conclude

with numerical results.

A simulation technique for density-driven flow in porous media with
complicated fracture networks

Dmitry Logashenko
Goethe Center for Scientific Computing

Goethe University Frankfurt

joint work with A. Grillo, S. Reiter, S. Stichel and G. Wittum

In the talk, we present a discretization and numerical solvers for a model of density driven flow in a

fractured porous medium. The flow is described by the Darcy law, in particular with the Forchheimer

correction. The fractures are considered to be filled with an essentially more permeable porous medium

as the bulk medium. These fractures are represented by low-dimensional manifolds with their own func-

tions for the solution. The solution in the bulk medium may have jumps over the fractures. For the

discretization, the manifolds are resolved by the grid and filled with degenerated grid elements. This

enables to place several degrees of freedom at every geometric point and therefore to represent the jumps.

This technique allows to consider all possible configurations of intersecting fracture in 2 and 3 dimensions.

The coupled system of the discretized equations for the bulk medium and the fractures is solved using

multigrid methods.
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Multigrid Method for Systems of Nonlinear Equations arising from
Poroelasticity Problem

Peiyao Luo
DIAM

Technology University of Delft

joint work with F.J.Gaspar and C.W.Oosterlee

Shale gas is natural gas which is formed by being trapped within shale layer formations. Shale

layers have typically very low permeability which dramatically reduces the mobility of this so-called

unconventional gas. Hydraulic fracturing has been regarded as one of key methods of extracting these

gas resources. It is a process in which the energy from the injection of a highly pressurized fluid creates

fractures within the rock.

The coupled seepage and stress process in saturated geological media can be interpreted by means of

Biot’s theory of consolidation. It describes the time-dependent interaction between the deformation of

porous material and the fluid flow pressure inside of it. Our 2D problem can be formulated as a system

of partial differential equations for the unknowns displacements u,v and pore pressure of the fluid p. The

governing equations are given by:
−(λ+ 2µ)uxx − µuyy − (λ+ µ)vxy + αpx = f1,
−(λ+ µ)uxy − µvxx − (λ+ 2µ)vyy + αpy = f2,
1
Qpt + (ux + vy)t − k(σ, p)(pxx + pyy) = f3

Here λ and µ are Lame coefficients. k is the coefficient of permeability which depends on the stress and

fluid pressure, resulting in a nonlinear set of equation.

Numerical approximation is necessary to solve this problem. As it is a nonlinear system of equations,

we would like to use a nonlinear multigrid method, such as FAS and Newton-multigrid, as an iterative

solution method for the discretized partial differential equations. It is the challenge to determine suitable

multigrid components. We would like to discrete equations on collocated grids. However, such discretiza-

tion may be unstable, because some oscillations may appear in the first time steps of numerical solution.

After this phase, the solution becomes smoother and these oscillations tend to disappear. We need to

take some special care in order to construct a stable discretization for the whole process. This can be

achieved by adding an artificial elliptic pressure term to the seepage equation. The artificial term is ε∂4p∂t ,

with ε = h2

4(λ+2µ) . When the grid size h → 0, the artificial pressure term tends to 0. Since this term

is proportional to h2, second order accuracy can also be maintained. With respect to the smoother, we

choose the so-called box relaxation which solves the discrete equations locally cell by cell. In practice,

this means that five unknowns centered around a pressure point are relaxed simultaneously. So in one

smoothing iteration all displacement unknowns are updated twice, whereas pressure unknowns are up-

dated once. Numerical experiments will show the good convergence of multigrid and also the simulation

of crack formation.

A robust structured incomplete Cholesky preconditioner

Artem Napov
Service de Métrologie Nucléaire
Université Libre de Bruxelles

We consider a new algebraic factorization preconditioner for the iterative solution of large sparse

symmetric positive definite linear systems. The preconditioner is based on a sparse variant of Cholesky

factorization in which the off-diagonal part of the block rows of the factor is approximated by low-

rank matrices. We use low-rank approximations that satisfy a specific orthogonality condition: the

approximation is orthogonal to the corresponding approximation error. The resulting factorization is
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then shown breakdown-free, and further, the corresponding condition number is bounded as a function of

the accuracy of individual approximations.

On the practical side, the preconditioner exploits, in an algebraic manner, the low rank structure

available in PDE applications. This is achieved through the reordering of unknowns which is based

on the sparsity pattern of the system matrix, and which preserves the sparsity patter of the resulting

factor. A preliminary implementation of the method is presented and compared with similar Cholesky

and incomplete Cholesky factorizations based on dropping of individual entries.

A parallel space-time multigrid solver for the Navier-Stokes equations

Martin Neumüller
Institute of Computational Mathematics

Johannes Kepler University Linz

For evolution equations we present a space-time method based on Discontinuous Galerkin finite ele-

ments. Space-time methods have advantages if we have to deal with moving domains and if we need to

do local refinement in the space-time domain. For this method we present a multigrid approach based on

space-time slabs. This method allows the use of parallel solution algorithms. In particular it is possible

to solve parallel in time and space. Furthermore this multigrid approach leads to a robust method with

respect to the polynomial degree which is used for the DG time stepping scheme. Numerical examples

for the Stokes and Navier-Stokes equations will be given which show the performance of this space-time

multigrid approach.

Robust preconditioners for PDE-constrained optimization with limited
observations

Magne Nordaas
Center for Biomedical Computing

Simula Research Laboratory

joint work with Kent-André Mardal, Bjørn Fredrik Nielsen

Regularization-robust preconditioners for PDE-constrained optimization problems have been success-

fully developed. These methods, however, typically assume that observation data is available throughout

the entire domain of the state equation. For many inverse problems, this is an unrealistic assumption.

We propose and analyze preconditioners for PDE-constrained optimization problems with limited obser-

vation data, e.g. when observations are only available at the boundary of the computational domain. Our

methods are robust with respect to both the regularization parameter and the mesh size. That is, the

number of required MINRES iterations is bounded uniformly, regardless of the size of the two parameters.

The theoretical findings are illuminated by several numerical results.

A new multigrid strategy for Stokes problems

Yvan Notay
Métrologie Nucléaire

Université Libre de Bruxelles

Standard discretizations of Stokes problems lead to linear systems of equations in saddle point form:(
A BT

B −C

)(
u
p

)
=

(
b
0

)
,
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where the matrix block C is either zero in case of a stable discretization, or a small stabilization term. Due

to this possible zero block, the direct application of algebraic multigrid methods is notoriously difficult.

In this talk, we propose a new approach to overcome this difficulty. It consist in first transforming the

above system by pre- and post-multiplication with simple (and algebraic) sparse block triangular matrices;

doing thus a form of pre-conditioning in the literal sense, designed to make sure that the transformed

matrix is “well adapted” to multigrid.

More precisely, after transformation, all the diagonal blocks are symmetric positive definite, and

resemble or correspond to a discrete Laplace operator. The idea is then to associate to each block a

prolongation that works well for it, and to combine these to obtain a global prolongation. Observe that

this can be achieved with virtually any algebraic or even geometric multigrid method.

Finally, nothing more is needed: for damped Jacobi-smoothing, uniform two-grid convergence can be

guaranteed for the global system under the sole assumption that the two-grid schemes for the different

diagonal blocks are themselves uniformly convergent – a requirement easy to meet given that these blocks

are discrete Laplace-like matrices.

The approach will be illustrated by a few examples, showing further that time-dependent problems

and variable viscosity can be handled in a natural way, without requiring a particular treatment.

A Multilevel Proximal Algorithm for Large Scale Composite Convex
Optimization

Panos Parpas
Department of Computing
Imperial College London

Composite convex optimization models consist of the minimization of the sum of a smooth convex

function and a non-smooth convex function. Such models arise in many applications where, in addition to

the composite nature of the objective function, a hierarchy of models is readily available. It is common to

take advantage of this hierarchy of models by first solving a low fidelity model and then using the solution

as a starting point to a high fidelity model. We adopt an optimization point of view and show how to

take advantage of the availability of a hierarchy of models in a consistent manner. We do not use the low

fidelity model just for the computation of promising starting points but also for the computation of search

directions. We establish the convergence and convergence rate of the proposed algorithm and compare

our algorithm with two widely used algorithms for this class of models (ISTA and FISTA). Our numerical

experiments on large scale image restoration problems suggest that, for certain classes of problems, the

proposed algorithm is significantly faster than both ISTA and FISTA.

Local Fourier analysis for ILU smoothers on triangular grids

Marcio Augusto Villela Pinto
Mechanical Engineering

Federal University of Parana

joint work with Carmen Rodrigo and Francisco José Gaspar

This work is focused on the design of efficient multigrid methods for discretizations on triangular grids.

For this purpose, a local Fourier analysis is developed. An ILU smoother for the discretization of diffusion

problems by linear finite elements on such grids is analyzed. A two-grid Fourier analysis is performed

to analyze the behavior of the multigrid method. Numerical test calculations validate the theoretical

predictions.
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A Multiscale Model of Synaptic Contacts between Brain Cells

Gillian Queisser
Goethe Center for Scientific Computing

University of Frankfurt a.M.

joint work with Stephan Grein

Biological processes are typically active on multiple, coupled scales. An example are the chemical

contacts between brain cells. We present a multiscale model of chemical synapses, that couples the

molecular dynamics of cell-adhesion Cadherin molecules interacting with calcium ions and the continuum

scale model representing synaptic function. For this purpose we developed a tetrahedral volume grid

representation of a synapse used in a Finite Volume discretization of the synaptic model (described by

a system of PDEs). On the molecular scale we use molecular dynamics (MD) simulations and couple

these to the discrete function space of the PDE-problem, using transfer operators that map between

the cartesian space and function space. The three-dimensional non-linear diffusion-reaction system with

non-linear interface conditions is solved using parallel multi-grid methods and time-parallel methods.

Simulation results demonstrate the methods applied to the model of intercellular coupling between nerve

cells and the necessity to employ a multiscale model solved with multi-level solvers.

A FE based Multigrid scheme for elliptic Nash-equilibrium optimal control
problems

Mohammad Tanvir Rahman
Chair IX Scientific Computing, Department of Mathematics

University of Würzburg

joint work with Alfio Borzi

A finite-element based multigrid scheme for elliptic Nash-equilibrium multiobjective optimal control

problems with control constraints will be presented. The multigrid computational framework implements

a nonlinear multigrid strategy and collective smoothing for solving the multiobjective optimality system

discretized with finite elements. Error estimates for the optimal solution and two-grid local Fourier

analysis of the multigrid scheme are also discussed. Results of numerical experiments are presented to

demonstrate the effectiveness of the proposed framework.

On a highly scalable infrastructure for massively parallel multigrid solvers

Sebastian Reiter
Goethe Center for Scientific Computing
Goethe Universität Frankfurt am Main

joint work with Andreas Vogel and Gabriel Wittum

Application of parallel geometric multigrid solvers on adaptively refined grids requires a careful design

of the involved load-balancing and load-migration routines as well as fast communication between copies

of distributed objects. In error-estimation based refinement strategies, multiple rebalancing steps may

be required to provide a uniform element distribution between all processors in all steps. In order to

perform such operations efficiently on supercomputers with millions of cores, one has to extend existing

load balancing and communication schemes.

We outline the parallel infrastructure for distributed multigrid hierarchies in the simulation framework

UG4 and present experimental scaling studies for our geometric multigrid solver on adaptive and non-

adaptive grid hierarchies on up to 262144 processes. We focus on an efficient hierarchical organization

of the involved processes, on efficient horizontal and vertical communication schemes as well as on the

parallel refinement and load-balancing strategies used.
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A high arithmetic intensity multigrid preconditioner based on matrix
polynomials

Bram Reps
Department of Mathematics and Computer Science

University of Antwerp

joint work with Wim Vanroose

One of the current tendencies in the development of new computer hardware is the increasing number

of processors per chip. This naturally brings along the challenge of larger communication costs, relative

to the speed of computation. The number of useful floating point operations per data-read from slow

memory, i.e. the arithmetic intensity, plays a determining role in the efficiency of a numerical algorithm.

Indeed, communication is avoided if more computations can be done with the data that is already in

cache. In addition, algorithms require a minimal arithmetic intensity to benefit from vectorization inside

a processor. In this presentation we discuss the efficiency of a multigrid method to solve the sparse linear

system

Ax = b,

given by a stencil for matrix A, taking into account the arithmetic intensity.

A single Chebyshev smoothing step, xi+1 = xi + pm(A)ri, relies on m successive matrix vector mul-

tiplications w = Av. The arithmetic intensity of the smoother can therefore be raised with a stencil

compiler that rearranges the nested loops over the vector elements for optimized temporal data-locality

and vectorization. As a consequence, the average time of one multigrid cycle drops with an increasing

degree m of the Chebyshev polynomial. And thus, although the effect on the error reduction per multigrid

cycle might be minor, the time to solution on multi- or many-core hardware can reduce if m increases.

Chebyshev polynomials are also used to improve the convergence rate in preconditioned Krylov sub-

space methods. The polynomial qm of degree m − 1 is chosen such that the condition number of the

preconditioned system,

qm−1(A)Ax = qm−1(A)b⇔ pm(A)x = b̂, (4)

is optimally reduced. The method then requires less iterations to converge, yet in each iteration the matrix

vector multiplication w = Av is now replaced by w = pm(A)v at a higher computational cost. However,

the latter operation can be computed with a higher arithmetic intensity, based on a stencil compiler.

Finally we choose a Krylov subspace method with a suboptimal polynomial pm that only reduces the

high frequency eigenmodes of A. Our multigrid method is then used as a complementary preconditioner

for system (1), built upon the same computational kernel w = pm(A)v with high arithmetic intensity in

the smoother.
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Local Fourier Analysis of Pattern Structured Operators

H. Rittich
Department of Mathematics

University of Wuppertal

joint work with K. Kahl and M. Bolten

Multigrid methods [5] are used to compute the solution u of the system of equations

Lu = f ,

where L is typically a discretization of a partial different equations (PDE) and f a corresponding, given

right hand side. Local Fourier Analysis (LFA) [2, 5, 6] is well known to provide quantitative estimates

for the speed of convergence of multigrid methods, by analyzing the involved operators in the frequency

domain.

For the initial formulation of LFA [1] it was crucial to assume that all involved operators have constant

coefficients. For many PDE operators the coefficients vary continuously in space. Thus if the grid is fine

enough the discrete operator L will only vary slightly between neighboring grid points and hence can be

well approximated by an operator with locally constant coefficients. Thus constant coefficient are often

reasonable assumption.

However, when analyzing more complex problems or even the multigrid method as a whole this

assumption is too restrictive. Interpolation and restriction operators typically act differently on variables

that have a coarse grid representative and those who do not have one. Another example are patter

relaxation schemes like the Red-Black Gauß-Seidel method where red points of the grid are treated

differently from the black ones.

It is possible to analyze these cases [3, 4] when allowing for interaction of certain frequencies (see

also [5, 6]). Even more, it turns out that when we allow for more frequencies to interact we can analyze

operators given by increasingly complex patterns. In our talk we will illustrate a general framework for

analyzing pattern structured operators, i.e., operators whose action is invariant under certain shifts of the

input function. Furthermore, we discuss different applications.
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A multigrid based iterative solver for the frequency domain elastic wave
equation

Gabrio Rizzuti
Delft Inversion

joint work with Wim Mulder

A preconditioned Krylov subspace method is presented for the solution of the elastic isotropic wave

equation in the frequency domain. We exploit an idea successfully employed for the acoustic wave equation

by a number of authors: the preconditioner is based on the damped elastic differential operator and an

approximation to its inverse is obtained by a multigrid cycle.

Local mode analysis highlights that the various multigrid components must be adapted to the elastic

case. Different P- and S-wave propagation velocities produce grid anisotropy that should be accounted

for by effective smoothing. Clearly, the direction of strong coupling varies with respect to the different

components of the wave-field. Numerical results confirm the prediction of the smoothing analysis.

Finite element multigrid framework for mimetic finite difference
discretizations

Carmen Rodrigo
Applied Mathematics Department

University of Zaragoza

joint work with Francisco José Gaspar, Xiaozhe Hu and Ludmil Zikatanov

We are interested in the efficient multigrid solution of the algebraic systems of equations resulting from

the mimetic finite difference (MFD) schemes for elliptic partial differential equations. Such discretizations

work on general unstructured and irregular grids not necessarily aligned with coordinate axes. Moreover,

the mimetic finite differences result in discrete grid operators which satisfy the compatibility conditions

(exact sequence properties) connecting grad, div and curl operators on the continuous level.

We show how such MFD schemes can be derived using standard finite element spaces in H(curl). In this

way, using the finite element framework, we are able to analyze the convergence of the MFD discretizations

and design multigrid methods for the solution of the resulting linear systems. We propose, and, via the

local Fourier analysis (LFA) framework we also analyze geometric multigrid algorithms for such problems.

Finally, we present several numerical tests which demonstrate the efficiency of the proposed multigrid

methods and the sharpness of the LFA estimates of the convergence rate.

Parallel Filtering Algebraic Multigrid for Linear Elasticity Problems

Martin Rupp
Goethe-Center for Scientific Computing

Goethe-University Frankfurt

joint work with Arne Nägel, Gabriel Wittum

We present improvements of the Filtering Algebraic Multigrid (FAMG) method applied to Linear

Elasticity problems. The FAMG method ([1, 2]) is an AMG method based on minimization of the two-

grid correction operator

‖(I − PA−1
H P TA)S‖ ≤ C ‖D1/2(I − PRinj)SD−1/2‖︸ ︷︷ ︸

minimize

max
e 6=0

‖D1/2A−1/2e‖
‖e‖︸ ︷︷ ︸

filter
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The construction of the interpolation P is done by performing a minimization over

min
P
‖D1/2(I − PRinj)SD−1/2‖F ,

incorporating the smoother S, while requiring a filtering condition for all testvectors tk with ‖Dtk‖ �
‖Atk‖ (algebraic smooth vectors):

(1− PRinj)tk = 0

The choice of the testvectors tk is crucial. For simple diffusion problems, the testvectors only consist of

the constant vector, while for linear elasticity, the rigid body modes need to be used. We present parallel

results on choosing the appropriate testvector set and coarsening schemes, and a new way of generating

local testvectors which combines techniques from [3] and [4].
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Multigrid algorithms for high-order Discontinuous Galerkin discretizations

Marco Sarti
Dipartimento di Matematica - MOX

Politecnico di Milano

joint work with Paola F. Antonietti, Marco Verani

We present W-cycle multigrid algorithms for the solution of the linear system of equations arising

from a wide class of hp-version discontinuous Galerkin discretizations of elliptic problems. Starting from

a classical framework in multigrid analysis, we define a smoothing and an approximation property, which

are used to prove the uniform convergence of the W-cycle scheme with respect to the granularity of the

grid and the number of levels. The dependence of the convergence rate on the polynomial approximation

degree p is also tracked, showing that the contraction factor of the scheme deteriorates with increasing

p. A discussion on the effects of employing inherited or non-inherited sublevel solvers is also presented.

Numerical experiments confirm the theoretical results.
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A Non-Linear OC Multigrid Topology Optimization Scheme

Stephan Schmidt
Department of Mathematics

University of Würzburg

joint work with Mohammad Tanvir Rahman, Alfio Borzi

Multigrid techniques for topology optimization are often limited to the process of solving the linear

elasticity state equation. Within the context of optimization, rather than simulation, multigrid methods

are usually also used in a linear fashion when solving the KKT-system arising from the necessary optimality

conditions.

A very popular method to solve topology optimization problems is the non-linear optimality criteria

method (OC), which is not directly based on the KKT-system and therefore usually not in the scope of

classical multigrid methods in the context.

We present a novel approach to multigrid techniques within topology optimization which are based

on the non-linear OC-scheme and can therefore be used nicely to accelerate a given topology optimization

solver without the need to change the whole optimization scheme to a classical KKT-based method.

Coarse-grid-correction preconditioner for the Helmholtz Equation

A. H. Sheikh
Delft Institute of Applied Mathematics

Delft University of Technology

joint work with Domenico Lahaye, Kees Vuik

Many wave phenomena are well described by the wave equation. When the considered wave has a fixed

frequency the wave equation is mostly re-written in the frequency domain which results in the Helmholtz

equation

−∆u(x)− k2(x) = g(x). (5)

It is also possible to approximate the time domain solution with a summation of solutions for several

frequencies. Applications consist of the propagation of sound, sonar, seismic, and many more. We

emphasize on the seismic imaging used for searching oil and gas in the subsoil. In order to have a good

image of the under ground, often high frequencies are chosen for high resolution. The discrete analogue

of the Helmholtz Equation (1) is a combination of a symmetric positive definite matrix (Poisson) and the

mass matrix i.e.

L+ iC −M = g (6)

where C represents the boundary conditions.

The discretized linear System (2) has two characteristic properties :

- the product of the wave number and the step size should be smaller than a given constant,

- if the wavenumber increases the operator has more and more negative eigenvalues.

Solving the discretized Helmholtz equation have been a challenging problem. Krylov methods with

classical preconditioners and Multigrid methods tend to break down due to high indefiniteness for high

wavenumber problems. During the year 2005, the idea of using complex shifted Laplacian as precondi-

tioner (CSLP) [1] gave rise to fast and robust Krylov solvers for Helmholtz. It appears that the amount

of work increases linearly with the wavenumber. This happens as the near kernel components tend to

appear more frequently as the wavenumber increases.

The combination of the complex shifted Laplacian with a multigrid deflation technique was first

proposed in [2] and later analyzed in [3]. In these works the shifted Laplacian is attributed the role of
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Frequency Solve Time Solve Time Iterations Iterations
SLP-F ADEF1-F SLP-F ADEF1-F

f = 1 1.23 5.08 13 7
f = 10 40.01 21.83 106 8
f = 20 280.08 131.30 177 12
f = 40 20232.6 3997.7 340 21

Table 1: SLP and ADEF1 performance comparison for Marmousi problem.

a multigrid smoother. Where as the coarse grid correction (CGC) is performed as Preconditioner to the

outer Krylov iterations. We investigate several CGC techniques that differ in the choice of the coarse

grid operator. A rigorous Fourier mode analysis for the one-dimensional problem with Dirichlet boundary

conditions is performed to distinguish these different techniques based on different coarse grid operator.

This creates opportunity to optimize the coarse grid correction preconditioner. The CGC technique

combined with CSLP has been implemented in multilevel fashion, similar to that of multigrid in Petsc.

We refer this combination of CSLP and CGC techniques as ADEF1 preconditioner. Numerical results

for two-dimensional and three-dimensional problems show significant speed up in comparison with CSLP

and other preconditioners. The iteration count remains constant for medium wavenumbers and increases

mildly for high wavenumber at the application cost of CGC. However one can notice that the proposed

deflation preconditioner pays off and which is illustrated by a gain in solve time for industrial problems.

Such evidence is presented in Table (1), where a brief comparison of iteration and solve time is presented

in Table for CSLP and ADEF1 preconditioners.
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Time-parallelism using inexact PFASST

Robert Speck
Jülich Supercomputing Centre

Forschungszentrum Jülich GmbH

joint work with M. Bolten, M. Emmett, M. Minion, and D. Ruprecht

The “parallel full approximation scheme in space and time” (PFASST) introduced by Emmett and

Minion in 2012 is an iterative, multilevel strategy for the temporal parallelization of ODEs and discretized

PDEs. As the name suggests, PFASST is similar in spirit to a space-time FAS multigrid method performed

over multiple timesteps in parallel. In benchmarks runs on 448K cores, the space-time parallel combination

of PFASST with a parallel multigrid solver (PMG) already showed significantly better strong scaling than

the space-parallel code alone.

The key for optimal parallel efficiency in PFASST is a suitable choice of coarsening strategies in space

and time. Besides straightforward approaches like reducing the number of degrees-of-freedom and/or

integration nodes, recent works focussed on the reduction of the spatial discretization order as well as

inexact solves of systems arising in implicit steps on the coarse levels. This last concept can be extended to

form an “inexact” PFASST algorithm (IPFASST), in which also on the finer levels only a limited number
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of multigrid cycles is performed. The iterative nature of IPFASST provides continuously improving initial

guesses in each iteration, so that full solves can be replaced by inexact approximations of the solutions of

the implicit systems on all levels, leading to significantly improved runtimes.

In this talk we present optimality and scalability results for a 3D heat equation benchmark. Along

the building blocks of IPFASST, i.e. inexact single- and multi-level spectral deferred corrections, we

demonstrate the impact of inexact solves and different coarsening strategies. In addition, we describe the

extension of the code for the 3D viscous Burgers equation and show first results.

Symbol-based multigrid methods for isogeometric analysis

Hendrik Speleers
Department of Mathematics

University of Rome Tor Vergata

joint work with M. Donatelli, C. Garoni, C. Manni and S. Serra-Capizzano

We consider the stiffness matrices coming from the Galerkin B-spline Isogeometric Analysis approx-

imation of classical elliptic problems. By exploiting specific spectral properties compactly described by

a symbol, we design efficient multigrid methods for the fast solution of the related linear systems. De-

spite the theoretical optimality, the convergence rate of the two-grid methods with classical stationary

smoothers worsens exponentially when the spline degree increases. With the aid of the symbol we provide

a theoretical interpretation of this exponential worsening. Moreover, by a proper factorization of the

symbol we provide a preconditioned conjugate gradient “smoother”, in the spirit of the multi-iterative

strategy, that allows us to obtain a good convergence rate independent both of the matrix size and of the

spline degree. A numerical experimentation confirms the effectiveness of our proposal and the numerical

optimality with a uniformly high convergence rate, also for the V-cycle multigrid method and large spline

degrees.

Subdivision surfaces refinement for generating multigrid hierarchies with
application in neuroscientific numerical simulations

Martin Stepniewski
Goethe-Center for Scientific Computing
Goethe University Frankfurt am Main

joint work with Gillian Queisser

An important goal in neuroscience is understanding how networks of neurons are processing infor-

mation. Chemical synapses define interfaces where signals are exchanged between neurons and other

(neural) cells and thus play an essential role in this context. To pursue this goal we are developing de-

tailed mathematical models of synaptic processes. Amongst others the models comprise the description of

three-dimensional reaction-diffusion dynamics with non-linear (inner) boundary conditions. This leads to

systems of coupled partial differential equations, which have to be discretized in space and time. Multigrid

methods are a highly efficient way of finally solving the resulting and in practice vast systems of linear

equations.

However, realistic neurobiological applications of numerical simulation occur on arbitrarily complex

domains including neuron networks, single neurons, cell structures like axons, dendrites, dendritic spines

or cell organelles facing the challenge of unstructured computational grids with severe anisotropies, in-

vaginations, nestings and branches. To meet this challenge accurate and robust refinement techniques are

essential.

We present a modified multigrid method with a new refinement strategy based on grid hierarchies

which are generated by using Loop’s smooth subdivision surface refinement [1] of the boundary and ord-

ninary linear refinement of the inner grid in combination with a Laplacian smoothing [2]. Starting with
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a triangulated surface geometry, which approximates the boundary of the corresponding neurobiological

domain, Loop’s refinement scheme defines a smooth subdivision surface as limit of successive refinements

and vertex repositionings by distinct position masks. The vertices of the initial surface geometry are first

projected onto their position on the subdivision surface and then a constrained Delaunay tetrahedrization

[3] is generated as coarse grid. The multigrid hierarchy is now created by linear refinement operations pro-

jecting the boundary vertices of each refinement level onto their final position on the subdivision surface

resulting in a particularly smooth approximation of the computational domain. To prevent degenerate

volume elements to emerge especially in the vincinity of the boundary an optimization-based Laplacian

smoothing is used to reposition inner vertices of each refinement level.
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Adaptive fracture approximation

Sabine Stichel
Goethe-Center for Scientific Computing

University of Frankfurt

joint work with D. Logashenko, A. Grillo, G. Wittum

Numerical simulations of flow in fractured porous media follow two main approaches. The fractures

are either represented by low-dimensional manifolds motivated by the anisotropic geometry or as three-

dimensional objects resolving all physical phenomena taking place in the fractures. Results of the two

approaches are compared for some benchmark problems and it can be observed that only for sufficiently

small fracture widths the cheaper low-dimensional approach gives acceptable results. In this work a

criterion based on fracture characteristics and flow parameters is introduced to indicate the validity of the

low-dimensional approach. A dimension-adaptive method is presented that can represent the fractures

either full- or low-dimensional depending on the value of this criterion. Using this approach the full

resolution with corresponding cost is only used if necessary.

A hybrid multigrid-domain decomposition method for the Helmholtz
equation

Chris Stolk
Korteweg-de Vries Institute for Mathematics

University of Amsterdam

Fast Helmholtz solvers are of interest in forward and inverse modelling problems, like for example

those from exploration seismology. In such computations often the same equation is solved for many right

hand sides. Recently the author and others have developed double sweep domain decomposition methods

that lead to a (near-) linear cost per solve. So far those methods appear quite memory intensive. In this

talk we will address this using a second recent innovation, the dispersion optimised multigrid method. In
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this method the number of grid points in the coarse grid is reduced to a number close to the Nyquist limit

for the oscillatory solutions, while retaining small iteration numbers for convergence to the solution. The

combined method, the double-sweep multigrid method, leads to a substantial reduction of the memory

use and the computational cost compared to the individual methods.

Theoretical Advances in non-Galerkin Algebraic Multigrid

Eran Treister
Computer Science

Technion, Israel Institute of Technology.

joint work with Jacob B. Schroder, Rob Falgout and Irad Yavneh

Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise

from discretized partial differential equations. While AMG has been effectively implemented on large scale

parallel machines, challenges remain, especially when moving to exascale. In particular, stencil sizes (the

number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy and this growth

leads to more communication. Thus, as problem size increases and the number of levels in the hierarchy

grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth

in stencil size is due to the standard Galerkin coarse grid operator, P TAP , where P is the prolongation

(i.e., interpolation) operator. For example, the coarse grid stencil size for a simple 3D 7-point finite

differences approximation to diffusion can increase into the thousands on present day machines, causing

an associated increase in communication costs. Previous work by the authors has successfully truncated

coarse grid stencils in an algebraic fashion. First, the sparsity pattern of the non-Galerkin coarse grid is

determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas.

Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator. The

purpose of this talk is to provide some theoretical foundation for the method. In particular if the original

two-grid Galerkin method is optimal, then the two-grid non-Galerkin method is shown to also be optimal.

The impact of the theory on the algorithm, together with supporting serial and parallel results will also

be given.

Multigrid for parametric PDEs with application to fuzzy partial differential
equations

Stefan Vandewalle
Department of Computerscience

KU Leuven - University of Leuven

joint work with Samuel Corveleyn, Eveline Rosseel

Uncertain parameters in mathematical models are often described by means of random variables.

This approach is very effective if the stochastic characteristics of the uncertain parameters are accurately

known. When that is not the case, however, an uncertainty representation using alternative models, such

as intervals or fuzzy numbers, may be more appropriate. In this talk we consider partial differential

equations with interval and fuzzy parameters.

First, we will recall the concept of fuzzy numbers and fuzzy arithmetics, and provide a mathematical

definition of a fuzzy differential equation and its solution. Next, we will elaborate on one particularly

efficient solution approach, based on a polynomial response surface technique. This method leads to a

large and coupled algebraic system of equations thatcan be solved efficiently by means of a multigrid

method. Finally, we will demonstrate the approach by means of two numerical examples: a diffusion

problem and an elasticity problem.
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A Parallel Geometric Multigrid Solver for Density Driven Flow

Andreas Vogel
G-CSC

Goethe - University Frankfurt am Main

joint work with Sebastian Reiter and Gabriel Wittum

Multigrid methods for the solution of large sparse matrices arising from grid-based discretizations

of partial differential equations are well known for their optimal complexity, i.e., the computation effort

only increases linearly with the problem size. This makes them a promising algorithm when focusing on

the weak scaling properties of such a matrix solver. However, while reducing the problem size within

a multigrid algorithm on coarser grid levels is its strength, this gives rise to a potential performance

bottleneck when parallelization is taken into account. Indeed, on coarser grid levels the inner to boundary

ratio of the grid parts assigned to a process become unpleasant and a parallel smoother on those coarse

levels will suffer from the fact that mostly communication at the boundary takes place and only little

computation on the inner part is performed. In order to overcome this bottleneck we present an algorithm

that avoids this situation by gathering coarser levels to fewer processors leaving the remaining processors

idle. To this end we introduce vertical interface connections that allow this gathering process and adapt

the transfer operators of the multigrid algorithm to respect these interfaces. Arriving at a single process

on the coarsest level a serial base solver, e.g., LU factorization, can be used. We show that this approach

leads to nice weak scaling behavior for an exemplary application: Discretizing a pde system for density

driven flow using a vertex-centered finite volume scheme and implicit Euler time stepping we analyze the

efficiency of the geometric multigrid solver in the first Newton linearization of the first time step. It turns

out that up to 130,000 processors the weak scaling efficiency is still above 80%.

Multigrid Method for Solving Elliptic Monge-Ampere Equation Arising
from Image Registration

Justin Wan
Cheriton School of Computer Science

University of Waterloo

The Monge-Ampère equation is a nonlinear second order partial differential equation, which arises in

differential geometry and other applications. In image registration, the problem is to transform one image

to align with another image. One approach is based on the Monge-Kantorovich mass transfer problem.

The goal is to find the optimal mapping M which minimizes the Kantorovich-Wasserstein distance. The

optimal mapping can be written as M = ∇ψ, where ψ satisfies the following Monge-Ampère equation

det(D2ψ(x)) =
I1(x)

I2(∇ψ)
,

where I1 and I2 are the given images. Here det(D2ψ(x)) denotes the determinant of the Hessian of ψ.

In this talk, we will present a multigrid method for solving the Monge-Ampère equation. Our approach

is to reformulate the Monge-Ampère equation as a Hamilton-Jacobi-Bellman (HJB) equation. We will

develop a monotone discretization scheme such that it will converge to a viscosity solution. We will then

present a relaxation scheme which is a very slowly convergent method as a standalone solver but it is very

effective for reducing high frequency errors. We will adopt it as a smoother for multigrid and demonstrate

its smoothing properties. Finally, numerical results will be presented to illustrate the effectiveness of the

method.
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HYMLS: A Multilevel ILU approach for coupled fluid and transport
equations

Fred Wubs
Mathematics

University of Groningen

joint work with Jonas Thies and Weiyan Song

Many flow problems deal with transport of matter and/or heat. This constitutes a challenging mul-

tiphysics problem if the transported entity also influences the flow. From a computing efficiency view

point, it is best to treat the associated equations in a coupled manner [5]. If one employs a domain

decomposition approach, all the unknowns related to one domain should be in the memory of the node

which treats that part. Moreover, communication should be avoided as much as possible during the con-

struction of the right-hand side, the construction of the Jacobian matrix and the solution process. Along

this line we developed a finite volume package FVM and a solver HYMLS, both based on elements of the

EPETRA-package (available within Trilinos (see http://trilinos.sandia.gov/)).

HYMLS is a linear system solver for steady state incompressible Navier-Stokes equations coupled to

transport equations in 2 and 3D [1,2,3]. Recently, we constructed a multilevel variant of it, which makes it

possible to solve 3D problems of over 10 million unknowns quickly on a parallel computer. The behavior

of the method is very much like that of multigrid methods. The solver is very robust. For the problem

described in [4], it allowed a quick increase in the Reynolds number to get into the interesting region

around Re=2000. Here we will show the performance of the method on the Rayleigh-Bénard convection

in a cube, with six no-slip walls [6].

To study the stability of the solutions we determine the eigenvalues using the ANASAZI-package,

which contains a generalized version of the Arnoldi method. Also here we employ HYMLS to solve the

linear systems that result from a Cayley transform of the generalized eigenvalue problem. In the talk we

will give a more detailed explanation of the used algorithms and their performance.
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A Multilevel Approach for l-1 Regularized Convex Optimization with
Application to Covariance Selection

Irad Yavneh
Computer Science

Technion, Israel Institute of Technology

joint work with Eran Treister, Aviva Herman

We present an iterative multilevel framework for solving l-1 regularized convex optimization problems,

which are common in the fields of computational biology, signal processing and machine learning. Such l-1

regularization is utilized to find sparse minimizers of convex functions, and is mostly known for its use in

the LASSO problem, where the l-1 norm is applied to regularize a quadratic function. Taking advantage

of the (typical) sparseness of the solution, we create a multilevel hierarchy of similar problems, which

are traversed back and forth in order to accelerate the optimization process. This framework is applied

for solving the Covariance Selection Problem, where the inverse of an unknown covariance matrix of a

multivariate normal distribution is estimated, assuming that it is sparse. To this end, an l-1 regularized

log-determinant optimization problem needs to be solved. This task is challenging for large-scale data

sets because of time and memory limitations. Our numerical experiments demonstrate the efficiency of

the multilevel framework for solving both medium and large scale instances of this problem.

A multigrid preconditioner for the Hellan-Herrmann-Johnson mixed
method for biharmonic problems

Walter Zulehner
Institute of Computational Mathematics

Johannes Kepler University Linz

joint work with Wolfgang Krendl

In this talk we consider the biharmonic Dirichlet problem

∆2y = f in Ω, u =
∂u

∂n
= 0 on ∂Ω

on a polygonal two-dimensional domain Ω with boundary ∂Ω. The Hellan-Herrmann-Johnson mixed

method uses the Hessian u = ∆2y as auxiliary variable. The well-posedness of the associated continuous

mixed variational problem for (u, y) is shown in a nonstandard Sobolev space. Motivated by this analysis

of the continuous problem a similar result is derived for the discretized problem. The resulting precondi-

tioner is of optimal efficiency and is solely based on standard multigrid methods for second-order elliptic

problems.

The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK12.
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